Классификация нагрузок. Постоянные и временные нагрузки и их виды. Особые нагрузки. Нормативные и расчетные значения нагрузок. Черчение Классификация нагрузок на конструкции

Классификация внешних нагрузок, действующих на элементы конструкций.

Общая классификация элементов конструкций.

Технические объекты и сооружения состоят из отдельных частей и элементов, которые отличаются большим разнообразием по форме, размерам, другим параметрам и характеристикам. С позиций инженерных расчетов принято различать четыре основных группы элементов конструкций: стержни, пластины, оболочки, массивы.

Стержни – это прямые или криволинейные элементы конструкций, у которых один размер (длина) значительно превышает два другие размера (в пространственной ортогональной системе координат), см. рисунок 20. Примеры элементов конструкций типа стержней: ножки стула или стола, колонна строительной конструкции, канат грузоподъемной машины, рычаг переключения коробки перемены передач автомобиля и др.

Z Кривой стержень

Прямой стержень

Рисунок 20. Схемы элементов конструкций типа стержней

t (толщина пластины)

Рисунок 21. Схема элемента конструкции типа пластины

Рисунок 22. Схема элемента конструкции типа оболочки (цилиндрической)

Рис. 23. Схема элемента конструкции типа массива

Пластины – это плоские элементы конструкций, у которых один размер (толщина) значительно меньше двух других. Примеры пластин: крышка стола; стены и потолочные перекрытия зданий и др., см. рисунок 21, из которого видно что толщина пластины значительно меньше двух размеров ее в плане.

Оболочки – это неплоские тонкостенные элементы конструкций, у которых один размер (толщина стенок) значительно меньше других размеров. Примеры оболочек: трубопроводы для транспортировки жидких и газообразных продуктов (цилиндрические оболочки); цилиндрические, сферические или комбинированные емкости для жидкостей; конические бункеры для сыпучих материалов; неплоские покрытия различных сооружений и др., см. рисунок 22, где показана цилиндрическая оболочка (тонкостенная цилиндрическая труба), у которой толщина стенки значительно меньше ее диаметра и длины.

Массивы – это элементы конструкций, у которых все три размера соизмеримы. Примеры массивов: фундаментные блоки станков, машин и строительных конструкций; массивные опоры мостов и др., см. рисунок 23.

В курсах «Инженерная механика» и «Сопротивление материалов» наибольшее внимание уделяется основополагающему изучению элементов конструкций типа стержней. Пластины, оболочки и массивы изучаются в расширенных курсах «Сопротивление материалов» и в специальных курсах.

Сосредоточенные силы – это силы, приложенные к элементу конструкции на площадке его поверхности, размерами которой по сравнению с размерами всей поверхности элемента конструкции можно пренебречь. Как правило, сосредоточенные силы – это результат воздействия на данное тело (элемент конструкции) другого тела (в частности, другого элемента конструкции). Во многих практически важных случаях сосредоточенные



силы можно без заметного ущерба для точности инженерных расчетов считать приложенными к элементу конструкции в точке. Единицы измерения сосредоточенных сил Н (Ньютон), кН (килоньютон) и др.

Объемные силы – это силы, приложенные по всему объему элемента конструкции, например распределенные силы тяжести. Единицы измерения распределенных объемных сил Н/м 3 , кН/м 3 и т. п. Полная сила тяжести (Н, кН) какого-либо элемента конструкции нередко в расчетах условно учитывается как сосредоточенная сила, приложенная в точке, называемой его центром тяжести.

Распределенные силы (нагрузки) – это силы, приложенные на части площади (или длины) деформируемого тела, соизмеримой с размерами всего тела. Различают поверхностно распределенные силы (нагрузки), единицы измерения которых Н/м 2 , кН/м 2 и т.п. (например, распределенные снеговые нагрузки на покрытия зданий), а также линейно распределенные нагрузки (по длине элементов конструкций), единицы измерения которых Н/м, кН/м и т.п. (например, распределенные силы давления плит, опираемых на балки строительных конструкций).

Статические силы (нагрузки) – это силы (нагрузки), не изменяющие (или несущественно изменяющие) свое значение, положение и направление действия в процессе эксплуатации конструкции.

Динамические силы (нагрузки) – это силы (нагрузки), существенно изменяющие свое значение, положение и/или направление в короткие промежутки времени и вызывающие колебания конструкции.

Номинальные нагрузки – это нормально максимальные нагрузки, возникающие при эксплуатации конструкции.

Контрольные вопросы:

1) Что изучается в курсе «Сопротивление материалов»? Каково его значение для высококвалифицированных технических специалистов?

2) Что такое внешние нагрузки и внутренние усилия?

3) Объясните понятия деформации, прочности, жесткости и устойчивости.

4) Объясните понятия однородности, сплошности, изотропности и анизотропии.

5) Дайте классификацию элементов конструкций.

6) Дайте классификацию внешних нагрузок, действующих на элементы конструкций.


1. Александров А.В. и др. Сопротивление материалов. Учебник для вузов – М.: Высш. шк., 2001. – 560 с. (с. 5…20).

2. Степин П.А. Сопротивление материалов. – М.: Высш. школа, 1983. – 303 с. (с. 5…20).

3. Справочник по сопротивлению материалов/Писаренко Г.С. и др. – Киев: Наукова думка, 1988. – 737с. (с. 5…9).

Контрольные задания для СРС – с помощью учебной литературырасширить сведения по следующим вопросам:

1) что такое силы упругости?

2) какова сущность принципа отсутствия в теле начальных внутренних усилий (, с. 9-10)?

3) каковы принципы схематизации внешних нагрузок, действующих на элементы конструкций, применяемые в инженерных расчетах (, с. 8-11)?

4) пояснить принцип независимости действия сил (, с. 18-20; , с. 10)?

5) пояснить принцип Сен-Венана (, с. 10-11);

6) в чем отличие деформации от перемещения (, с. 17-18; , с. 13-14)?;

7) общее понятие о методе сечений (, с. 13-16; , с. 14-17);

8) общее понятие о напряжениях в деформируемом теле, обозначениях нормальных и касательных напряжений (, с. 13-15; , с. 17-20).

9) классификация внешних нагрузок, действующих на элементы конструкций (см. п. 5.3).


Лекция 6. Тема 6. «Центральное растяжение-сжатие прямых жестких стержней»

Цель лекции – изложить вводные положения по теме, сущность и применение метода сечений для определения внутренних усилий в стержнях при центральном растяжении-сжатии; дать начальные понятия об эпюрах внутренних усилий.

Воздействия, испытываемые стойкой от согнувшей ее руки (см. рис. 42), доской от груза (см. рис. 44), цилиндрическим стерж­нем болта при навинчивании гайки гаечным ключом (см. рис. 45) и т. д., представляют собой внешние силы или нагрузки . Силы, возникающие в местах закрепления стойки и опирания доски, называются реакциями .

Рис. 42

Рис. 44


Рис. 45

По способу приложения нагрузки делятся на сосредоточенные и распре­деленные (рис. 49).

Виды и классификация нагрузок:

Сосредоточенные нагрузки передают свое действие через,очень малые площади. Примерами таких нагрузок могут служить давление колес железнодорожного вагона на рельсы, давление тележки тали на монорельс и т. д.

Распределенные нагрузки действуют на сравнительно большой площади. Например, вес станка передается через станину на всю площадь соприкосновения с фундаментом.

По продолжительности действия принято различать постоянные и переменные нагрузки. Примером постоянной нагрузки может слу­жить давление подшипника скольжения - опоры валов и осей - и его соб­ственный вес на кронштейн.

Переменной нагрузке подвержены в основном детали механизмов пери­одического действия. Одним из таких механизмов служит зубчатая переда­ча, у которой зубья в зоне контакта смежных пар зубчатых колес испыты­вают переменную нагрузку.

По характеру действия нагрузки могут быть статическими и динамическими . Статические нагрузки почти не изменяются в тече­ние всего времени работы конструкции (например, давление ферм на опо­ры).

Динамические нагрузк и действуют непродолжительное время. Их воз­никновение связано в большинстве случаев с наличием значительных уско­рений и сил инерции.

Динамические нагрузки испытывают детали машин ударного действия, таких, как прессы, молоты и т. д. Детали кривошипно-шатунных механиз­мов также испытывают во время работы значительные динамические на­грузки от изменения величины и направления скоростей, то есть наличия ускорений.

1.2. Классификация внешних сил и элементов конструкций

Внешние силы, действующие на элементы конструкций," как известно из курса теоретической механики, делятся на активные и реактивные (реакции связей). Активные внешние силы принято называть Происхождение и характер действия нагрузки определяются назначением, условиями работы и конструктивными особенностями рассматриваемого элемента. Например, для приводного вала, изображенного на рис. 1.8, нагрузками являются силы, действующие на зубья колеса, и натяжения ветвей ремня, а также силы тяжести самого вала и насаженных на него деталей (зубчатого колеса и шкива).

Для стержней фермы мостового крана (рис. 1.9) основные нагрузки - силы тяжести поднимаемого груза и тележки; меньшее значение имеют силы тяжести фермы.

Основная нагрузка барабана парового котла - давление находящегося в нем пара.

В случае если рассматриваемый элемент конструкции движется с ускорением, то к числу действующих на него нагрузок относятся также силы инерции.

Силы тяжести данной части конструкции и силы инерции, возникающие при ее ускоренном движении, являются объемнымя сяламв, т. е. они действуют на каждый бесконечно малый элемент объема. Нагрузки, передающиеся от одних элементов конструкции к другим, относятся к числу поверхностных сил.

Поверхностные снлы делатся на сосредоточенные в распределенные. При этом следует помнить, что сосредоточенных сил, конечно, не существует - это абстракция, вводимая для удобства технических расчетов. Сила рассматривается как сосредоточенная, если она передается на деталь по площадке, размеры которой пренебрежимо малы в сравнении с размерами самого элемента конструкции. Например, силу давления колеса вагона на рельс можно рассматривать как сосредоточенную, так как хотя колесо и рельс в месте соприкосновения деформируются, но размеры площадки, получающейся в результате этой деформации, ничтожно малы по сравнению с размерами как рельса, так и колеса.

Нагрузки, распределенные по некоторой поверхности, характеризуются давлением, т. е. отношением силы, действующей на элемент поверхности нормально к ней, к площади данного элемента, и, следовательно, выражаются в паскалях (1 Па = = 1 Н/м~), МПа и т. д.

Во многих случаях приходится встречаться с нагрузками, распределенными по длине элемента конструкции,. например можно говорить о силе тяжести единицы длины балки, при этом если сечение балки непостоянно, то и сила тяжести единицы ее длины будет переменной.

Распределенная по длине нагрузка характеризуется интенсивностью, обозначаемой обычно q и выражаемой в единицах силы, отнесенных к единицам длины: Н/м, кН/м и т. п.

По характеру изменения во времени различают: статические нагрузки, нарастающие медленно и плавно от нуля до своего конечного значения; достигнув его, в дальнейшем не изменяются. Примером могут служить центробежные силы в период разгона и при последующем равномерном вращении какого-либо ротора;

повторные нагрузки, многократно изменяющиеся во времени по тому или иному закону. Примером такой нагрузки служат силы, действующие на зубья зубчатых колес;

нагрузки малой продолжительности, прикладываемые к конструкции сразу или даже с начальной скоростью в момент контакта (эти нагрузки часто называют динамическими или ударными). Примером ударной является, например, нагрузка, воспринимаемая деталями парового молота во время ковки.

Вопрос о связях и их реакциях достаточно подробно рассмотрен в курсе теоретической механики. Здесь ограничимся лишь напоминанием о наиболее распространенных типах связей.

Шарнирно-подвижная опора (односвязная опора) схематически изображается, как показано на рис. 1.10,а. Реакция такой опоры всегда перпендикулярна опорной поверхности.

Шарнирно-неподвижная опора (двухсвязная опора) схематически изображена на рис. 1.10,б. Реакция шарнирно-неподвижной опоры проходит через. центр шарнира, а ее направление зависит от действующих активных сил. Вместо отыскания числового значения и направления этой реакции удобнее искать отдельно две ее составляющие.

В жесткой заделке (трехсвязная опора) возникают реактивная пара сил (момент) и реактивная сила; последнюю удобнее представлять в виде двух ее составляющих (рис. 1.11).

Если связью служит стержень с шарнирами по концам (рис. 1.12), то реакция направлена вдоль его оси, т. е. сам стержень работает на растяжение или сжатие.

Формы элементов конструкций чрезвычайно разнообразны, но с большей или меньшей степенью точности каждый из них можно при расчетах рассматривать либо как брус, либо как оболочку или пластину, либо как массив.

В сопротивлении материалов в основном изучают методы расчетов на прочность, жесткость и устойчивость бруса, т. е. тела, два измерения которого невелики по сравнению с третьим (длиной). Представим себе плоскую фигуру, перемещающуюся вдоль некоторой линии таким образом, что центр тяжести фигуры находится на этой линии, а плоскость фигуры ей перпендикулярна. Полученное в результате такого движения тело и есть брус (рис. 1.13).

Плоская фигура, движением которой брус образован, является его поперечным сечением, а линия, вдоль которой перемещался ее центр тяжести,- осью бруса.

Ось бруса - это геометрическое место центров тяжести его поперечных сечений. В зависимости от формы оси бруса и того, как изменяется (или остается постоянным) его поперечное сечение, различают прямые и кривые брусья с постоянным, непрерывно или ступенчато изменяющимся поперечным сечением (рис. 1.14). В качестве некоторых примеров деталей, рассчитываемых как прямые брусья, можно указать приводной вал (см. рис. 1.8), любой из стержней фермы мостового крана (см. рис. 1.9); крюк этого крана рассчитывают как кривой брус.

Пластина и оболочка (рис. 1.15) характеризуются тем, что их толщина невелика по сравнению с остальными размерами. Пластину можно рассматривать как частный случай оболочки, так сказать, «распрямленную» оболочку. Примерами деталей, рассматриваемых как оболочки и пластины, являются различные резервуары для жидкостей и газов, элементы обшивки корпусов кораблей, подводных лодок, фюзеляжей самолетов.

Массивом называют тело, все три измерения которого - величины одного порядка, например фундамент под машину, шарик или ролик подшипника качения.

При методике предельных состояний все нагрузки классифицированы в зависимости от вероятности их воздействия на нормативные и расчетные.

По признаку воздействия нагрузки разделяются на постоянные и временные. Последние могут быть длительного и кратковременного воздействия.

Кроме того, есть нагрузки, которые выделяются в разряд особых нагрузок и воздействий.

Постоянные нагрузки – собственный вес несущих и ограждающих конструкций, давление грунта, предварительное напряжение.

Временные длительные нагрузки – вес стационарного технологического оборудования, вес складируемых материалов в хранилищах, давление газов, жидкостей и сыпучих материалов в емкостях и т.д.

Кратковременные нагрузки – нормативные нагрузки от снега, ветра, подвижного подъемно-транспортного оборудования, массы людей, животных и т.п.

Особые нагрузки – сейсмические воздействия, взрывные воздействия. Нагрузки, возникающие в процессе монтажа конструкций. Нагрузки, связанные с поломкой технологического оборудования, воздействия, связанные с деформациями основания в связи с изменениями структуры грунта (просадочные грунты, осадка грунтов в карстовых районах и над подземными выработками).

Существует иногда термин “полезная нагрузка”. Полезной называют нагрузки, восприятие которых составляет цельное назначение сооружений, например, вес людей для пешеходного моста. Они бывают как временными, так и постоянным, например, вес монументального выставочного сооружения является постоянной нагрузкой для постамента. Для фундамента вес всех вышележащих конструкций также представляет полезную нагрузку.

При действии на конструкцию нескольких видов нагрузок усилия в ней определяются как при самых неблагоприятных сочетаниях с использованием коэффициентов сочетаний .

В СНиПе 2.01.07-85 “ Нагрузки и воздействия” различают:

основные сочетания , состоящие из постоянных и временных нагрузок;

особые сочетания , состоящие из постоянных, временных и одной из особых нагрузок.

При основном сочетании, включающем одну временную нагрузку, коэффициент сочетаний . При большем числе временных нагрузок, последние умножаются на коэффициент сочетаний .

В особых сочетаниях временные нагрузки учитываются с коэффициентом сочетаний , а особая нагрузка - с коэффициентом . Во всех видах сочетаний постоянная нагрузка имеет коэффициент .

нагруженных элементов

Учет сложного напряженного состояния при расчете металлических конструкций производится через расчетное сопротивление , которое устанавливается на основе испытаний металлических образцов при одноосном нагружении. Однако в реальных конструкциях материал, как правило, находится в сложном многокомпонентном напряженном состоянии. В связи с этим необходимо установить правило эквивалентности сложного напряженного состояния одноосному.

В качестве критерия эквивалентности принято использовать потенциальную энергию, накапливаемую в материале при его деформировании внешним воздействиям.

Для удобства анализа энергию деформации можно представить в виде суммы работ по изменению объема А о и изменения формы тела А ф. Первая не превышает 13% полной работы при упругом деформировании и зависит от среднего нормального напряжения.

1 - 2υ

A o = ----------(Ơ Χ + Ơ У + Ơ Ζ) 2 (2.3.)

Вторая работа связана со сдвигами в материале:

А ф = -------[(Ơ Χ 2 +Ơ Υ 2 + Ơ z 2 -(Ơ x Ơ y +Ơ y Ơ z +Ơ z Ơ x) + 3 (τ xy 2 +τ yz 2 + τ zx 2)] (2.4.)

Известно, что разрушение кристаллической структуры строительных сталей и алюминиевых сплавов связано со сдвиговыми явлениями в материале (движение дислокаций и пр.).

Работа формоизменения (2.4.) является инвариантом, поэтому при одноосном напряженном состоянии Ơ = Ơ имеем А 1 =[(1 + ) / 3Е ] Ơ 2

Приравнивая это значение выражению (2.4) и извлекая квадратный корень, получим:

Ơ пр = =Ơ (2.5)

Это соотношение устанавливает энергетическую эквивалентность сложного напряженного состояния одноосному. Выражение в правой части иногда называют приведенным напряжением Ơ пр, имея в виду приведение к некоторому состоянию с одноосным напряжением Ơ .

Если предельно допустимое напряжение в металле (расчетное сопротивление) устанавливается по пределу текучести стандартного образца Ơ T , то выражение (2.5) принимает вид Ơ пр = Ơ T и представляет собой условие пластичности при сложном напряженном состоянии, т.е. условие перехода материала из упругого состояния в пластичное.

В стенках двутавровых балок вблизи приложения поперечной нагрузки

Ơ x 0 . Ơ y 0 . τ xy 0 . остальными компонентами напряжений можно пренебречь. Тогда условие пластичности принимает вид

Ơ пр = = Ơ T (2.6)

В точках, удаленных от места приложения нагрузки, можно пренебречь также локальным напряжением Ơ y = 0 , тогда условие пластичности еще более упростится: Ơ пр = = Ơ T .

При простом сдвиге из всех компонентов напряжений только

τ xy 0 . тогда Ơ пр = = Ơ T . Отсюда

τ xy = Ơ T / = 0,58 Ơ T (2.7)

В соответствии с этим выражением в СНиПе принято соотношение между расчетными сопротивлениями на сдвиг и растяжение ,

где - расчетное сопротивление сдвигу; - предел текучести.

Поведение под нагрузкой центрально растянутого элемента и центрально сжатого при условии обеспечения его устойчивости полностью соответствует работе материала при простом растяжении-сжатии (рис.1.1, б ).

Предполагается, что напряжения в поперечном сечении этих элементов распределяются равномерно. Для обеспечения несущей способности таких элементов необходимо, чтобы напряжения от расчетных нагрузок в сечении с наименьшей площадью не превышали расчетного сопротивления.

Тогда неравенство первого предельного состояния (2.2) будет

где - продольная сила в элементах; - площадь нетто поперечного сечения элемента; - расчетное сопротивление, принимаемое равным , если в элементе не допускается развитие пластических деформаций; если же пластические деформации допустимы, то равняется наибольшему из двух значений и (здесь и - расчетные сопротивления материала по пределу текучести и по временному сопротивлению соответственно); - коэффициент надежности по материалу при расчете конструкции по временному сопротивлению; - коэффициент условий работы.

Проверка по второму предельному состоянию сводится к ограничению удлинения (укорочения) стержня от нормативных нагрузок

N n l / (E A) ∆ (2.9)

где - продольная сила в стержне от нормативных нагрузок; - расчетная длина стержня, равная расстоянию меду точками приложения нагрузки к стержню; - модуль упругости; - площадь брутто поперечного сечения стержня; - предельная величина удлинения (укорочения).

Основные понятия технической механики

Современное производство, определяющееся высокой механизацией и автоматизацией, предлагает использование большого количества разнообразных машин, механизмов, приборов и других устройств. Конструирование, изготовление, эксплуатация машин невозможна без знаний в области механики.

Техническая механика – дисциплина, вмещающая в себя основные механические дисциплины: теоретическую механику, сопротивление материалов, теорию машин и механизмов, детали машин и основы конструирования.

Основными задачами в технике являются обеспечения прочности, жесткости , устойчивости инженерных конструкций, деталей машин и приборов.

Сопротивлением материалов – это наука, в которой изучаются принципы и методы расчетов на прочность, жесткость и устойчивость.

Прочность – это способность конструкции в определенных пределах выдерживать внешние нагрузки без разрушения.

Жесткость – это способность конструкции в определенных пределах воспринимать действие внешних нагрузок без изменения геометрических размеров (не деформируясь).

Устойчивость – это способность конструкции сохранять свою форму и равновесие в нагруженном состоянии, а так же самостоятельно восстанавливать первоначальное состояние после того, как ей было дано некоторое отклонение от состояния равновесия.

Кроме указанных требований конструкция должна быть экономичной, ее масса и габариты должны быть минимальными. Для этого она должна иметь рациональную форму и размеры.

Классификация нагрузок

Различают внешние и внутренние силы и моменты сил.

Внешними силами (P ) называются силы, действующие на точки (тела) данной системы со стороны материальных точек (тел), не принадлежащих этой системе. Внешние силы (нагрузка) – это активные силы и реакции связи.

Внутренними силами (Q ) называют силы взаимодействия между точками (телами) данной системы. Они действуют и в отсутствии внешних нагрузок. При действии на тело внешних сил возникают дополнительные внутренние силы , сопровождающие деформацию. Эти силы сопротивляются стремлению внешних сил изменить форму тела или отделить одну часть от другой. Мы будем изучать только дополнительные внутренние силы.

По способу приложения нагрузки делятся на:

1) объемные – распределенные по объему тела и приложенные к каждой его частице (собственный вес конструкции, силы магнитного взаимодействия);

2) поверхностные – приложенные к участкам поверхности и характеризующие непосредственное контактное взаимодействие объекта с окружающими телами:

а) сосредоточенные (P 1 ) – нагрузки, действующие по площадке, размеры которой малы по сравнению с размерами самого элемента конструкции (давление обода колеса на рельс);



б)распределенные (P 2 )нагрузки, действующие по площадке (или длине), размеры которой не малы по сравнению с размерами самого элемента конструкции (гусеницы трактора давят на балку моста).

Распределенные нагрузки характеризуются интенсивностью q [Н/м ] или [Н/м 2 ]. Если q интенсивность нагрузки, распределенной вдоль элемента длиной a , то

Если q const, ее можно вынести за знак интеграла, тогда получим:

P 2 = q a .

Нагрузки могут быть постоянными и временными. Постоянные действуют всегда или в течение достаточно длительного времени (например, собственный вес конструкции). Временные действуют эпизодически (например, давление ветра).

По характеру действия нагрузки делятся на:

1.статические – прикладывается медленно, возрастая от нуля до конечного значения, и не изменяются;

2.динамические – изменяют величину или направление за короткий промежуток времени и сопровождаются появлением ускорений элементов конструкций. К ним относятся:

а) внезапные нагрузки– действуют сразу на полную силу (колесо локомотива, заезжающего на мост),

б) ударные нагрузки – действуют на протяжении короткого времени (дизель-молот),

в) циклические нагрузки – действуют периодически(нагрузка на зубья зубчатого колеса).