Солнечный концентратор из зеркальной пленки. Солнечные концентраторы. О воздушно-солнечных СК

О том, как построить солнечный водонагреватель. Правильнее назвать его параболический солнечный концентратор. Главное преимущество его в том, что зеркало отражает 90% солнечной энергии, а его параболическая форма концентрирует эту энергию в одной точке. Эта установка будет эффективно работать в большинстве районов России, вплоть до 65 градуса с.ш.

Для сборки коллектора нам понадобится несколько основных вещей: сама антенна, система слежения за солнцем и теплообменник-коллектор.

Параболическая антенна.

Можно использовать любую антенну- железную, пластиковую или из стекловолокна. Антенна должна быть панельного типа, а не сеточная. Здесь важна площадь антенны и форма. Надо помнить, мощность нагрева = площади поверхности антенны. И что мощность, собираемая антенной диаметром 1,5 м, будет в 4 раза меньше мощности собираемой антенной с площадью зеркала 3 м.

Так же понадобится поворотный механизм для антенны в сборе. Его можно заказать на Ebay или на Aliexpress.

Понадобится рулон алюминиевой фольги или лавсановой зеркальной пленки, применяемой для теплиц. Клей, которым пленка будет приклеиваться к параболе.

Медная трубка диаметром 6 мм. Фитинги, для подключения горячей воды к баку, к бассейну, ну или где вы будете применять эту конструкцию. Поворотный механизм слежения автор приобрел на EBAY за 30$.

Шаг 1 Переделка антенны для фокусировки солнечного излучения вместо радиоволн.

Надо всего лишь прикрепить лавсановую зеркальную пленку или алюминиевую фольгу к зеркалу антенны.


Такую пленку можно заказать на Aliexpress, если вдруг в магазинах не найдете

Делается это почти также просто, как и звучит. Надо только учесть, что если антенна, к примеру, диаметром 2,5 м, а пленка шириной 1 м, то не надо закрывать антенну пленкой в два прохода, будут образовываться складки и неровности, которые ухудшат фокусировку солнечной энергии. Вырезайте ее небольшими полосами и закрепляйте на антенне с помощью клея. Перед наклейкой пленки убедитесь, что антенна чистая. Если есть места, где краска вздулась- зачистите их наждачной бумагой. Вам надо выровнять все неровности. Обратите внимание, чтобы LNB-конвертор был снят со своего места- иначе он может расплавиться. После наклейки пленки и установки антенны на место не приближайте руки или лицо к месту крепления головки- вы рискуете получить серьезные солнечные ожоги.

Шаг 2 система слежения.

Как было написано выше - автор купил систему слежения на Ebay. Вы так же можете поискать поворотные системы слежения за солнцем. Но я нашел несложную схему с копеечной ценой, которая довольно точно отслеживает положение солнца.

Список деталей:
(скачиваний: 450)
* U1/U2 - LM339
* Q1 - TIP42C
* Q2 - TIP41C
* Q3 - 2N3906
* Q4 - 2N3904
* R1 - 1meg
* R2 - 1k
* R3 - 10k
* R4 - 10k
* R5 - 10k
* R6 - 4.7k
* R7 - 2.7k
* C1 - 10n керамика
* M - DC мотор до 1А
* LEDs - 5mm 563nm


Видео работы гелиотракера по схеме из архива

Сам можно сделать на основе передней ступицы автомобиля ВАЗ.

Кому интересно фото взято отсюда:

Шаг 3 Создание теплообменника-коллектора

Для изготовления теплообменника понадобится медная трубка, свернутая в кольцо и помещенная в фокус нашего концентратора. Но сначала нам надо узнать размер фокальной точки тарелки. Для этого надо снять LNB-конвертер с тарелки, оставив стойки крепления конвертера. Теперь надо повернуть тарелку на солнце, предварительно закрепив кусок доски на месте крепления конвертера. Подержите доску немного в этом положении, пока не появиться дым. Это займет по времени примерно 10-15 секунд. После этого отверните антенну от солнца, снимите доску с крепления. Все манипуляции с антенной, ее развороты, проводятся для того, чтобы вы случайно не засунули руку в фокус зеркала- это опасно, можно сильно обжечься. Пусть остынет. Измерьте размер сожженной части древесины- это будет размер вашего теплообменника.


Размер точки фокусировки будет определять, сколько медной трубки вам понадобится. Автору понадобилось 6 метров трубы при размере пятна 13см.


Я думаю, что возможно, вместо свернутой трубки можно поставить радиатор от автомобильной печки, есть довольно маленькие радиаторы. Радиатор должен быть зачерненный для лучшего поглощения тепла. Если же вы решили использовать трубку, надо постараться согнуть ее без перегибов и изломов. Обычно для этого трубку заполняют песком, закрывают с обеих сторон и сгибают на какой-нибудь оправке подходящего диаметра. Автор залил в трубку воды и положил ее в морозильную камеру, открытыми концами вверх, чтобы вода не вытекла. Лед в трубке создаст давление изнутри, что позволит избежать изломов. Это позволит согнуть трубу с меньшим радиусом изгиба. Ее надо сворачивать по конусу- каждый виток должен быть не много большего диаметра чем предыдущий. Можно спаять витки коллектора между собой для более жесткой конструкции. И не забудьте слить воду после того, как закончите с коллектором, чтобы после установки его на место, вы не обожглись паром или горячей водой

Шаг 4. Собираем все вместе и пробуем.


Теперь у вас есть зеркальная парабола, модуль слежения за солнцем, помещенный в водонепроницаемый контейнер, или пластиковую емкость, законченный коллектор. Все, что осталось сделать - это установить коллектор на место и опробовать его в работе. Вы можете пойти дальше и усовершенствовать конструкцию, сделав, что-то типа кастрюли с утеплителем и одеть ее на заднюю часть коллектора. Механизм слежения должен отслеживать движение с востока на запад, т.е. поворачиваться в течение дня за солнцем. А сезонные положения светила (вверх\вниз) можно регулировать вручную один раз в неделю. Можно, конечно, добавить механизм слежения и по вертикали- тогда вы получите практически автоматическую работу установки. Если вы планируете использовать воду для подогрева бассейна или в качестве горячей воды в водопроводе- вам понадобиться насос, который будет прокачивать воду через коллектор. В случае если вы будете нагревать емкость с водой, надо принять меры, чтобы избежать закипания воды и взрыва бака. Сделать это можно используя

Опубліковано 09.08.2013

Альтернативная энергетика интересует все большее количество великих умов. Я – не исключение. 🙂

Все началось с простого вопроса: “А можно ли бесколлекторный двигатель превратить в генератор?”
-Можно. А зачем?
-Сделать ветрогенератор.

Ветряк для выработки электроэнергии – не совсем удобное решение. Переменная сила ветра, зарядные устройства, аккумуляторы, инверторы, много не копеечного оборудования. В упрощенной схеме ветряк на «отлично» справляется с подогревом воды. Ибо нагрузка – тен, а он абсолютно не требователен к параметрам подаваемой на него электроэнергии. Можно избавиться от сложной дорогой электроники. Но расчеты показали значительные затраты на конструкцию, чтобы раскрутить генератор 500 Ватт.
Мощность, которую несет в себе ветер, рассчитывается по формуле P=0,6*S*V 3 , где:
P – мощность, Ватт
S – площадь, м 2
V – скорость ветра, м/с

Ветер, дующий на 1 м2 со скоростью 2 м/с «несет» в себе энергию 4,8 Ватт. Если скорость ветра увеличится до 10 м/с, то мощность возрастет до 600 Ватт. У самых лучших ветрогенераторов КПД 40-45%. С учетом этого для генератора мощностью 500 Ватт при ветре, скажем 5 м/с. Потребуется площадь, ометаемая винтом ветрогенератора, около 12 кв.м. Что соответствует винту диаметром почти 4 метра! Много денег – мало толку. Добавить сюда необходимость получения разрешения (ограничение по шумности). Кстати, в некоторых странах установку ветряка нужно согласовывать даже с орнитологами.

Но тут я вспомнили о Солнышке! Оно нам дарит очень много энергии. Об этом я впервые задумался после полета над замерзшим водохранилищем. Когда увидел массу льда толщиной более метра и размерами 15 на 50 километров, я подумал: “Это же сколько льда! Сколько его надо греть, чтобы расплавить!?” И все это сделает Солнце за полтора десятка дней. В справочниках можно найти плотность энергии, которая достигает поверхности земли. Цифра около 1 киловатт на метр квадратный звучит заманчиво. Но это на экваторе в ясный день. Насколько реально утилизировать солнечную энергию для хозяйственных нужд в наших широтах (центральная часть Украины), используя доступные материалы?

Какую реальную мощность, с учетом всех потерь, можно получить с оного квадратного метра?

Для выяснения этого вопроса я сделал первый параболический тепловой концентратор из картона (фокус в чаше параболы). Выкройку из секторов оклеил обычной пищевой фольгой. Понятно, что качество поверхности, да и отражающие способности фольги, очень далеки от идеала.

Но задача стояла именно “колхозными” методами нагреть определенный объем воды, чтобы выяснить какую мощность можно получить с учетом всех потерь. Выкройку можно рассчитать с помощью файла Exel который я нашел на просторах интернета у любителей самостоятельно строить параболические антенны.
Зная объем воды, её теплоемкость, начальную и конечную температуру можно рассчитать количество тепла, затраченного на ее нагрев. А, зная время нагрева, можно вычислить мощность. Зная габариты концентратора, можно определить какую практическую мощность можно получить с одного квадратного метра поверхности, на которую падает солнечный свет.

В качестве объема для воды была взята половинка алюминиевой банки, выкрашенная снаружи в черный цвет.

Емкость с водой помещается в фокус параболического солнечного концентратора. Солнечный концентратор ориентируется на Солнце.

Эксперимент №1

проводился около 7 часов утра в конце мая. Утро – далеко не идеальное время, но как раз утром в окно моей “лаборатории” светит Солнце.

При диаметре параболы 0.31 м расчеты показали, что была получена мощность порядка 13,3 Ватт . Т.е. как минимум 177 Ватт/м.кв. Тут следует отметить, что круглая открытая банка далеко не самый лучший вариант для получения хорошего результата. Часть энергии уходит на нагрев самой банки, часть излучается в окружающую среду, в том числе уносится потоками воздуха. В общем, даже в таких далеких от идеала условиях можно хоть что-то получить.

Эксперимент №2

Для второго эксперимента была сделана парабола диаметром 0.6 м . В качестве ее зеркала использовался металлизированный скотч, купленный в строительном магазине. Его отражающие качества незначительно лучше алюминиевой пищевой фольги.


Парабола имела большее фокусное расстояние (фокус за пределами чаши параболы).

Это дало возможность спроецировать лучи на одну поверхность нагревателя и получать в фокусе большую температуру. Парабола без труда прожигает лист бумаги за несколько секунд. Эксперимент проводился около 7 часов утра в начале июня. По результатам эксперимента с тем же объемом воды и той же тарой получил мощность 28 Ватт ., что соответствует примерно 102 Ватт/м.кв . Это меньше, чем в первом эксперименте. Это объясняется тем, что солнечные лучи от параболы ложилось на круглую поверхность банки не везде оптимально. Часть лучей проходили мимо, часть падали по касательной. Банка охлаждалась свежим утренним ветерком с одной стороны, в то время как подогревалась с другой. В первом эксперименте за счет того, что фокус был внутри чаши, банка прогревалась со всех сторон.

Эксперимент №3

Поняв, что достойный результат можно получить, сделав правильный теплоприемник, была изготовлена следующая конструкция: банка из жести внутри выкрашена в черный цвет имеет патрубки для подвода и отвода воды. Герметично закрыта прозрачным двойным стеклом. Термоизолирована.



Общая схема такова:

Нагрев происходит следующим образом: лучи от солнечного концентратора (1 ) через стекло проникают внутрь банки теплоприемника (2 ), где, попадая на черную поверхность, нагревают ее. Вода, соприкасаясь с поверхностью банки, поглощает тепло. Стекло плохо пропускает инфракрасное (тепловое) излучение, поэтому потери на излучение тепла минимизированы. Поскольку со временем стекло прогревается теплой водой, и начинает излучать тепло, было применено двойное остекление. Идеальный вариант, если между стеклами будет вакуум, но это труднодостижимая задача в домашних условиях. С обратной стороны банка теплоизолирована пенопластом, что также ограничивает излучение тепловой энергии в окружающую среду.

Теплоприемник (2 ) с помощью трубок (4,5 ) подключается к бачку (3 ) (в моем случае пластиковая бутылка). Дно бачка находится на 0.3м выше нагревателя. Такая конструкция обеспечивает конвекцию (самоциркуляцию) воды в системе.

В идеале расширительный бак и трубки должны быть тоже термоизолированы. Эксперимент проводился около 7 часов утра в середине июня. Результаты эксперимента таковы: Мощность 96.8 Ватт , что соответствует примерно 342 Ватт/м.кв.

Т.е. эффективность системы улучшилась более, чем в 3 раза только за счет оптимизации конструкции теплоприемника!

При проведении экспериментов 1,2,3 нацеливание параболы на солнце делалось вручную, «наглазок». Парабола и нагревательные элементы удерживались руками. Т.е. нагреватель не всегда был в фокусе параболы, поскольку руки человека устают и начинают искать более удобное положение, которое не всегда правильное с технической точки зрения.

Как вы могли заметить, с моей стороны были приложены усилия для обеспечения отвратительных условий для проведения эксперимента. Далеко не идеальные условия, а именно:
– не идеальная поверхность концентраторов
– не идеальные отражающие свойства поверхностей концентраторов
– не идеальное ориентирование на солнце
– не идеальное положение нагревателя
– не идеальное время для эксперимента (утро)

не смогли помешать получить вполне приемлемый результат для установки из подручных материалов.

Эксперимент №4

Далее нагревательный элемент был закреплен неподвижно относительно солнечного концентратора. Это позволило поднять мощность до 118 Ватт , что соответствует примерно 419 Ватт/м.кв . И это в утренние часы! С 7 до 8 утра!

Существуют и другие методы нагрева воды, с помощью Солнечных коллекторов. Коллекторы с вакуумными трубками дороги, а плоские имеют большие температурные потери в холодное время года. Применение солнечных концентраторов может решить эти проблемы, однако требует реализации механизма ориентирования на Солнце. В каждом способе есть как преимущества, так и недостатки.

Источники энергии, такие как электричество, уголь и газ, постоянно дорожают.

Людям приходится чаще задумываться об использовании более экологичных систем отопления.

Поэтому было разработано техническое новшество в сфере альтернативных источников тепла . Для этого стали применять солнечные коллекторы.

Солнечный коллектор для отопления

У поверхности этого прибора низкая отражающая способность, за счет чего поглощается тепло. Для обогрева помещения этот механизм использует свет солнца и его инфракрасное излучение .

Чтобы нагреть воду и отопить жилище хватит мощности простого солнечного коллектора. Это зависит от конструкции агрегата. Человек может самостоятельно сделать монтаж оборудования. Для этого не нужно использовать дорогие инструменты и материалы.

Справка. Коэффициент полезного действия профессиональных устройств составляет 80—85% . Самодельные обходятся намного дешевле, но их КПД не более 60—65%.

Конструкция

Строение оборудования простое. Прибор представляет собой прямоугольную пластину, состоящую из нескольких слоев:

  • покрышка из антибликового закаленного стекла с обрамлением;
  • поглотитель;
  • нижняя изоляция;
  • боковая изоляция;
  • трубопровод;
  • стеклянная завеса;
  • алюминиевый атмосферостойкий корпус;
  • соединительные штуцеры.

Система включает в себя 1—2 коллектора , накопительную емкость и аванкамеру. Конструкция организована замкнуто, поэтому солнечные лучи попадают только в нее и превращаются в тепло.

Принцип работы

Основа функционирования установки — термосифонная . Теплоноситель внутри оборудования циркулирует самостоятельно, что поможет отказаться от использования насоса.

Нагретая вода стремится вверх, оттесняя тем самым холодную и переправляя ее к тепловому источнику.

Коллектор представляет собой трубчатый радиатор, который вмонтирован в древесный короб , одна плоскость которого сделана из стекла. Трубы при изготовлении агрегата используются стальные. Отведение и подведение выполняются трубами, применяемыми в устройстве водопровода.

Конструкция работает так:

  1. Коллектор преобразует солнечную энергию в тепло.
  2. Жидкость поступает в бак-накопитель через подающую магистраль.
  3. Циркуляция теплоносителя происходит самостоятельно либо с помощью электронасоса . Жидкость в установке должна отвечать нескольким требованиям: не испарятся при высоких температурах, быть нетоксичной, морозоустойчивой. Обычно берут воду дистиллированную, смешанную с гликолем в пропорции 6:4.

Солнечный концентратор

Прибор для аккумулирования энергии лучей солнца, имеет функцию теплоносителя. Служит для фокусирования энергии на приемнике излучателя внутри изделия.

Существуют следующие виды:

  • параболоцилиндрические концентраторы;
  • концентраторы на плоских линзах (линзы Френеля );
  • на сферических линзах;
  • параболические концентраторы;
  • солнечные башни.

Концентраторы отражают излучение с большой плоскости на маленькую , что помогает достичь высоких температур. Жидкость вбирает тепло и перемещает к объекту обогрева.

Важно! Цена приборов — недешевая, а также они требуют постоянного квалифицированного обслуживания . Используется такое оборудование в гибридных системах, чаще всего в промышленных масштабах и позволяет увеличить производительность коллектора.

Виды коллекторов, работающих от энергии солнца

В настоящее время существует несколько разновидностей солнечных отопительных коллекторов.

Плоский, его монтаж своими руками

Этот прибор состоит из панели, в которую вмонтирована пластина абсорбера. Этот вид устройств самый распространенный. Себестоимость агрегатов демократичная и зависит от вида покрытия, фирмы производителя, мощности и площади обогрева. Цены на оборудование такого типа — от 12 тыс. рублей.

Фото 1. Пять солнечных коллекторов плоского типа, установленных на крыше частного дома. Приборы находятся под наклоном.

Сфера применения

Подобные коллекторы чаще устанавливаются в частных домах для отопления комнат и снабжения помещения горячей водой. Приборы справляются с тем, чтобы подогреть вод для летнего душа на даче. Эксплуатировать их уместно в теплую и солнечную погоду.

Внимание! Поверхность коллекторов нельзя затемнять другими постройками, деревьями и домами. Это негативно отражается на производительности. Монтируется оборудование на крыше либо фасаде здания, а также на любой подходящей поверхности.

Вам также будет интересно:

Конструкция плоского коллектора

Состав прибора:

Коллектор, у которого присутствует трубчатый змеевик, является классическим вариантом. Как альтернативу в самодельных конструкциях применяют: полипропиленовый материал, алюминиевые банки из-под напитков, резиновые садовые шланги.

Дно и грани системы обязательно нужно теплоизолировать. Если абсорбер соприкасается с корпусом, то возможны потери тепла. Внешняя часть устройства защищена закаленным стеклом с особыми свойствами. В качестве теплоносителя берётся антифриз.

Принцип действия

Жидкость нагревается и поступает в накопительную емкость, из которой в охлажденном виде перемещается в коллектор. Конструкция представлена в двух вариантах : одноконтурная и двухконтурная. В первом случае жидкость сразу идет в бак, во втором — проходит по тонкой трубке через воду в емкости, прогревая объем помещения. По мере движения она охлаждается и перемещается обратно в коллектор.

Фото 2. Схема и принцип работы солнечного коллектора плоского типа. Стрелками указаны части прибора.

Плюсы и минусы

Агрегаты подобного типа отличаются следующими достоинствами:

  • высокой производительностью;
  • низкой себестоимостью;
  • длительной эксплуатацией;
  • надежностью;
  • возможностью самодельного монтажа и обслуживания.

Плоские коллекторы подходят для работы в южных областях с теплым климатом. Их минусом является высокая парусность из-за большой поверхности, поэтому сильный ветер может сорвать конструкцию. Производительность падает в холодную зимнюю погоду. Устанавливать агрегат в идеале следует на южной стороне участка или дома.

Вакуумный

Прибор состоит из отдельных трубок, объединенных вверху и составляющих единую панель. По сути, каждая из трубок является самостоятельным коллектором. Это эффективный современный вид, пригодный к использованию даже в холода. Вакуумные устройства более сложные по отношению к плоским, поэтому стоят дороже.

Фото 3. Солнечный коллектор вакуумного типа. Прибор состоит из множества трубок, закрепленных в одной конструкции.

Сфера применения

Применяются для горячего водоснабжения и обогрева больших посещений . Чаще используются на дачах и в частных домовладениях. Монтируются на фасадах зданий, скатных или плоских крышах, специальных опорных конструкциях. Функционируют в холодном климате и при коротком световом дне, не снижая при этом эффективности. Из-за высокой действенности применяются также на сельскохозяйственных угодьях, промышленных предприятиях. Этот тип распространен в государствах Европы.

Конструкция

В состав устройства входит:

  • тепловой накопитель (бак с водой);
  • контур для циркуляции теплообменника;
  • сам коллектор;
  • датчики;
  • приемник.

Конструкция агрегата представляет собой ряд трубчатых профилей, установленных параллельно. Приёмник и вакуумные трубки сделаны из меди. Блок стеклянных трубок отделен от внешнего контура, благодаря чему деятельность коллектора не прекращается при выходе из строя 1—2 трубок. Изоляция из полиуретана применяется в качестве дополнительной защиты.

Справка. Отличительной чертой коллектора является состав сплава, из которого изготовлены трубы. Это покрытая алюминием и защищенная полиуретаном медь.

Принцип действия

Работа конструкции основана на нулевой теплопроводности вакуума . Промеж трубок образуется безвоздушное пространство, которое надежно сохраняет тепло, образуемое от лучей солнца.

Вакуумный коллектор работает так:

  • энергия солнца принимается трубой внутри вакуумной колбы;
  • нагретая жидкость испаряется и поднимается в область конденсации трубы;
  • теплоноситель стекает вниз от зоны конденсации;
  • цикл повторяется заново.

Благодаря такой работе намного выше уровень теплоотдачи , а теплопотери низкие. Энергию удается сохранить за счет вакуумной прослойки, которая эффективно улавливает тепло.

Фото 4. Схема устройства вакуумного солнечного коллектора. Составные части прибора указаны стрелками.

Плюсы и минусы

Преимущества устройств этого типа:

  • долговечность;
  • устойчивость в эксплуатации;
  • доступный ремонт, возможно заменить только один элемент, вышедший из строя, а не всю конструкцию;
  • низкая парусность, способность противостоять порывам ветра;
  • максимальное поглощение солнечной энергии.

Оборудование дорогое, окупить которое получится только через несколько лет после использования. Цена комплектующих также высока, при их замене может потребоваться помощь профессионала. Система не способна самоочищаться ото льда, снега, инея.

Типы вакуумных коллекторов

Изделия бывают двух видов: с косвенной и прямой тепловой подачей. Функционирование конструкций с косвенной подачей осуществляется от давления в трубах.

В устройствах с прямой тепловой подачей емкость-теплоноситель и стеклянные вакуумные приспособления монтируются к каркасу под определенным углом, через соединительное кольцо из резины.

Оборудование подключается к линиям водопровода через клапан запора , а контролирует уровень воды в емкости фиксирующий клапан.

Вам также будет интересно:

Воздушный

Вода намного более теплоемка, чем воздух. Однако ее использование сопряжено с рядом бытовых проблем при эксплуатации (коррозия труб, контроль давления, смена агрегатного состояния).Воздушные коллекторы не так прихотливы, имеют простую конструкцию. Приборы нельзя считать полноценной заменой остальным видам, но снизить коммунальные расходы они в состоянии.

Сфера применения

Оборудование такого типа используется в воздушном обогреве домов, осушительных системах и для рекуперации (обработки) воздуха . Применяется для просушки сельскохозяйственной продукции.

Конструкция

Состоит из:

  • адсорбера, поглощающей тепло панели внутри корпуса;
  • внешней изоляции из закаленного стекла;
  • тепловой изоляции между стенкой корпуса и поглотителем;
  • герметичного корпуса.

Фото 5. Воздушный солнечный коллектор для обогрева дома. Прибор закреплен вертикально на стене здания.

Прибор располагается близко к объекту обогрева из-за больших теплопотерь в воздушных магистралях.

Принцип действия

В отличие от водных коллекторов, воздушные не накапливают тепло, а сразу пускают его в утепление . Солнечный свет попадает на внешнюю часть устройства и нагревает ее, воздух начинает циркулировать в конструкции и отапливает помещение.

Спроектировать воздушный коллектор можно самостоятельно, используя в изготовлении подручные материалы: пивные банки из меди или алюминия, панели ДСП, алюминиевого и металлического листа.

Фото 6. Схема устройства воздушного солнечного коллектора. На чертеже обозначены основные части прибора.

Плюсы и минусы

Достоинства:

Из недостатков: ограниченная сфера применения (только обогрев), низкая эффективность. Ночью оборудование будет работать на охлаждение воздуха, если его не закрыть.

Выбор комплекта солнечных коллекторов для отопительной системы

Выбор устройства зависит от целей, на которые будет направлена работа конструкция. Гелиосистема применяется для поддержки воздуха, обеспечения горячего водоснабжения, подогрева воды для бассейна.

Мощность

Чтобы рассчитать возможную мощность гелиосистемы, следует знать 2 параметра: солнечной инсоляции в определенном регионе в нужное время года и эффективную площадь поглощения коллектора. Эти цифры необходимо перемножить.

Можно ли использовать коллектор в зимний период

Вакуумные устройства справляются с работой в холодном климате. Плоские показывают низкую производительность в морозы и лучше подойдёт для южных областей.

Меньше других для функционирования в холоде подходит воздушная конструкция так, как ночью она не способна нагревать воздух.

Неудобства доставляют сильные осадки , ведь зимой оборудование часто засыпает снегом и требуется регулярная чистка. Морозный воздух отбирает накопленное тепло, а сам коллектор может быть поврежден градом.

Учёт сферы применения

В промышленности использование гелиосистем более распространено . Энергию солнца применяют в работе электростанций, парогенераторов, опреснителей воды. Для нагрева воды, обогрева дачи или бани в бытовых условиях чаще устанавливают вакуумные коллекторы, реже — плоские. Воздушные системы помогают снизить стоимость отопления, благодаря обогреву воздуха в дневное время.

(Канада) разработала универсальный, мощный, эффективный и один из самых экономичных солнечных параболических концентраторов (CSP - Concentrated Solar Power) диаметром 7 метров, как для обычных домовладельцев, так и для промышленного использования. Компания специализируется на производстве механических устройств, оптики и электронной техники, что помогло ей создать конкурентный продукт.

По оценке самого производителя, солнечный концентратор SolarBeam 7M превосходит другие типы солнечных устройств: плоских солнечных коллекторов, вакуумных коллекторов, солнечных концентраторов типа «желоб».

Внешний вид солнечного концентратора Solarbeam

Как это работает?

Автоматика солнечного концентратора отслеживает движение солнца в 2-ух плоскостях и направляет зеркало точно на солнце, позволяя системе собирать максимальную солнечную энергию с рассвета до позднего заката. Независимо от сезона или места использования, SolarBeam поддерживает точность наведения на солнце до 0,1 градуса.

Падающие на солнечный концентратор лучи фокусируются в одной точке.

Расчеты и проектирование SolarBeam 7M

Стресс - тестирование

Для проектирования системы использовались методы 3D моделирования и программного стресс-тестирования. Тесты выполняются по методике МКЭ (анализ Методом Конечных Элементов) для расчета напряжений и перемещений деталей и узлов под воздействием внутренних и внешних нагрузок, чтобы оптимизировать и проверить конструкцию. Такое точное тестирование позволяет утверждать, что SolarBeam может работать в условиях экстремальных нагрузок от ветра и климатических условий. SolarBeam успешно прошел моделирование ветровой нагрузки до 160 км/час (44 м/с).

Стресс -тестирование соединения рамы параболического отражателя и стойки

Фотография узла крепления концентратора Solarbeam

Стресс-тестирование стойки солнечного концентратора

Уровень производства

Часто, высокая стоимость изготовления параболических концентраторов препятствуют их массовому использованию в индивидуальном строительстве. Использование штампов и больших сегментов из светоотражающего материала, сократили производственные издержки. Solartron использовал много инноваций, используемых в автомобильной промышленности, для уменьшения стоимости и увеличения объема выпускаемой продукции.

Надежность

SolarBeam был протестирован в суровых условиях севера, обеспечивает высокую производительность и долговечность. SolarBeam разработан для любых состояний погоды, в том числе высокой и низкой температуры окружающей среды, снеговой нагрузки, обледенения и сильных ветров. Система предназначена для 20 -ти и более лет эксплуатации с минимальным техническим обслуживанием.

Параболическое зеркало SolarBeam 7M способновы удержать до 475 кг льда. Это примерно равно 12,2 мм толщине ледяного покрова по всей площади 38,5 м2.
Установка штатно работает в снегопады из-за изогнутой конструкции зеркальных секторов и способности автоматически выполнять «авто очистку от снега».

Производительность (сравнение с вакуумными и плоскими коллекторами)

Q / A = F’(τα)en Kθb(θ) Gb + F’(τα)en Kθd Gd -c6 u G* - c1 (tm-ta) - c2 (tm-ta)2 – c5 dtm/dt

Эффективность для не-концентрирующих солнечных коллекторов была рассчитана по следующей формуле:

Efficiency = F Collector Efficiency – (Slope*Delta T)/G Solar Radiation

Кривая производительности для SolarBeam концентратора показывает общую высокую эффективность во всем диапазоне температур. Плоские солнечные коллекторы и вакуумированные показывают более низкую эффективность, когда требуются более высокие температуры.

Сравнительные графики Solartron и плоских/вакуумных солнечных коллекторов

Эффективность (КПД) Solartron в зависимости от разности температур dT

Важно отметить, что приведенная выше диаграмма не учитывает потери тепла от ветра. Кроме того, приведенные выше данные указывают максимальную эффективность (в полдень) и не отражает эффективность в течении для. Данные приведены для одного из самых лучших плоских и вакуумных коллекторов. В дополнение к высокой эффективности, SolarBeamTM производит дополнительно до 30% больше энергии, из-за отслеживания солнца по двум осям. В географических регионах, где преобладают низкие температуры, эффективность у плоских и вакуумированных коллекторов значительно снижается из-за большой площади поглотителя. SolarBeamTM имеет абсорбер площадью только 0,0625 м2 относительно площади сбора энергии 15,8 м2, чем достигаются низкие потери тепла.

Обратите внимание также, что в связи с применением двухосевой системы слежения, SolarBeamTM концентратор всегда будет работать с максимальной эффективностью. Эффективная площадь коллектора SolarBeam всегда равна фактическая площадь поверхности зеркала. Плоские (неподвижные) коллекторы теряют потенциальную энергию согласно уравнения ниже:
PL = 1 – COS i
где PL потери в энергии в %, от максимальной при смещении в градусах)

Система управления

Управления SolarBeam использует технологию «EZ-SunLock». С помощью этой технологии, система может быть быстро установлена и настроена в любой точке земли. Система слежения отслеживает солнце с точностью до 0,1 градуса и использует астрономический алгоритм. Система имеет возможность общей диспетчеризации через удаленные сети.

Нештатные ситуации, при которых «тарелка» автоматически будет припаркована в безопасное положение.

  • Если давление теплоносителя в контуре упадет ниже 7 PSI
  • При скорости ветра более 75км/ч
  • В случае отключения электроэнергии, ИБП (источник бесперебойного питания) перемещает тарелку в безопасное положение. Когда питание возобновляется, автоматическое слежение за солнцем продолжается.

Мониторинг

В любом случае, и особенно для промышленного применения, очень важно знать состояние вашей системы для обеспечения надежности. Вы должны быть предупреждены прежде, чем возникнет проблема.

SolarBeam имеет возможность осуществлять мониторинг через удаленную панель мониторинга SolarBeam . Эта панель проста в использовании и предоставляет важную информацию о статусе SolarBeam, диагностику и информацию о производстве энергии.

Удаленная настройка и управление

SolarBeam можно дистанционно настраивать и оперативно менять установки. «Тарелкой» можно управлять дистанционно с помощью мобильного браузера или ПК, упрощающие или делающие ненужными системы управления на месте установки.

Оповещения

В случае тревоги или необходимости обслуживания, устройство посылает сообщение по электронной почте назначенному обслуживающему персоналу. Все предупреждения могут быть настроены в соответствии пользовательскими предпочтениями.

Диагностика

SolarBeam имеет возможности удаленой диагностики: температуры и давления в системе, производство энергии и т.д. С первого взгляда вы видите статус работы системы.

Отчетность и графики

В случае необходимости получения отчетов по производству энергии, они могут быть легко получены для каждой «тарелки». Отчет может быть в виде графика или таблицы.

Монтаж

SolarBeam 7М изначально был разработан для крупномасштабных CSP установок, поэтому монтаж сделали максимально простым. Конструкция позволяет быстро собрать основные компоненты и не требует оптической юстировки, что делает монтаж и запуск системы недорогим.

Время монтажа

Бригада из 3 человек, может установить один SolarBeam 7М от начала до конца в течение 8 часов.

Требования к размещению

Ширина SolarBeam 7М составляет 7 метров с 3,5 метровым отступом. При установке нескольких SolarBeam 7М, на каждую систему необходимо отвести площадь примерно 10 х 20 метров, чтобы обеспечить максимальный солнечный сбор с наименьшим количеством затенения.

Сборка

Параболический концентратор спроектирован для возможности сборки на земле с использованием механической системы подъема, что позволяет быстро и легко установить фермы, зеркальные сектора и крепления.

Области применения

Получение электроэнергии с помощью установок ORC (Organic Rankine Cycle).

Установки промышленного опреснения воды

Тепловую энергию для завода по опреснению воды может поставлять SolarBeam

В любой промышленности, где требуется много тепловой энергии для технологического цикла, таких как:

  • Пищевая (варка, стерилизация, получение спирта, мойка)
  • Химическая промышленность
  • Пластиковая (Нагрев, вытяжка, сепарация, …)
  • Текстильная (отбеливание, стирка, прессование, парообработка)
  • Нефтяная (возгонка, осветление нефтепродуктов)
  • И многое другое

Место установки

Подходящим местом для установки являются регионы, получающие не менее 2000 кВт*ч солнечного света на м2 в год (кВт*ч/м2/год). Наиболее перспективными производители считаю следующие регионы мира:

  • Регионы бывшего Советского Союза
  • Юго-Западный США
  • Центральная и Южная Америка
  • Северная и Южная Африка
  • Австралия
  • средиземноморские страны Европы
  • Средний Восток
  • Пустынные равнины Индии и Пакистане
  • Регионы Китая

Спецификация модели Solarbeam-7M

  • Пиковая мощность - 31,5кВт (при мощности 1000Вт/м2)
  • Степень концентрации энергии - более 1200 раз (пятно 18см)
  • Максимальная температура в фокусе - 800°С
  • Максимальная температура теплоносителя - 270°С
  • Эксплуатационная эффективность - 82%
  • Диаметр рефлектора - 7м
  • Площадь параболического зеркала - 38,5м2
  • Фокусное расстояние - 3,8м
  • Потребление электроэнергии сервомоторами - 48W+48W / 24В
  • Скорость ветра при работе - до 75км/ч (20м/с)
  • Скорость ветра (в безопасном режиме) - до 160 км/ч
  • Отслеживание солнца по азимуту - 360°
  • Отслеживание солнца по вертикали - 0 - 115°
  • Высота опоры - 3,5м
  • Вес отражателя - 476 кг
  • Общий вес -1083 кг
  • Размер абсорбера - 25,4 х 25,4 см
  • Площадь абсорбера -645 см2
  • Объем теплоносителя в абсорбере - 0,55 литра

Габаритные размеры рефлектора

Огромное количество свободной энергии солнца, воды и ветра и многого другого из того, что может дать природа, люди используют давно. Для кого-то это хобби, а кто-то не может выжить без приспособлений, которые могут извлекать энергию “из воздуха”. Например в африканских странах солнечные батареи давно стали спасительным спутником для людей, в засушливых деревнях внедряются системы орошения на солнечных батареях, устанавливаются “солнечные” насосы на колодцы и др.

В европейских странах солнце не светит столь ярко, но лето довольно жаркое, и очень жаль, когда дармовая энергия природы пропадает зря. Существуют удачные разработки печей на солнечной энергии, но в них используются цельные или сборные зеркала. Это во-первых дорого, во-вторых утяжеляет конструкцию и поэтому не всегда удобно в эксплуатации, например, когда требуется малый вес готового концентратора.
Интересную модель самодельного параболического солнечного концентратора создал талантливый изобретатель.
Для ее изготовления не нужны зеркала, поэтому она очень легкая и не будет тяжелым грузом в походе.


Для создания самодельного солнечного концентратора на основе пленки требуется совсем немного вещей. Все они продаются на любом вещевом рынке.
1. Самоклеющаяся зеркальная пленка. Она имеет ровную блестящую поверхность и поэтому является прекрасным материалом для зеркальной части солнечной печи.
2. Лист ДСП и такой же по размеру лист оргалита.
3. Тонкий шланг и герметик.

Как сделать солнечную печь?

Сначала из древесно-стружечной плиты нужного вам размера электролобзиком вырезаются два кольца, которые надо приклеить друг к другу. На фото и видео фигурирует одно кольцо, но автор указывает, что позднее он добавил второе кольцо. По его словам, можно было бы ограничиться одним, но пришлось увеличить пространство для формирования достаточной вогнутости параболического зеркала. В противном случае фокус луча будет располагаться слишком далеко. Под размер кольца вырезается круг из оргалита для формирования задней стенки солнечного концентратора.
Кольцо следует приклеить к оргалиту. Обязательно хорошо все промажьте герметиком. Конструкция должна быть полностью герметичной.
Сбоку аккуратно, чтобы были ровные края, проделайте небольшое отверстие, в которое плотно вставьте тонкий шланг. Для герметичности соединение шланга и кольца также можно обработать герметиком.
Поверх кольца натяните зеркальную пленку.
Откачайте воздух из корпуса установки и таким образом сформируйте сферическое зеркало. Шланг загните и зажмите прищепкой.
Сделайте удобную подставку для готового концентратора. Энергии данной установки достаточно, чтобы расплавить алюминиевую банку.

Внимание ! Параболические солнечные отражатели могут быть опасными и могут при неосторожном обращении привести к ожогам и повреждениям глаз!
Посмотрите процесс изготовления солнечной печки на видео.

Использован материал с сайта забацай.ру. Как сделать солнечную батарею – .