Расчёт металлической балки онлайн (калькулятор). Расчет стальной колонны Расчет металлической стойки онлайн

Металлические конструкции тема сложная, крайне ответственная. Даже небольшая ошибка может стоить сотни тысяч и миллионы рублей. В некоторых случаях ценой ошибки может стать жизнь людей на стройке, а так же в процессе эксплуатации. Так, что проверять и перепроверять расчеты — нужно и важно.

Использование Эксель для решения расчетных задач — дело с одной стороны не новое, но при этом не совсем привычное. Однако, у Эксель расчетов есть ряд неоспоримых преимуществ:

  • Открытость — каждый такой расчет можно разобрать по косточкам.
  • Доступность — сами файлы существуют в общем доступе, пишутся разработчиками МК под свои нужды.
  • Удобство — практически любой пользователь ПК способен работать с программами из пакета MS Office, тогда как специализированные конструкторские решения — дороги, и кроме того требуют серьезных усилий для своего освоения.

Не стоит их считать панацеей. Такие расчеты позволяют решать узкие и относительно простые конструкторские задачи. Но они не учитывают работы конструкции как целого. В ряде простых случаев могут спасти много времени:

  • Расчет балки на изгиб
  • Расчет балки на изгиб онлайн
  • Проверить расчет прочности и устойчивости колонны.
  • Проверить подбор сечения стержня.

Универсальный расчетный файл МК (EXCEL)

Таблица для подбора сечений металлоконструкций, по 5 различным пунктам СП 16.13330.2011
Собственно с помощью этой программы можно выполнить следующие расчеты:

  • расчет однопролетной шарнирной балки.
  • расчет центрально сжаты элементов (колонн).
  • расчет растянутых элементов.
  • расчет внецентренно-сжатых или сжато-изгибаемых элементов.

Версия Excel должна быть не ниже 2010. Чтобы увидеть инструкцию, нажмите на плюс в верхнем левом углу экрана.

МЕТАЛЛИКА

Программа представляет из себя книгу EXCEL с поддержкой макросов.
И предназначена для расчета стальных конструкций согласно
СП16 13330.2013 «Стальные конструкции»

Подбор и расчет прогонов

Подбор прогона — задача лишь на первый взгляд тривиальная. Шаг прогонов и их размер зависят от многих параметров. И хорошо бы иметь под рукой соответствующий расчет. Собственно об этом и рассказывает статья обязательная к ознакомлению:

  • расчет прогона без тяжей
  • расчет прогона с одним тяжем
  • расчет прогона с двумя тяжами
  • расчет прогона с учетом бимомента:

Но есть небольшая ложка дегтя — судя по всему в файле имеются ошибки в расчетной части.

Расчет моментов инерции сечения в таблицы excel

Если вам надо быстро посчитать момент инерции составного сечения, или нет возможности определить ГОСТ по которому сделаны металлоконструкции, тогда вам на помощь придет этот калькулятор. Внизу таблицы небольшое пояснение. В целом работа проста — выбираем подходящее сечение, задаем размеры этих сечений, получаем основные параметры сечения:

  • Моменты инерции сечения
  • Моменты сопротивления сечения
  • Радиус инерции сечения
  • Площадь сечения
  • Статического момента
  • Расстояния до центра тяжести сечения.

В таблице реализованы расчеты для следующих типов сечений:

  • труба
  • прямоугольник
  • двутавр
  • швеллер
  • прямоугольная труба
  • треугольник

На практике часто возникает необходимость расчета стойки или колони на максимальную осевую (продольную) нагрузку. Усилие, при котором стойка теряет устойчивое состояние (несущую способность) является критическим. На устойчивость стойки оказывает влияние способ закрепления концов стойки. В строительной механике рассматривают семь способов закрепления концов стойки. Ми рассмотрим три основных способа:

Для обеспечения определенного запаса устойчивости необходимо чтобы соблюдалось условие:

Где: Р - действующее усилие;

Устанавливается определенный коэффициент запаса устойчивости

Таким образом, при расчете упругих систем необходимо уметь определять величину критической силы Ркр. Если иметь введу что усилие Р приложено к стойке вызывает только малые отклонения от прямолинейной формы стойки длиной ι то его можно определить из уравнения

где: E - модуль упругости;
J_min- минимальный момент инерции сечения;
M(z) - изгибающий момент, равный M(z) = -P ω;
ω - величина отклонения от прямолинейной формы стойки;
Решая это дифференциальное уравнение

А и В постоянные интегрирования, определяются по граничным условиям.
Произведя определенные действия и подстановки получим конечное выражение для критической силы Р

Наименьшее значение критической силы будет при n = 1 (целое число) и

Уравнение упругой линии стойки будет иметь вид:

где: z - текущая ордината, при максимальном значении z=l;
Допустимое выражение для критической силы называется формулой Л.Эйлера. Видно, что величина критической силы зависит от жесткости стойки EJ min прямо пропорционально и от длины стойки l - обратно пропорционально.
Как было сказано, устойчивость упругой стойки зависит от способа ее закрепления.
Рекомендуемая величина запаса прочности для стальных стоек ровна
n y =1,5÷3,0; для деревянных n y =2,5÷3,5 ; для чугунных n y =4,5÷5,5
Для учета способа закрепления концов стойки вводиться коэффициент концов приведенной гибкости стойки.


где: μ - коэффициент приведенной длины (Таблица) ;
i min - наименьший радиус инерции поперечного сечения стойки (таблица);
ι - длина стойки;
Вводиться коэффициент критической нагрузки:

, (таблица);
Таким образом, при расчете поперечного сечения стойки необходимо учитывать коэффициенты μ и ϑ величина которых зависит от способа закрепления концов стойки и приведена в таблицах справочника по сопромату (Г.С. Писаренко и С.П.Фесик)
Приведем пример расчета критической силы для стержня сплошного сечения прямоугольной формы - 6×1 см., длина стержня ι = 2м. Закрепления концов по схеме III.
Расчет:
По таблице находим коэффициент ϑ=9,97, μ = 1. Момент инерции сечения будет:

а критическое напряжение будет:

Очевидно, что критическая сила Р кр =247 кгс вызовет в стержне напряжение всего 41кгс/см 2 , что значительно меньше предела проточности (1600кгс/см 2), однако эта сила вызовет искривление стержня, а значит потерю устойчивости.
Рассмотрим другой пример расчета деревянной стойки круглого сечения защемленной в нижнем конце и шарнирно закрепленной на верхнем (С.П. Фесик) . Длина стойки 4м, сила сжатия N=6тс. Допускаемое напряжение [σ]=100кгс/см 2 . Принимаем коэффициент понижения допускаемого напряжения на сжатие φ=0.5. Вычисляем площадь сечения стойки:


Определяем диаметр стойки:

Момент инерции сечения

Вычисляем гибкость стойки:
где: μ=0.7, исходя из способа защемления концов стойки;
Определяем напряжение в стойке:

Очевидно, что напряжение в стойке составляет 100кгс/см 2 и оно ровно допустимому напряжению [σ]=100кгс/см 2
Рассмотрим третий пример расчета стальной стойки из двутаврового профиля, длиной 1.5м, сила сжатия 50тс, допускаемое напряжение [σ]=1600кгс/см 2 . Нижний конец стойки защемлен, а верхний свободный (I способ).
Для подбора сечения используем формулу и задаемся коэффициентом ϕ=0.5, тогда:

Подбираем из сортамента двутавр №36 и его данные: F=61.9см 2 , i min =2.89см.
Определяем гибкость стойки:

где: μ из таблицы, ровное 2, учитывая способ защемления стойки;
Расчетное напряжение в стойке будет:

5кгс,что примерно ровно допустимому напряжению, и на 0.97% больше, что допустимо в инженерных расчетах.
Поперечное сечение стержней работающих на сжатие будет рациональным при наибольшем радиусе инерции. При расчете удельного радиуса инерции
наиболее оптимальным является трубчатые сечения, тонкостенные; для которых величина ξ=1÷2.25, а для сплошных или прокатных профилей ξ=0.204÷0.5

Выводы
При расчете на прочность и устойчивость стоек, колон необходимо учитывать способ закрепления концов стоек, применять рекомендуемый запас прочности.
Значение критической силы получено из дифференциального уравнения изогнутой осевой линии стойки (Л.Эйлера).
Для учета всех факторов, характеризующих нагруженную стойку введено понятие гибкости стойки - λ, коэффициент провиденной длины - μ, коэффициент понижения напряжения - ϕ, коэффициент критической нагрузки - ϑ. Их значения берут из таблиц справочников (Г.С.Писарентко и С.П.Фесик).
Приведены примерные расчеты стоек, на определение критической силы - Ркр, критического напряжения - σкр, диаметра стоек - d, гибкости стоек - λ и другие характеристики.
Оптимальным сечением для стоек и колон является трубчатые тонкостенные профиля с одинаковыми главными моментами инерции.

Используемая литература:
Г.С Писаренко «Справочник по сопротивлению материалов».
С.П.Фесик «Справочник по сопротивлению материалов».
В.И. Анурьев «Справочник конструктора-машиностроителя».
СНиП II-6-74 «Нагрузки и воздействия, нормы проектирования».

1. Сбор нагрузок

Перед началом расчета стальной балки необходимо собрать нагрузку, действующая на металлическую балку. В зависимости от продолжительности действия нагрузки разделяют на постоянные и временные.

  • собственный вес металлической балки;
  • собственный вес перекрытия и т.д.;
  • длительная нагрузка (полезная нагрузка, принимается в зависимости от назначения здания);
  • кратковременная нагрузка (снеговая нагрузка, принимается в зависимости от географического расположения здания);
  • особая нагрузка (сейсмическая, взрывная и т.д. В рамках данного калькулятора не учитывается);

Нагрузки на балку разделяют на два типа: расчетные и нормативные. Расчетные нагрузки применяются для расчета балки на прочность и устойчивость (1 предельное состояние). Нормативные нагрузки устанавливаются нормами и применяется для расчета балки на прогиб (2 предельное состояние). Расчетные нагрузки определяют умножением нормативной нагрузки на коэффициент нагрузки по надежности. В рамках данного калькулятора расчетная нагрузка применяется при определении прогиба балки в запас.

После того как собрали поверхностную нагрузку на перекрытие, измеряемой в кг/м2, необходимо посчитать сколько из этой поверхностной нагрузки на себя берет балка. Для этого надо поверхностную нагрузку умножить на шаг балок(так называемая грузовая полоса).

Например: Мы посчитали, что суммарная нагрузка получилась Qповерхн.= 500кг/м2, а шаг балок 2,5м. Тогда распределенная нагрузка на металлическую балку будет: Qраспр.= 500кг/м2 * 2,5м = 1250кг/м. Эта нагрузка вносится в калькулятор

2. Построение эпюр

Далее производится построение эпюры моментов, поперечной силы. Эпюра зависит от схемы нагружения балки, вида опирания балки. Строится эпюра по правилам строительной механики. Для наиболее частоиспользуемых схем нагружения и опирания существуют готовые таблицы с выведенными формулами эпюр и прогибов.

3. Расчет по прочности и прогибу

После построения эпюр производится расчет по прочности (1 предельное состояние) и прогибу (2 предельное состояние). Для того, чтобы подобрать балку по прочности, необходимо найти требуемый момент инерции Wтр и из таблицы сортамента выбрать подходящий металлопрофиль. Вертикальный предельный прогиб fult принимается по таблице 19 из СНиП 2.01.07-85* (Нагрузки и воздействия). Пункт2.а в зависимости от пролета. Например предельный прогиб fult=L/200 при пролете L=6м. означает, что калькулятор подберет сечение прокатного профиля (двутавра, швеллера или двух швеллеров в коробку), предельный прогиб которого не будет превышать fult=6м/200=0,03м=30мм. Для подбора металлопрофиля по прогибу находят требуемый момент инерции Iтр, который получен из формулы нахождения предельного прогиба. И также из таблицы сортамента подбирают подходящий металлопрофиль.

4. Подбор металлической балки из таблицы сортамента

Из двух результатов подбора (1 и 2 предельное состояние) выбирается металлопрофиль с большим номером сечения.

Расчет центральной стойки

Стойками называют элементы конструкции, работающие преимущественно на сжатие и продольный изгиб.

При расчете стойки необходимо обеспечитьее прочность и устойчивость. Обеспечение устойчивости достигается путем правильного подбора сечения стойки.

Принимается расчетная схема центральной стойки при расчете на вертикальную нагрузку, как шарнирно закрепленной по концам, так как внизу и вверху приваривается сваркой (см. рисунок 3).

Центральная стойка воспринимает 33% полного веса перекрытия.

Полный вес перекрытия N, кг определится: включающим вес снега, ветровая нагрузка, нагрузка от теплоизоляции, нагрузка от веса каркаса покрытия, нагрузка от вакуума.

N = R 2 g,. (3.9)

где g- суммарная равномерно-распределенная нагрузка, кг/м 2 ;

R - внутренний радиус резервуара, м.

Полный вес перекрытия складывается из следующих видов нагрузок:

  • 1. Снеговая нагрузка, g 1 . Принимается g 1 =100 кг/м 2 .;
  • 2. Нагрузка от теплоизоляции, g 2 . Принимается g 2 =45кг/м 2 ;
  • 3. Ветровая нагрузка, g 3 . Принимается g 3 =40кг/м 2 ;
  • 4. Нагрузка от веса каркаса покрытия, g 4 . Принимается g 4 =100 кг/м 2
  • 5. С учетом установленной аппаратуры, g 5 . Принимается g 5 = 25кг/м 2
  • 6. Нагрузка от вакуума, g 6 . Принимается g 6 =45кг/м 2 .

А полный вес перекрытия N, кг:

Вычисляется усилие, воспринимаемое стойкой:

Определяется требуемая площадь сечения стойки по следующей формуле:

См 2 , (3.12)

где: N- полный вес перекрытия, кг;

1600 кгс/см 2 , для стали ВСт3сп;

Коэффициент продольного изгиба конструктивно принимается =0,45.

По ГОСТ 8732-75 конструктивно выбирается труба с наружным диаметром D h =21см, внутренним диаметром d b =18 см и толщиной стенки 1,5см, что допустимо так как полость трубы будет заполнена бетоном.

Площадь сечения трубы, F:

Определяется момент инерции профиля (J), радиус инерции (r). Соответственно:

J =см4, (3.14)

где - геометрические характеристики сечения.

Радиус инерции:

r=, см, (3.15)

где J- момент инерции профиля;

F- площадь требуемого сечения.

Гибкость:

Определяется напряжение в стойке, по формуле:

Кгс/см (3.17)

При этом по таблицам приложения 17 (А. Н. Серенко) принимается = 0,34

Расчет прочности базы стойки

Расчетное давление Р на фундамент определяется:

Р= Р" + Р ст +Р бс, кг, (3.18)

Р ст =F L г, кг, (3.19)

Р бс =L г б, кг, (3.20)

где: Р"-усилие вертикальной стойки Р"= 5885,6 кг;

Р ст - весстойки, кг;

г - удельный вес стали.г =7,85*10 -3 кг/.

Р бс - весбетона залитого в стойку стойки, кг;

г б -удельный вес бетона марки.г б =2,4*10 -3 кг/.

Требуемая площадь плиты башмака при допускаемом давлении на песчаное основание [у] ф =2 кг/см 2:

Принимается плита со сторонами: аЧb =0,65Ч0,65 м.Распределенная нагрузка, q на 1 см плиты определится:

Расчетный изгибающий момент, М:

Расчетный момент сопротивления, W:

Толщина плиты д:

Принимается толщина плиты д =20 мм.

Вычисление усилий в стойках производят с учетом приложенных к стойке нагрузок.

Средние стойки

Средние стойки каркаса здания работают и рассчитываются как центрально сжатые элементы на действие наибольшего сжимающего усилия N от собственного веса всех конструкций покрытия (G) и снеговой нагрузки и снеговой нагрузки (Рсн ).

Рисунок 8 – Нагрузки на среднюю стойку

Расчет центрально сжатых средних стоек производят:

а) на прочность

где - расчетное сопротивление древесины сжатию вдоль волокон;

Площадь нетто поперечного сечения элемента;

б) на устойчивость

где – коэффициент продольного изгиба;

– расчетная площадь поперечного сечения элемента;

Нагрузки собираются с площади покрытия по плану, приходящейся на одну среднюю стойку ().

Рисунок 9 – Грузовые площади средней и крайней колонн

Крайние стойки

Крайняя стойка находится под действием продольных по отношению к оси стойки нагрузок (G и Рсн ), которые собираются с площади и поперечных , и Х. Кроме этого от действия ветра возникает продольная сила .

Рисунок 10 – Нагрузки на крайнюю стойку

G – нагрузка от собственного веса конструкций покрытия;

Х – горизонтальная сосредоточенная сила, приложенная в точке примыкания ригеля к стойке.

В случае жесткой заделки стоек для однопролетной рамы:

Рисунок 11 – Схема нагрузок при жестком защемлении стоек в фундаменте

где - горизонтальные ветровые нагрузки соответственно от ветра слева и справа, приложенные к стойке в месте примыкания к ней ригеля.

где - высота опорного сечения ригеля или балки.

Влияние сил будет существенно, если ригель на опоре имеет значительную высоту.

В случае шарнирного опирания стойки на фундамент для однопролетной рамы:

Рисунок 12 – Схема нагрузок при шарнирном опирании стоек на фундаменте

Для многопролетных рамных конструкций при ветре слева p 2 и w 2 , а при ветре справа p 1 и w 2 будут равны нулю.

Крайние стойки рассчитываются как сжато-изгибаемые элементы. Значения продольной силы N и изгибающего момента M принимаются для такого сочетания нагрузок, при котором возникают наибольшие сжимающие напряжения.


1) 0.9(G + P c + ветер слева)

2) 0.9(G + P c + ветер справа)

Для стойки, входящей в состав рамы, максимальный изгибающий момент берут как max из вычисленных для случая ветра слева М л и справа М пр:


где е – эксцентриситет приложения продольной силы N, которая включает наиболее неблагоприятное сочетание нагрузок G, P c , P b – каждая со своим знаком.

Эксцентриситет для стоек с постоянной высотой сечения равен нулю (е = 0), а для стоек с переменной высотой сечения берется как разность между геометрической осью опорного сечения и осью приложения продольной силы.

Расчет сжато – изогнутых крайних стоек производится:

а) на прочность:

б) на устойчивость плоской формы изгиба при отсутствии закрепления или при расчетной длине между точками закрепления l p > 70b 2 /n по формуле:

Геометрические характеристики, входящие в формулы, вычисляются в опорном сечении. Из плоскости рамы стойки рассчитывают как центрально сжатый элемент.

Расчет сжатых и сжато-изогнутых составного сечения производится по приведенным выше формулам, однако при вычислении коэффициентов φ и ξ в этих формулах учитывается увеличение гибкости стойки за счет податливости связей, соединяющих ветви. Эта увеличенная гибкость названа приведенной гибкостью λ n .

Расчет решетчатых стоек можно свести к расчету ферм. При этом ветровая равномерно распределенная нагрузка сводится к сосредоточенным грузам в узлах фермы. Считается, что вертикальные силы G, P c , P b воспринимаются только поясами стойки.