Конструкции ветровых турбин и их характеристики. Ветрогенераторы нового поколения. Основные конструктивные элементы

Таким образом, ставится под сомнение печально известная абстракция «сферического коня в вакууме». Если отбросить в сторону эту псевдо – парадигму, то остаётся признать, что энергетические возможности вертикально – осевых турбин не ограничены тем пределом, который установлен теорией для пропеллерных ветряных генераторов (59,3 % от энергии ветра в створе ротора). Исходя из этих резонных положений, автор статьи пришёл к идее вертикально – осевой ветротурбины (VAWT) новой «архитектуры». В ней использован принцип природного явления - смерча. Турбина превращает поток ветра в восходящий вихрь, который «наматывается» на многолопастный ротор, как кокон. Лопасти мешают прохождению воздуха напрямую, он спирально обтекает полость ротора, передавая трением ему свою энергию. Поток взаимодействует не только с этими лопастями, но и со связанными с ротором наклонными антикрыльями. С верхом лопастей соединена горизонтальная крыльчатка. Она также взаимодействует с восходящим вихрем. Такая совокупность признаков создаёт парадоксальную возможность увеличения ометаемой ветром площади ротора без увеличения его габаритов, поскольку ометается не только внешняя его поверхность. Изображение турбины приведено ниже.

В 2016 году были изготовлены две действующие модели таких турбин. Высота вертикальных лопастей и поперечные габариты роторов равнялись 800 мм. Все упомянутые выше элементы ротора имели аэродинамический профиль ClarK Y. Толщина профиля 11% от длины хорды. Обе модели имели горизонтальные крыльчатки с девятью лопастями, каждая из которых связана с одной из вертикальных лопастей ротора и с центральной мачтой, которая вращается совместно со всей конструкцией. Первая модель (фото приведено ниже) имела девять антикрыльев, вторая - 18. При скорости ветра 11м/с вторая турбина развила мощность 220 Вт и имела на холостом ходу частоту вращения около 80 об/ мин. Обе турбины работали в приземном пограничном слое, стоя на канцелярском столе. Это не помешало им достичь КИЭВ 0,42 и 0,48 соответственно, что не уступает горизонтально - осевым турбинам, вынесенным за пределы зоны турбулентности посредством монтажа на высокие мачты.

На турбине номер два был замечен снос её по поверхности стола в направлении, перпендикулярном направлению ветра. То есть, впервые обнаружено, что эффект Магнуса справедлив не только для тел вращения со сплошной поверхностью. Открывается возможность освоить новое направление в судостроении путём использования этой турбины в качестве движущих установок небольших судов и больших кораблей (в дополнение к основным силовым установкам) для экономии топлива. Вращающаяся турбина при взаимодействии с ветровым потоком вызывает поперечную силу, движущую корабль, а на стоянке турбина вращает генератор, вырабатывающий электричество. Более подробно о судах с движителем на основе эффекта Магнуса можно прочитать Хотя эти вертикальные роторы и вертикальные крылья создают силу, движущую корабль с помощью ветра так же, как и старые паруса, роторы Магнуса требуют внешнего привода для их вращения, а крылья требуют вентилятора опять же с внешним приводом. И, кроме того, эти двое установок не способны вырабатывать энергию при воздействии на них ветра.

В настоящее время в рамках ростовской группы компаний «Ростехно» ведётся совершенствование описанных турбин, с деятельным и, что особенно радует, творческим коллективом с обострённым чувством нового. Это вселяет уверенность в успехе перспективного направления!

Приоритет ветротурбины на сегодня защищён следующими документами: Решение о выдаче патента РК по заявке 2015/470.1 «Ветроэнергетический агрегат», Решение о выдаче патента РК по заявке 2016/0104.1 «Ротор ветродвигателя». Однако подготовлены и значительные усовершенствования, выходящие за рамки данной статьи и дающие решающие преимущества над попытками пиратского воспроизведения описанной выше турбины.

Утверждается, что ветряная турбина «Sheerwind» от компании INVELOX обещает вырабатывать в шесть раз больше энергии, чем традиционные турбины. Данная технология не является новым словом в сфере динамики жидкостей, однако это новый способ генерации энергии - и если он окажется удачным, то даст мощный импульс развитию всей ветряной электроэнергетики.

Давайте посмотрим подробнее на принцип ее работы.

Энергетическая компания SheerWind из Миннесоты, США, объявила о результатах испытания ветрогенератора нового поколения Invelox. Компания утверждает, что во время испытаний турбина смогла произвести в шесть раз больше энергии, чем за то же самое время способны генерировать обычные ветровые турбины-мельницы на башнях. Кроме того, затраты на производство энергии ветра с Invelox ниже, поэтому на равных могут конкурировать с природным газом и гидроэнергетикой.

Invelox проявляет новый подход к ветровой энергетике, поскольку она не полагается на высокую скорость ветра. Турбина Invelox способна захватить ветер любой скорости, даже легкий бриз над землей. Захваченный ветер идет через воздуховод, по пути набирая скорость. Полученная кинетическая энергия приводит в действие генератор на земле. Объединив поток воздуха с вершины башни, можно генерировать больше энергии с меньшими турбинными лопатками и даже при самом легком ветре, говорит SheerWind.

Эта забавная башня действует подобно дымоходу, направляя поток ветра с любого направления вниз к наземному турбинному генератору. Пропуская ветер по узкому каналу, она фактически создаёт реактивный эффект, который увеличивает скорость потока - одновременно понижая его давление. У этого процесса есть название – эффект Вентури, и он позволяет ускорить вращение турбины, расположенной в самой узкой части прохода.

Благодаря этому, башня может вырабатывать электричество даже при крайне малой скорости ветра, что крайне выгодно отличает её от текущих технологий получения ветряной энергии. Эта идея настолько проста, элегантна, и многообещающа, что она может стать ответом на многие проблемы в этой перспективной области альтернативной энергетики. Помимо меньших начальных вложений и повышенной мощности и эффективности, она также решает проблему птиц и летучих мышей, которые часто погибают в ветряных турбинах (а это является действительно серьёзной проблемой этих устройств).

Что касается заявлений о шестикратной мощности, как и со многими новыми технологиями, обещающими исполнительный прорыв, это должно рассматриваться с осторожностью. Заявление SheerWind основывается на ее собственных сравнительных испытаниях, точная методология которых не совсем ясна.

«Мы использовали тот же самый турбинный генератор Invelox и установили его на башне, как и в случае традиционных ветряных мельниц,» сказал представитель SheerWind. «Мы измерили скорость ветра и выходную мощность. Тогда мы поместили ту же самую систему турбинного генератора опять же, измерили скорость свободного потока ветра, скорость ветра внутри INVELOX, и мощность. Тогда мы измерили скоростно-силовые качества в течение от 5 до 15 дней (в зависимости от теста) и вычислили энергию в кВт/ч. Энергии на шестьсот процентов больше было однажды. В среднем результаты колебались от 81 до 660 процентов, со средним числом приблизительно на 314 процентов больше энергии.»

Invelox может работать при скорости ветра 1,5 км. Цена ветровой Invelox стоит всего $750 долларов за установку мощностью в 1 киловатт. Производитель также утверждает, что эксплуатационные расходы значительно меньше по сравнению с турбинами обычной технологии. Благодаря своим небольшим размерам, система, предположительно, безопаснее для птиц и другой живности дикой природы, как и безопасная турбина Ewicon. Система также имеет возможность подключения нескольких турбин к одному генератору, то есть, получить энергию от того же самого генератора.

Ветроэнергетика активно развивается по всему миру, и ни для кого давно не секрет, что это одно из перспективнейших направлений альтернативной энергетики на данный момент. К середине 2014 года общая мощность всех установленных в мире ветрогенераторов составляла 336 гигаватт, а самый большой и мощный вертикальный трехлопастной ветрогенератор Vestas-164 был установлен и запущен в начале 2014 года в Дании. Его мощность достигает 8 мегаватт, а размах лопастей составляет 164 метра.

Несмотря на давно обкатанную технологию изготовления лопастных турбин и ветряков в целом, многие энтузиасты стремятся улучшить технологию, повысить ее эффективность и уменьшить негативные факторы.

Как известно, коэффициент использования энергии ветрового потока у в лучшем случае достигает 30%, они довольно шумны и нарушают естественный тепловой баланс близлежащих территорий, повышая температуру приземного слоя воздуха по ночам. Также они весьма опасны для птиц и занимают значительные площади.

Какие же альтернативы существуют? На самом деле, творчество современных изобретателей не знает границ, и различных альтернативных вариантов придумано множество.

Давайте рассмотрим 5 наиболее необычных из примечательных для отрасли альтернативных конструкций ветрогенераторов.

Начиная с 2010 года, американская компания Altaeros Energies, основанная в Массачусетском исследовательском институте, ведет разработку ветрогенераторов нового поколения. Новый тип ветрогенераторов предназначен для работы на высотах до 600 метров, докуда обычные ветрогенераторы просто не могут достать. Именно на таких больших высотах постоянно дуют самые сильные ветра, которые в 5-8 раз сильнее ветров вблизи поверхности земли.

Генератор представляет собой надувную конструкцию, похожую на накачанный гелием дирижабль, в который установлена трехлопастная турбина на горизонтальной оси. Такой ветряной генератор был запущен в 2014 году на Аляске на высоту около 300 метров для испытаний в течение 18 месяцев.

Разработчики уверяют, что данная технология позволит получать электроэнергию стоимостью 18 центов за киловатт-час, что в два раза дешевле обычной стоимости ветряной электроэнергии на Аляске. В будущем такие генераторы вполне смогут заменить дизельные электростанции, а также найти применение на проблемных территориях.

В перспективе это устройство будет не просто генератором электроэнергии, но и частью погодной станции и удобным средством обеспечения Интернета на далеких от соответствующей инфраструктуры территориях.

После установки такая система не требует присутствия персонала, не занимает большой площади, и почти бесшумна. Она может контролироваться дистанционно, и требует технического обслуживания только один раз в 1-1,5 года.

Еще одно интересное решение по созданию необычной конструкции ветряной электростанции реализуется в Объединенных Арабских Эмиратах. Недалеко от Абу-Даби строится город Мадсар, в котором планируют возвести довольно необычную ветряную электростанцию, названную разработчиками «Windstalk».

Основатель нью-йоркской дизайнерской компании Atelier DNA, разрабатывающей дизайн данного проекта, сказал, что главной идеей было найти в природе кинетическую модель, которая могла бы служить для генерации электроэнергии, и такая модель была найдена. 1203 стебля из углеродистого волокна, каждый около 55 метров высотой, с бетонными основаниями шириной по 20 метров, будут установлены на расстоянии 10 метров между собой.

Стебли будут армированы резиной, и иметь ширину около 30 см у основания, а кверху сужаются до 5 сантиметров. Каждый такой стебель будет содержать чередующиеся слои электродов и керамических дисков, изготовленных из пьезоэлектрического материала, который генерирует электрический ток, когда подвергается давлению.

Когда стебли будут качаться на ветру, диски будут сжиматься, генерируя электрический ток. Никакого шума лопастей ветряных турбин, никаких жертв среди птиц, ничего кроме ветра.

Идея возникла благодаря наблюдению за качающимися на болоте камышами.

Проект Windstalk компании Atelier DNA занял второе место в конкурсе Land Art Generator, спонсируемом Мадсаром для выбора лучшего, из числа международных заявок, произведения искусства, которое сможет генерировать энергию благодаря возобновляемым источникам.

Площадь, занимаемая этой необычной ветряной станцией, охватит 2,6 гектара, а по мощности будет соответствовать обычному ветрогенератору, занимающему аналогичную площадь. Система эффективна из-за отсутствия потерь на трение, свойственных традиционным механическим системам.

В основании каждого стебля будет установлен генератор, преобразующий крутящий момент от стебля с помощью системы амортизаторов и цилиндров, аналогично системе Levant Power, разработанной в Кембридже, штат Массачусетс.

Поскольку ветер не постоянен, будет применена система аккумулирования энергии, чтобы накопленная энергия могла расходоваться и тогда, когда нет ветра, поясняют сотрудники, работающие над проектом.

На вершине каждого стебля будет установлено по светодиодному фонарю, яркость свечения которого будет напрямую зависеть от силы ветра и количества генерируемой в данный момент электроэнергии.

Windstalk будет работать на хаотичном покачивании, что позволяет расположить элементы горазда ближе друг к другу, чем это возможно с обычными лопастными ветрогенераторами.

Аналогичный проект Wavestalk прорабатывается для преобразования энергии океанских течений и волн, где похожая система будет находиться в перевернутом виде под водой.

Проект, разработанный фирмой Saphon Energy из Туниса, также как и Windstalk, представляет собой безлопастной ветряной генератор, но на этот раз устройство имеет конструкцию парусного типа.

Этот бесшумный генератор, по форме напоминающий спутниковую тарелку, получил название Saphonian. Он не имеет вращающихся частей и совершенно безопасен для птиц. Экран генератора совершает под действием ветра движения вперед-назад, создавая колебания в гидравлической системе.

Цель проекта - улучшить характеристики ветряных генераторов, относительно использования ветрового потока. Ветер буквально запрягается в парус, который совершает под его действием движения вперед-назад, при этом нет ни лопастей, ни ротора, ни передач. Такое взаимодействие позволяет преобразовать больше кинетической энергии в механическую с помощью поршней.

Энергию можно накапливать в гидравлических аккумуляторах, либо преобразовывать в электрическую посредствам генератора, или же приводить с ее помощью во вращение какой-нибудь механизм. Если обычные ветрогенераторы обладают КПД 30%, то данный генератор парусного типа дает все 80%. Его эффективность превосходит ветряки лопастного типа в 2,3 раза.

В силу отсутствия дорогостоящих компонентов, как это имеет место в ветряной турбине (лопасти, ступицы, коробки передач), в случае с Saphonian, расходы на оборудование снижаются до 45%.

Аэродинамическая форма Saphonian имеет то преимущество, что турбулентные ветряные потоки незначительно влияют на тело паруса, и аэродинамическая сила лишь увеличивается. Именно из-за турбулентности ветряные турбины и не используются в городских районах, а Saphonian можно и там использовать. Кроме того, вредные акустические и вибрационные факторы сведены к минимуму. Компания Saphon Energy получила премию от KPMG за усилия в развитии инноваций.

Еще один весьма революционный подход к использованию ветряной энергии был реализован еще в 2008 году изобретателем - энтузиастом из Калифорнии. Крупные ветряные генераторы для малых городов имеют размеры с 30 этажный дом, а их лопасти достигают размеров крыльев Боинга 747.

Эти гигантские генераторы, безусловно, производят много энергии, однако производство, транспортировка и установка таких систем сложны и дороги. Несмотря на это промышленность растет более чем на 40 процентов каждый год. Именно так размышлял Даг Селсам из Калифорнии, прежде чем задаться своей амбициозной целью. Он решил, что вполне реально получить больше энергии, используя для этого меньшее количество материалов.

Установив десяток или несколько десятков маленьких роторов на одном валу, связанном с одним генератором, Даг, в конце концов, добился поставленной цели. Один конец длинного вала он соединил с генератором, а второй конец запустил в высь на воздушных шарах с гелием. Система заработала, как и предполагалось.

В учебниках Даг читал, что одновинтовой турбины вполне достаточно для получения максимума, однако у Дага возникли сомнения. Он считал иначе: чем больше роторов, тем больше энергии ветра доступно для использования.

Если каждый ротор будет расположен под нужным углом, то каждый ротор получит свой собственный ветер, и это повысит эффективность генерации.

Конечно, это усложняет физику, ведь теперь нужно было убедиться, что каждый ротор ловит свой собственный поток, а не только поток от расположенного рядом ротора. Требовалось выяснить оптимальный угол для вала по отношению к ветру и идеальное расстояние между роторами. И, в конце концов, выигрыш был получен с применением меньшего количества материала.

В 2003 году изобретатель получил грант в размере 75 000 долларов от Калифорнийской энергетической комиссии на разработку 3000-ваттный турбины на семь роторов. Задача была успешно решена, и Даг Селсам уже продал более 20 своих 2000-ваттных турбин с двойным ротором нескольким домовладельцам. Он построил эти устройства в своем загородном гараже.

Идея Дага явилась одной из немногих идей, которые на самом деле имеют все шансы на то, чтобы добиться больших успехов в коммерческом мире. Селсам говорит, что два ротора - это только начало. Вероятно, когда-нибудь он увидит свои мультироторные турбины протяженностью в милю по небу.

Компания Archimedes, офис которой расположен в Роттердаме, Нидерланды, придумала свою концепцию необычных ветряных турбин, которые можно устанавливать прямо на крышах жилых домов.

По замыслу авторов проекта, эффективная малошумная конструкция может вполне обеспечить небольшой дом электроэнергией, а комплекс таких генераторов, работающий в совокупности со , способен и вовсе свести к нулю зависимость большого здания от внешних источников электроэнергии. Новые ветровые турбины получили название Liam F1.

Небольшая турбина, диаметром 1,5 метра, и весом около 100 килограмм, может быть установлена на любой стене или крыше жилого дома. Обычно, высота террасных крыш - 10 метров, а ветер в стране почти всегда Юго-Западный. Этих условий достаточно, чтобы правильно разместить турбину на крыше, и эффективно использовать энергию ветра.

Две проблемы обычных ветрогенераторов решены здесь: шум обычных лопастных турбин и дороговизна установки громоздкого оборудования. В обычных ветряных генераторах затраты на установку часто не окупаются. Уровень шума турбины Liam около 45дБ, а это даже тише шума дождя (шум дождя в лесу - 50дБ).

По форме напоминающая панцирь улитки, турбина подобно флюгеру разворачивается по ветру, захватывая воздушный поток, снижая его скорость, и меняя направление. Директор компании Маринус Миремета утверждает, что эффективность новаторской турбины достигает 80% от максимально доступной теоретически в ветровой энергетике эффективности. И этого уже вполне достаточно.

В Нидерландах средняя семья потребляет 3300 кВт-часов электрической энергии за год. По данным разработчиков, половину этой энергии может обеспечить одна турбина Liam F1 при скорости ветра не менее 4,5 м/с.

Можно разместить три такие турбины в вершинах треугольника на крыше дома, тогда каждая из турбин будет обеспечена ветром и они не будут друг другу мешать, а напротив станут помогать друг другу.

Если речь идет об установке в городе, где имеют место турбулентные потоки, то производитель предлагает немного приподнимать ветрогенераторы, устанавливаемые на городских крышах, крепя их на шесты, чтобы стены соседних домов не мешали ветряным потокам.

Предполагаемая стоимость новой турбины вместе с установкой составляет 3999 евро. Поскольку устройство имеет размер больше одного метра, то может потребоваться особая лицензия на его использование, поэтому, на самый крайний случай, фирмой производятся и турбины mini-Liam, диаметр которых 0,75 метра.

Производители планируют применять свои турбины не только для электроснабжения жилых и промышленных зданий, но и для электроснабжения морских судов.

Как видим, интересных альтернатив у производителей ветрогенераторов предостаточно.

Энергия ветра – бесплатная, возобновляемая, безопасная энергия. Установкой, преобразующей энергию воздушных потоков в электрическую

или тепловую называют ветрогенератор. Большинство современных ветряных установок имеют сравнительно низкий КПД (до 30%) и высокую стоимость производства.

Проект турбинны ветрогенератора

Главными задачами всех ученых, занимающихся проблемами ветроэнергетики, являются снижение стоимости производства ветряков, повышение их КПД и мощности.

Классификация

Ветрогенераторы подразделяются по расположению оси вращения на конструкции с:

  • вертикальной осью (перпендикулярной земле);
  • горизонтальной осью (параллельной земле).

По материалам, из которых производят лопасти, ветряки классифицируются на:

  • жестколопастные;
  • парусные.

По числу лопастей подразделяется на:

  • генераторы с 2-мя лопастями;
  • генераторы с 3-мя лопастями;
  • многолопастные генераторы, с числом лопастей от 50-ти.

Ветрогенераторы турбинного типа относятся к категории нового поколения, их устанавливаю на крыше в виде вентиляторов и они не беспокоят соседей шумом

По типу винтового шага различают генераторы с:

  • постоянным шагом;
  • переменным шагом.

По типу конструкции:

  • лопастные;
  • турбинные.

По назначению:

  • бытовые;
  • коммерческие;
  • промышленные.

Промышленные ветряки строят, преимущественно, с горизонтальной осью вращения и жесткими лопастями.

Ветровая турбина Liam F1 Urban вырабатывает КПД 80%

Парусные ветряки и генераторы с вертикальными осями вращения часто устанавливают для снабжения энергией частных домов и малых строений.

Ветротурбинная установка – ветрогенератор, турбина которого, имеет цилиндрическую форму с установленными внутри нее лопастями. По сути, это ветряк с горизонтальной осью вращения, края лопастей которого защищены цилиндром. Отличается простой, надежной конструкцией, большим, по сравнению с лопастными ветряками, КПД.

Принципиальное отличие

Ветровая турбина представляет собой цилиндрический контур. Внутри контура располагаются вращающие лопасти. Состоит конструкция из:

  • турбины;
  • внешнего или внутреннего обтекателя;
  • обтекателя узла генератора турбины;
  • гондолы;
  • генератора;
  • инвертора;
  • аккумулирующего модуля;
  • блока управления;
  • динамического узла крепления.

Ветряки данного типа характеризуются отсутствием незащищенных лопастей вращения, а также системы, предназначенной для их регулирования и ориентирования на направление ветра. Это повышает надежность, безопасность конструкции. Цилиндрическая форма обтекателя самостоятельно разворачивается, улавливая ветер, а обтекатель, работающий как сопло, повышает мощность установки.

В зависимости от требуемой мощности и назначения, конструкция может иметь множество модификаций. Например, при изготовлении турбины могут использоваться различные материалы. Варьироваться могут геометрические размеры, способ размещения (на опору, ферму и пр.). Возможно дополнительное оснащение модулями солнечных батарей.

Прототип ветрогенератора турбинного типа для бизнеса

Ветротурбинные агрегаты выпускают бытового и промышленного назначения.

Принцип работы установки

Для нормальной работы ветровой установки турбинного типа необходим ветер, дующий со скоростью от 2 м/с до 60 м/с. Принцип работы установки такой. Агрегат самостоятельно улавливает направление ветра, поворачивается в нужную сторону. Поток воздуха попадает на лопасти, вращает их. Воздушные массы сообщают кинетическую энергию движения лопастям, где она преобразуется в энергию механическую, вращающую ротор.

Турбина ветрогенератора Российской разработки проходит испытания

Вращение ротора продуцирует трехфазный ток, поступающий на генератор. Оттуда ток идет в контроллер, где происходит его выпрямление, далее он протекает через аккумуляторы, заряжает их, затем поступает на инвертор. Инвертор выпускает однофазный переменный ток, частота его колебаний 50 Герц для сетей напряжением 220 В, либо трехфазный ток напряжением 380 В, необходимый промышленным предприятиям, а также для питания нагрузки.

Достоинства турбинной ветроустановки

Ветрогенератор турбинной конструкции имеет существенные преимущества над ветряками иных конструкций.

  1. Высокая чувствительность к ветру. Минимальная скорость ветра для приведения лопастей в движение от 2 м/с; ветрякам иного типа нужна скорость ветра от 4 м/с.
  2. Генератор способен работать при ураганных скоростях ветра (до 60 м/с). Большинство других ветряков работает до 25-30 м/с.
  3. Коэффициент полезного действия ветряного турбогенератора почти вдвое превышает КПД ветряка, имеющего незащищенные лопасти. За счет сопельной конструкции обтекателя, турбинный ветряк значительно мощнее агрегатов иных конструкций.
  4. Турбоустановка безопасна для птиц и летучих мышей. Ветряки с открытыми лопастями часто становятся причиной гибели летающих животных, которые не способны определить границы опасной зоны. Ветроустановку турбинной конструкции летучие мыши и птицы идентифицируют как единое препятствие и успешно ее огибают.
  5. Ветряки большинства конструкций производят много шума, при определенных скоростях ветра генерируют инфразвук, поэтому их нельзя ставить вблизи жилых домов, ферм, лесных хозяйств. Турбинные установки не продуцируют инфразвук, губительный для людей и животных. Их можно устанавливать рядом с жилым домом. Турбинные ветряки не провоцируют искусственную миграцию животных.
  6. Меньшая, по сравнению с лопастными, стоимость производства. Изготовление свободных лопастей – сложный, дорогостоящий процесс. Их отсутствие заметно удешевляет и упрощает производство установки.
  7. Легкость и быстрота монтажа. Комплектующие турбогенератора производят на заводе; там же осуществляется сборка основных блоков. Установка включает лишь компоновку, соединение блоков, крепление ее к опоре. Монтаж происходит при помощи стандартных подъемников.
  8. Легкость обслуживания. Сервисное обслуживание турбинных ветряков значительно проще и дешевле, чем лопастных. При правильной эксплуатации установки, периодическом грамотном сервисном обслуживании, срок эксплуатации достигает 50 лет.
  9. Ветросиловая установка турбинного типа, в отличие от классических ветряков, не мешает летчикам и диспетчерам летных служб, не обнаруживается радарами ПВО, не создает угрозы национальной безопасности.

Область применения

Максимального КПД ветротурбинный генератор достигает вблизи природных водоемов из-за почти круглогодичного движения воздуха и высокой чувствительности к ветру. И также его устанавливают в городах, поселках. Конструкция установки позволяет пользоваться генератором для автономного или комбинированного освещения частных домов и дач.

Полезен ветрогенератор в населенных пунктах, расположенных вдали от городов, райцентров, где часто случаются перебои с электричеством. Ветротурбинную установку можно использовать вблизи аэродромов, военных полигонов. Оставаясь невидимой для радаров, она не несет опасности для пилотов и систем национальной безопасности.

Неуклонное истощение природных ресурсов приводит к тому, что в последнее время человечество занято поиском альтернативных источников энергии. На сегодняшний день известно достаточно большое количество видов альтернативной энергетики, одним из которых является использование силы ветра.

Энергия ветра применялась людьми с древности, например, в работе ветряных мельниц. Самый первый ветрогенератор (ветряная турбина), который служил для производства электричества, был построен в Дании в 1890 г. Такие устройства стали применяться в тех случаях, когда требовалось обеспечить электроэнергией какой-либо труднодоступный район.

Принцип действия ветрогенератора:

  • Ветер вращает колесо с лопастями, которое передает крутящий момент на вал генератора через редуктор.
  • Инвертор выполняет задачу преобразования полученного постоянного электрического тока в переменный.
  • Аккумулятор предусмотрен для подачи в сеть напряжения при отсутствии ветра.

Мощность ВЭУ находится в прямой зависимости от диаметра ветроколеса, высоты мачты и силы ветра. В настоящее время производятся ветрогенераторы, диаметр лопастей которых от 0,75 до 60 м и более. Самая маленькая из всех современных ВЭУ – G-60. Диаметр ротора, имеющего пять лопастей, всего 0,75 м, при скорости ветра 3-10 м/с она может вырабатывать мощность 60 Вт, вес ее составляет 9 кг. Такая установка с успехом применяется для освещения, зарядки батарей и работы средств связи.

Все ветряные генераторы могут быть классифицированы по нескольким принципам:

  • Оси вращения.
  • Количеству лопастей.
  • Материалу, из которого выполнены лопасти.
  • Шагу винта.

Классификация по оси вращения:

  • Горизонтальные.
  • Вертикальные.

Наибольшую популярность получили горизонтальные ветрогенераторы, ось вращения турбины которых расположена параллельно земле. Этот тип получил название «ветряной мельницы», лопасти которой вращаются против ветра. Конструкция горизонтальных ветрогенераторов предусматривает автоматический поворот головной части (в поисках ветра), а также поворот лопастей, для использования ветра небольшой силы.

Вертикальные ветрогенераторы гораздо менее эффективны. Лопасти такой турбины вращаются параллельно поверхности земли при любом направлении и силе ветра. Так как при любом направлении ветра половина лопастей ветроколеса всегда вращается против него, ветряк теряет половину своей мощности, что значительно снижает энергоэффективность установки. Однако ВЭУ такого типа проще в установке и обслуживании, поскольку ее редуктор и генератор размещаются на земле. Недостатками вертикального генератора являются: дорогостоящий монтаж, значительные эксплуатационные затраты, а также то, что для установки такой ВЭУ требуется немало места.

Ветрогенераторы горизонтального типа больше подходят для производства электроэнергии в промышленных масштабах, их используют в случае создания системы ветряных электростанций. Вертикальные часто применяют для потребностей небольших частных хозяйств.

Классификация по количеству лопастей:

  • Двухлопастные.
  • Трехлопастные.
  • Многолопастные (50 и более лопастей).

По количеству лопастей все установки делятся на двух- и трех- и многолопастные (50 и более лопастей). Для выработки необходимого количества электроэнергии требуется не факт вращения, а выход на необходимое количество оборотов.

Каждая лопасть (дополнительная) увеличивает общее сопротивление ветрового колеса, что делает выход на рабочие обороты генератора более сложным. Таким образом, многолопастные установки действительно начинают вращаться при меньших скоростях ветра, однако они применяются в том случае, когда имеет значение сам факт вращения, как, например, при перекачке воды. Для выработки электроэнергии ветрогенераторы с большим количеством лопастей практически не применяются. К тому же на них не рекомендуется установка редуктора, потому что это усложняет конструкцию, а также делает ее менее надежной.

Классификация по материалам лопастей:

  • Ветрогенераторы с жесткими лопастями.
  • Парусные ветрогенераторы.

Следует отметить, что парусные лопасти значительно проще в изготовлении, а потому менее затратны, нежели жесткие металлические или стеклопластиковые. Однако подобная экономия может обернуться непредвиденными расходами. Если диаметр ветроколеса составляет 3 м, то при оборотах генератора 400-600 об/мин кончик лопасти достигает скорости 500 км/ч. С учетом того обстоятельства, что в воздухе содержится песок и пыль, этот факт является серьезным испытанием даже для жестких лопастей, которые в условиях стабильной эксплуатации требуют ежегодной замены антикоррозийной пленки, нанесенной на концы лопастей. Если не обновлять антикоррозионную пленку, то жесткая лопасть постепенно начнет терять свои рабочие характеристики.

Лопасти парусного типа требуют замены не раз в год, а непосредственно после возникновения первого серьезного ветра. Поэтому автономное электроснабжение, требующее значительной надежности компонентов системы, не рассматривает применение лопастей парусного типа.

Классификация по шагу винта:

  • Фиксированный шаг винта.
  • Изменяемый шаг винта.

Безусловно, изменяемый шаг винта увеличивает диапазон эффективных рабочих скоростей ветрогенератора. Однако внедрение данного механизма ведет к усложнению лопастной конструкции, к увеличению веса ветрового колеса, а также снижает общую надежность ВЭУ. Следствием этого является необходимость усиления конструкции, что приводит к значительному удорожанию системы не только при приобретении, но и при эксплуатации.

Современные ветрогенераторы представляют собой высокотехнологичные изделия, мощность которых составляет от 100 до 6 МВт. ВЭУ инновационных конструкций позволяют экономически эффективно использовать энергию самого слабого ветра – от 2 м/с. При помощи ветрогенераторов сегодня можно с успехом решать задачи по электроснабжению островных или локальных объектов любой мощности.

Ветровые турбины

Типы ветродвигателей. Новые конструкции и технические решения

Ветроэнергетика поражает многообразием и необычным дизайном конструкций ветрогенераторов. Существующие конструкции ветрогенераторов, а также предлагаемые проекты ставят ветроэнергетику вне конкуренции по оригинальности технических решений по сравнению со всеми остальными мини-энергокомплексами, работающими с использованием ВИЭ.

В настоящее время существует множество различных концептуальных конструкций ветрогенераторов, которые по типу ветроколес (роторов, турбин, винтов) можно разделить на два основных вида. Это ветродвигатели с горизонтальной осью вращения (крыльчатые) и с вертикальной (карусельные, так называемые Н-образные турбины).

Ветряные двигатели с горизонтальной осью вращения

Ветряные двигатели с горизонтальной осью вращения . В ветряках с горизонтальной осью вращения роторный вал и генератор располагаются наверху, при этом система должна быть направлена на ветер. Малые ветряки направляются с помощью флюгерных систем, в то время как на больших (промышленных) установках есть датчики ветра и сервоприводы, которые поворачивают ось вращения на ветер. Большинство промышленных ветрогенераторов оснащены коробками передач, которые позволяют системе подстраиваться под текущую скорость ветра. В силу того, что мачта создает турбулентные потоки после себя, ветроколесо обычно ориентируется по направлению против воздушного потока. Лопасти ветроколеса делают достаточно прочными, чтобы предотвратить их соприкосновение с мачтой от сильных порывов ветра. Для ветряков такого типа не нужны установки дополнительных механизмов ориентации по ветру.

Ветроколесо с горизонтальной осью

Ветроколесо может быть выполнено с различным количеством лопастей: от однолопастных ветрогенераторов с контргрузами до многолопастных (с числом лопастей до 50 и более). Ветроколеса с горизонтальной осью вращения выполняют иногда фиксированными по направлению, т.е. они не могут вращаться относительно вертикальной оси, перпендикулярной направлению ветра. Такой тип ветрогенераторов используется лишь при наличии одного господствующего направления ветра. В большинстве же случаев система, на которой закреплено ветроколесо (так называемая головка), выполняется поворотной, ориентирующейся по направлению ветра. У малых ветрогенераторов для этой цели применяются хвостовые оперения, а у больших ориентацией управляет электроника.

Для ограничения частоты вращения ветроколеса при большой скорости ветра применяется ряд методов, в том числе установка лопастей во флюгерное положение, использование клапанов, которые стоят на лопастях или вращаются вместе с ними, и др. Лопасти могут быть непосредственно закреплены на валу генератора, либо вращающий момент может передаваться от его обода через вторичный вал к генератору или другой рабочей машине.

В настоящее время высота мачты промышленного ветрогенератора варьируется в диапазоне от 60 до 90 м. Ветроколесо совершает 10-20 поворотов в минуту. В некоторых системах есть подключаемая коробка передач, позволяющая ветроколесу вращаться быстрее или медленнее, в зависимости от скорости ветра, при сохранении режима выработки электроэнергии. Все современные ветрогенераторы оснащены системой возможной автоматической остановки на случай слишком сильных ветров.

Основные достоинства горизонтальной оси следующие: изменяемый шаг лопаток турбины, позволяющий по максимуму использовать энергию ветра в зависимости от атмосферных условий; высокая мачта позволяет «добираться» до более сильных ветров; высокая эффективность благодаря направлению ветроколеса перпендикулярно ветру.

В то же время горизонтальная ось имеет ряд недостатков. Среди них – высокие мачты высотой до 90 м и длинные лопасти, которые трудно транспортировать, массивность мачты, необходимость направления оси на ветер и т.д.

Ветряные двигатели с вертикальной осью вращения. Основным преимуществом такой системы является отсутствие необходимости направления оси на ветер, так как ВЭУ использует ветер, поступающий с любого направления. Кроме того, упрощается конструкция и уменьшаются гироскопические нагрузки, вызывающие дополнительные напряжения в лопастях, системе передач и прочих элементах установок с горизонтальной осью вращения. Особенно эффективны такие установки в областях с переменным ветром. Верти-кально-осевые турбины работают при низких скоростях ветра и любых его направлениях без ориентации на ветер, но имеют малый КПД.

Автором идеи создания турбины с вертикальной осью вращения (Н-образной турбины) является французский инженер Джордж Джин Мари Дариус (Жан Мари Дарье). Этот тип ветрогенератора был запатентован в 1931 г. В отличие от турбин с горизонтальной осью вращения Н-образные турбины «захватывают» ветер при изменении его направления без изменения положения самого ротора. Поэтому ветрогенераторы такого типа не имеют «хвоста» и внешне напоминают бочку. Ротор имеет вертикальную ось вращения и состоит из двух – четырех изогнутых лопастей.

Лопасти образуют пространственную конструкцию, которая вращается под действием подъемных сил, возникающих на лопастях от ветрового потока. В роторе Дарье коэффициент использования энергии ветра достигает значений 0,300,35. В последнее время проводятся разработки роторного двигателя Дарье с прямыми лопастями. Сейчас ветрогенератор Дарье может рассматриваться в качестве основного конкурента ветрогенераторов крыльчатого типа.

Установка имеет довольно высокую эффективность, но при этом образуются серьезные нагрузки на мачту. Система также обладает большим стартовым моментом, который с трудом может быть создан ветром. Чаще всего это производится внешним воздействием.

Другой разновидностью ветроколеса является ротор Савониуса, созданный финским инженером Сигуртом Савониусом в 1922 г. Вращающий момент возникает при обтекании ротора потоком воздуха за счет разного сопротивления выпуклой и вогнутой частей ротора. Колесо отличается простотой, но имеет очень низкий коэффициент использования энергии ветра – всего 0,1-0,15.

Главное преимущество вертикальных ветрогенераторов в том, что они не нуждаются в механизме ориентации на ветер. У них генератор и другие механизмы размещаются на незначительной высоте возле основания. Все это существенно упрощает конструкцию. Рабочие элементы располагаются близко к земле, что облегчает их обслуживание. Невысокая минимальная рабочая скорость ветра (2-2,5 м/с) производит меньше шума.

Однако серьезным недостатком этих ветродвигателей является значительное изменение условий обтекания крыла потоком за один оборот ротора, циклично повторяющееся при работе. Из-за потерь на вращение против потока воздуха большинство ветрогенераторов с вертикальной осью вращения почти вдвое менее эффективны, чем с горизонтальной осью.

Поиск новых решений в ветроэнергетике продолжается, и уже есть оригинальные изобретения, например турбопарус. Ветрогенератор монтируется в виде длинной вертикальной трубы в 100 м высотой, в которой из-за температурного градиента между концами трубы возникает мощный воздушный поток. Сам электрогенератор вместе с турбиной предлагается установить в трубе, в результате чего поток воздуха обеспечит вращение турбины. Как показывает практика эксплуатации таких ветрогенераторов, после раскрутки турбины и специального подогрева воздуха у нижнего края трубы даже при тихом ветре (и штиле) в трубе устанавливается сильный и стабильный поток воздуха. Это делает такие ветроустановки перспективными, но только в безлюдных местностях (при работе такая установка засасывает в трубу не только мелкие предметы, но и крупных животных). Данные установки окружают специальной защитной сеткой, а систему управления располагают на достаточном расстоянии.

Турбопарус

Специалисты работают над созданием специального устройства для уплотнения ветра – диффузора (уплотнителя энергии ветра). За год ветродвигатель этого типа успевает «поймать» в 4-5 раз больше энергии, чем обычный. Высокая скорость вращения ветроколеса достигается с помощью диффузора. В узкой его части воздушный поток особенно стремителен, даже при сравнительно слабом ветре.

Ветрогенератор с дифузором

Как известно, скорость ветра с высотой увеличивается, что создает более благоприятные условия для использования ветрогенераторов. Воздушные змеи были изобретены в Китае примерно 2 300 лет назад. Идея использования змея для подъема ветрогенератора на высоту постепенно находит реализацию.

Швейцарские конструкторы из компании Етра представили новую конструкцию надувных воздушных змеев, которые смогут поднимать до 100 кг при массе самого крыла 2,5 кг. Их можно использовать для установки на морских судах и подъема на большую высоту (до 4 км) ветряных турбин. В 2008 г. подобная система прошла испытания при плавании контейнеровоза Beluga SkySails из Германии в Венесуэлу (экономия топлива составила свыше 1 000 долл./сутки).

Например, в Гамбурге компанией Beluga Shipping такая система установлена на дизельном сухогрузе Beluga SkySails. Воздушный змей в виде параплана размером 160 м2 поднимается в воздух на высоту до 300 м за счет подъемной силы ветра. Параплан разделен на отсеки, в которые по команде компьютера по эластичным трубкам подается сжатый воздух. Компания Beluga SkySails к 2013 г. собирается оснастить такой системой около 400 грузовых судов.

Ветроголовки «Ветролов»

Интересное решение имеет конструкция ветроголовки «Ветролов». Вращающийся корпус генератора выполнен достаточно длинным (около 0,5 м), в средней части (на промежутке от фланца генератора до лопастей) – механизм складывания лопастей. По принципу действия он похож на механизм раскрывания автоматического зонта, а лопасти напоминают крыло дельтаплана. Для того чтобы лопасти не упирались друг в друга во время складывания, оси их закрепления несколько смещены. Четыре лопасти (через одну) идут вовнутрь, а четыре – снаружи. После складывания площадь лобового сопротивления ветряка уменьшается почти в четыре раза, а коэффициент аэродинамического сопротивления – почти в два.

В верхней части опоры ветряка устанавливается «коромысло» с вертикальной осью вращения. На одном его конце расположен ветрогенератор, на другом – противовес. При слабом ветре ветрогенератор посредством противовеса поднят выше верхней отметки опоры и ось ветряка при этом горизонтальна. При усилении ветра давление на ветроколесо растет и оно начинает опускаться, поворачиваясь вокруг горизонтальной оси. Таким образом работает еще одна система «ухода» от сильного ветра. Конструкция позволяет наращивать коромысла так, что ветрогенераторы устанавливаются друг за другом. Получается своеобразная гирлянда из одинаковых модулей, которые при слабом ветре стоят один выше другого, а при сильном уходят вниз, «прячась» в «ветровую тень» ветроколеса. Здесь также заложена способность системы адаптироваться к внешней нагрузке.

Ветрогенератор Eolic

Конструкторы Маркос Мадиа, Серджио Оаши и Хуан Мануэль Пантано разработали портативный ветрогенератор Eolic. Для изготовления устройства использовались только алюминий и волокно из углеродных материалов. В собранном виде турбина Eolic имеет длину около 170 см. Для приведения Eolic из сложенного в рабочее состояние потребуется 2-3 человека и займет этот процесс 15-20 мин. Данный ветрогенератор может складываться для переноски.

Дизайнерский ветрогенератор Revolution Air

Сегодня есть много дизайнерских проектов и разработок. Так, французский дизайнер Филипп Старк создал ветрогенератор Revolution Air. Проект дизайнерского ветряка носит название «Демократичная экология».

Ветрогенератор Energy Ball

Международная группа дизайнеров и инженеров Home-energy представила свой продукт – ветрогенератор Energy Ball. Главной особенностью новинки является компоновка на нем лопастей по типу сферы. Все они соединены с ротором обоими концами. Когда ветер проходит сквозь них, он дует параллельно ротору, что увеличивает КПД генератора. Energy Ball может работать даже при очень низкой скорости ветра и производит гораздо меньше шума, чем обычные ветряки.

Ветрогенератор Третьякова

Уникальную ветроустановку создали конструкторы из Самары. При использовании в городской среде она дешевле, экономичнее и мощнее европейских аналогов. Ветрогенератор Третьякова представляет собой воздухозаборник, который улавливает даже относительно слабые воздушные потоки. Новинка начинает вырабатывать полезную энергию уже при скорости 1,4 м/с. Кроме того, не нужен дорогостоящий монтаж: установку можно ставить на здание, мачту, мост и т. д. Она имеет высоту 1 м и длину 1,4 м. КПД постоянный – около 52 %. Мощность промышленного аппарата – 5 кВт. На расстоянии 2 м шум от ветростанции составляет менее 20 Дб (для сравнения: шум вентилятора – от 30 до 50 Дб).

Американская компания Wind Tronics из Мичигана разработала компактную ветровую установку для применения в частных домохозяйствах. Разработчиком технологии является Wind Tronics, а производственный гигант Honeywell наладил изготовление ветровых установок. Дизайн предусматривает нулевой ущерб окружающей среде.

В этой установке используется турбинная безредукторная крыльчатка Blade Tip Power System (BTPS), что позволяет ветрогенератору работать в гораздо более широком диапазоне скоростей ветра, а также снизить механическое сопротивление и вес турбины. Wind Tronics начинает вращаться при скорости ветра всего 0,45 м/с и работоспособна до скорости 20,1 м/с! Расчеты показывают, что такая турбина генерирует электроэнергию в среднем на 50 % чаще и дольше, чем традиционные ветрогенераторы. Кстати, автоматика с постоянно подключенным к ней анемометром следит за скоростью и направлением ветра. При достижении максимальной рабочей скорости турбина просто поворачивается к ветру обтекаемым боком. Автоматика системы немедленно реагирует на переохлажденный дождь, способный вызвать обледенение. Технология уже запатентована более чем в 120 странах.

Интерес к малым ветровым турбинам растет во всем мире. Многие из компаний, работающих над решением этой проблемы, вполне преуспели в создании собственных оригинальных решений.

Компания Optiwind выпускает оригинальные ветровые установки Optiwind 300 (300 кВт, стоимость – 75 тыс. евро) и Optiwind 150 (150 кВт, стоимость – 35 тыс. евро). Они предназначены для коллективной экономии энергии в поселках и фермерских хозяйствах (рис. 12). Основная идея – сбор энергии ветра наборными конструкциями из нескольких турбин на приличной высоте. Optiwind 300 комплектуется 61-метровой башней, платформа акселератора имеет 13 м в диаметре, а диаметр каждой турбины составляет 6,5 м.

Необычный вид имеет конструкция турбины GEDAYC (рис. 13). Малый вес позволяет турбине эффективно вращать электрогенератор при скорости ветра 6 м/с. Новая конструкция лопастей использует принцип, подобный «системе» воздушного змея. Турбины GEDAYC уже установлены на трех ветрогенераторах мощностью 500 кВт, снабжающих энергией горные выработки. Установка турбин GEDAYC и их опытная эксплуатация показали, что благодаря новой конструкции турбины легче, удобнее в транспортировке и проще в обслуживании.

Компанией Earth Tronics разработан новый тип «домашних» ветряных турбин Honeywell. Система позволяет вырабатывать электроэнергию на кончиках лопастей, а не на оси (как известно, скорость вращения концов лопастей гораздо выше скорости вращения оси). Таким образом, турбина Honeywell не использует редуктор и генератор, как в обычных ветрогенераторах, что упрощает конструк-цию, уменьшает ее вес и порог скорости ветра, при котором ветрогенератор начинает производить электроэнергию.

В Китае создан опытный проект ветрогенератора с магнитной левитацией. Магнитная подвеска позволила снизить стартовую скорость ветра до 1,5 м/с и соответственно на 20 % повысить суммарную отдачу генератора в течение года, что должно снизить стоимость вырабатываемой электроэнергии.

Компания Maglev Wind Turbine Technologies из Аризоны намерена производить ветровые турбины с вертикальной осью Maglev Turbine максимальной мощностью 1 ГВт. Экзотическая модель ветровой турбины выглядит как высотное здание, но по отношению к своей мощности она небольшая. Одна турбина Maglev может обеспечить энергией 750 тыс. домов и занимает площадь (вместе с зоной отчуждения) около 40 га. Придумал эту турбину изобретатель Эд Мазур, основатель компании MWTT. Maglev Turbine плавает на магнитной подушке. Главные компоненты новой установки находятся на уровне земли, их проще обслуживать. В теории новая турбина нормально работает как при крайне слабом ветре, так и при очень сильном (свыше 40 м/с). Компания намерена открыть научные и образовательные центры поблизости от своих турбин.

При изучении творческого наследия гениального русского инженера Владимира Шухова (1853-1939 гг.) специалисты ООО «Инбитек-ТИ» обратили внимание на его идеи использования стальных стержневых гиперболоидов в архитектуре и строительстве.

Ветровая турбина гиперболоидного типа

Потенциал подобных конструкций сегодня до конца не изучен и не исследован. Известно также, что Шухов называл свои работы с гиперболоидами «исследованиями». На основе его идей появилась разработка ветрогенераторов роторного типа абсолютно новой конструкции. Подобная конструкция позволит получать электроэнергию даже при очень малых скоростях ветрового потока. Для запуска из состояния покоя необходима скорость ветра 1,4 м/с. Это достигнуто за счет использования эффекта левитации ротора ветрогенратора. Ветрогенератор подобного типа способен начать работу даже в восходящих потоках воздуха, что имеет место, как правило, рядом с рекой, озером, болотом.

Mobile Wind Turbine

Еще один любопытный проект – ветрогенератор Mobile Wind Turbine – разработали дизайнеры студии Pope Design (рис. 17) . Это мобильный ветрогенератор, расположенный на базе грузовой машины. Для управления Mobile Wind Turbine нужен лишь оператор-водитель. Этот ветрогенератор можно будет использовать в зонах стихийных бедствий, во время ликвидации последствий ЧП и при восстановлении инфраструктуры.

Современное состояние ветроэнергетики, предлагаемые конструкции и технические решения ветрогенераторов и «уплотнителей ветра» позволяют создавать мини-ветроэлектростанции для частного использования практически повсеместно. Порог скорости «трогания» ветрогенератора значительно снижен благодаря техническим разработкам, массогабаритные показатели ВЭУ также уменьшаются. Это позволяет эксплуатировать ветроэнергетические установки в «домашних» условиях.

Типы ветродвигателей


Региональный центр энергоэффективности Крымского федерального университета имени В.И.Вернадского. Центр компетенций в области энергосбережения