Общая молекулярная формула спиртов. Спирты — номенклатура, получение, химические свойства

Содержание статьи

СПИРТЫ (алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами)

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН 3 ОН, этанол С 2 Н 5 ОН, пропанол С 3 Н 7 ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO–СH 2 –CH 2 –OH, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 .

Соединения, в которых у одного атома углерода есть две гидроксильных группы, в большинстве случаев нестабильны и легко превращаются в альдегиды, отщепляя при этом воду: RCH(OH) 2 ® RCH=O + H 2 O

2. По типу атома углерода, с которым связана группа ОН, спирты делят на:

а) первичные, у которых ОН-группа связана с первичным атомом углерода. Первичным называют атом углерода (выделен красным цветом), связанный всего с одним углеродным атомом. Примеры первичных спиртов – этанол СH 3 –C H 2 –OH, пропанол СH 3 –CH 2 –C H 2 –OH.

б) вторичные, у которых ОН-группа связана с вторичным атомом углерода. Вторичный атом углерода (выделен синим цветом) связан одновременно с двумя атомами углерода, например, вторичный пропанол, вторичный бутанол (рис. 1).

Рис. 1. СТРОЕНИЕ ВТОРИЧНЫХ СПИРТОВ

в) третичные, у которых ОН-группа связана с третичным атомом углерода. Третичный углеродный атом (выделен зеленым цветом) связан одновременно с тремя соседними атомами углерода, например, третичный бутанол и пентанол (рис. 2).

Рис. 2. СТРОЕНИЕ ТРЕТИЧНЫХ СПИРТОВ

В соответствии с типом углеродного атома присоединенную к нему спиртовую группу также называют первичной, вторичной или третичной.

У многоатомных спиртов, содержащих две или более ОН-групп, могут присутствовать одновременно как первичные, так и вторичные НО-группы, например, в глицерине или ксилите (рис. 3).

Рис. 3. СОЧЕТАНИЕ В СТРУКТУРЕ МНОГОАТОМНЫХ СПИРТОВ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОН-ГРУПП .

3. По строению органических групп, связанных ОН-группой, спирты подразделяют на предельные (метанол, этанол, пропанол), непредельные, например, аллиловый спирт СН 2 =СН–СН 2 –ОН, ароматические (например, бензиловый спирт С 6 Н 5 СН 2 ОН), содержащие в составе группы R ароматическую группу.

Непредельные спирты, у которых ОН-группа «примыкает» к двойной связи, т.е. связана с атомом углерода, участвующим одновременно в образовании двойной связи (например, виниловый спирт СН 2 =СН–ОН), крайне нестабильны и сразу же изомеризуются (см .ИЗОМЕРИЗАЦИЯ) в альдегиды или кетоны :

CH 2 =CH–OH ® CH 3 –CH=O

Номенклатура спиртов.

Для распространенных спиртов, имеющих простое строение, используют упрощенную номенклатуру: название органической группы преобразуют в прилагательное (с помощью суффикса и окончания «овый ») и добавляют слово «спирт»:

В том случае, когда строение органической группы более сложное, используют общие для всей органической химии правила. Названия, составленные по таким правилам, называют систематическими. В соответствии с этими правилами, углеводородную цепь нумеруют с того конца, к которому ближе расположена ОН-группа. Далее используют эту нумерацию, чтобы указать положение различных заместителей вдоль основной цепи, в конце названия добавляют суффикс «ол» и цифру, указывающую положение ОН-группы (рис. 4):

Рис. 4. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ СПИРТОВ . Функциональные (ОН) и замещающие (СН 3) группы, а также соответствующие им цифровые индексы выделены различающимися цветами.

Систематические названия простейших спиртов составляют по тем же правилам: метанол, этанол, бутанол. Для некоторых спиртов сохранились тривиальные (упрощенные) названия, сложившиеся исторически: пропаргиловый спирт НСє С–СН 2 –ОН, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 , фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH.

Физические свойства спиртов.

Спирты растворимы в большинстве органических растворителей, первые три простейших представителя – метанол, этанол и пропанол, а также третичный бутанол (Н 3 С) 3 СОН – смешиваются с водой в любых соотношениях. При увеличении количества атомов С в органической группе начинает сказываться гидрофобный (водоотталкивающий) эффект, растворимость в воде становится ограниченной, а при R, содержащем свыше 9 атомов углерода, практически исчезает.

Благодаря наличию ОН-групп между молекулами спиртов возникают водородные связи.

Рис. 5. ВОДОРОДНЫЕ СВЯЗИ В СПИРТАХ (показаны пунктиром)

В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С, а Т. кип. этана –88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и –0,5° С.

Химические свойства спиртов.

Спирты отличаются разнообразными превращениями. Реакции спиртов имеют некоторые общие закономерности: реакционная способность первичных одноатомных спиртов выше, чем вторичных, в свою очередь, вторичные спирты химически более активны, чем третичные. Для двухатомных спиртов, в том случае, когда ОН-группы находятся у соседних атомов углерода, наблюдается повышенная (в сравнении с одноатомными спиртами) реакционная способность из-за взаимного влияния этих групп. Для спиртов возможны реакции, проходящие с разрывом как С–О, так и О–Н – связей.

1. Реакции, протекающие по связи О–Н.

При взаимодействии с активными металлами (Na, K, Mg, Al) спирты проявляют свойства слабых кислот и образуют соли, называемые алкоголятами или алкоксидами:

2CH 3 OH + 2Na ® 2CH 3 OK + H 2

Алкоголяты химически не стабильны и при действии воды гидролизуются с образованием спирта и гидроксида металла:

C 2 H 5 OК + H 2 O ® C 2 H 5 OH + КOH

Эта реакция показывает, что спирты в сравнении с водой представляют собой более слабые кислоты (сильная кислота вытесняет слабую), кроме того, при взаимодействии с растворами щелочей спирты не образуют алкоголяты. Тем не менее, в многоатомных спиртах (в том случае, когда ОН-группы присоединены к соседним атомам С) кислотность спиртовых групп намного выше, и они могут образовывать алкоголяты не только при взаимодействии с металлами, но и со щелочами:

HO–CH 2 –CH 2 –OH + 2NaOH ® NaO–CH 2 –CH 2 –ONa + 2H 2 O

Когда в многоатомных спиртах НО-группы присоединены к не соседствующим атомам С, свойства спиртов близки к одноатомным, поскольку взаимовлияние НО-групп не проявляется.

При взаимодействии с минеральными или органическими кислотами спирты образуют сложные эфиры – соединения, содержащие фрагмент R–O–A (А – остаток кислоты). Образование сложных эфиров происходит и при взаимодействии спиртов с ангидридами и хлорангидридами карбоновых кислот (рис. 6).

При действии окислителей (К 2 Cr 2 O 7 , KMnO 4) первичные спирты образуют альдегиды, а вторичные – кетоны (рис.7)

Рис. 7. ОБРАЗОВАНИЕ АЛЬДЕГИДОВ И КЕТОНОВ ПРИ ОКИСЛЕНИИ СПИРТОВ

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С, что молекула исходного спирта (рис.8).

Рис. 8. ВОССТАНОВЛЕНИЕ БУТАНОЛА

2. Реакции, протекающие по связи С–О.

В присутствии катализаторов или сильных минеральных кислот происходит дегидратация спиртов (отщепление воды), при этом реакция может идти в двух направлениях:

а) межмолекулярная дегидратация с участием двух молекул спирта, при этом связи С–О у одной из молекул разрываются, в результате образуются простые эфиры – соединения, содержащие фрагмент R–О–R (рис. 9А).

б) при внутримолекулярной дегидратации образуются алкены - углеводороды с двойной связью. Часто оба процесса – образование простого эфира и алкена – протекают параллельно (рис. 9Б).

В случае вторичных спиртов при образовании алкена возможны два направления реакции (рис. 9В), преимущественное направление то, при котором в процессе конденсации отщепляется водород от наименее гидрогенизированного атома углерода (отмечен цифрой 3), т.е. окруженного меньшим количеством атомов водорода (в сравнении с атомом 1). Показанные на рис. 10 реакции используют для получения алкенов и простых эфиров.

Разрыв связи С–О в спиртах происходит также при замещении ОН-группы галогеном, или аминогруппой (рис. 10).

Рис. 10. ЗАМЕНА ОН-ГРУППЫ В СПИРТАХ ГАЛОГЕНОМ ИЛИ АМИНОГРУППОЙ

Реакции, показанные на рис. 10, используют для получения галогенуглеводородов и аминов.

Получение спиртов.

Некоторые из показанных выше реакций (рис. 6,9,10) обратимы и при изменении условий могут протекать в противоположном направлении, приводя к получению спиртов, например при гидролизе сложных эфиров и галогенуглеводородов (рис.11А и Б, соответственно), а также гидратацией алкенов – присоединением воды (рис.11В).

Рис. 11. ПОЛУЧЕНИЕ СПИРТОВ ГИДРОЛИЗОМ И ГИДРАТАЦИЕЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакция гидролиза алкенов (рис. 11, схема В) лежит в основе промышленного производства низших спиртов, содержащих до 4 атомов С.

Этанол образуется и при так называемом спиртовом брожении сахаров, например, глюкозы С 6 Н 12 О 6 . Процесс протекает в присутствии дрожжевых грибков и приводит к образованию этанола и СО 2:

С 6 Н 12 О 6 ® 2С 2 Н 5 ОН + 2СО 2

Брожением можно получить не более чем 15%-ный водный раствор спирта, поскольку при более высокой концентрации спирта дрожжевые грибки погибают. Растворы спирта более высокой концентрации получают перегонкой.

Метанол получают в промышленности восстановлением монооксида углерода при 400° С под давлением 20–30 МПа в присутствии катализатора, состоящего из оксидов меди, хрома, и алюминия:

СО + 2 Н 2 ® Н 3 СОН

Если вместо гидролиза алкенов (рис. 11) проводить окисление, то образуются двухатомные спирты (рис. 12)

Рис. 12. ПОЛУЧЕНИЕ ДВУХАТОМНЫХ СПИРТОВ

Применение спиртов.

Способность спиртов участвовать в разнообразных химических реакциях позволяет их использовать для получения всевозможных органических соединений: альдегидов, кетонов, карбоновых кислот простых и сложных эфиров, применяемых в качестве органических растворителей, при производстве полимеров, красителей и лекарственных препаратов.

Метанол СН 3 ОН используют как растворитель, а также в производстве формальдегида, применяемого для получения фенолформальдегидных смол, в последнее время метанол рассматривают как перспективное моторное топливо. Большие объемы метанола используют при добыче и транспорте природного газа. Метанол – наиболее токсичное соединение среди всех спиртов, смертельная доза при приеме внутрь – 100 мл.

Этанол С 2 Н 5 ОН – исходное соединение для получения ацетальдегида, уксусной кислоты, а также для производства сложных эфиров карбоновых кислот, используемых в качестве растворителей. Кроме того, этанол – основной компонент всех спиртных напитков, его широко применяют и в медицине как дезинфицирующее средство.

Бутанол используют как растворитель жиров и смол, кроме того, он служит сырьем для получения душистых веществ (бутилацетата, бутилсалицилата и др.). В шампунях он используется как компонент, повышающий прозрачность растворов.

Бензиловый спирт С 6 Н 5 –CH 2 –OH в свободном состоянии (и в виде сложных эфиров) содержится в эфирных маслах жасмина и гиацинта. Он обладает антисептическими (обеззараживающими) свойствами, в косметике он используется как консервант кремов, лосьонов, зубных эликсиров, а в парфюмерии - как душистое вещество.

Фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH обладает запахом розы , содержится в розовом масле, его используют в парфюмерии.

Этиленгликоль HOCH 2 –CH 2 OH используют в производстве пластмасс и как антифриз (добавка, снижающая температуру замерзания водных растворов), кроме того, при изготовлении текстильных и типографских красок .

Диэтиленгликоль HOCH 2 –CH 2 OCH 2 –CH 2 OH используют для заполнения тормозных гидравлических приспособлений, а также в текстильной промышленности при отделке и крашении тканей.

Глицерин HOCH 2 –CH(OH)–CH 2 OH применяют для получения полиэфирных глифталевых смол, кроме того, он является компонентом многих косметических препаратов. Нитроглицерин (рис. 6) – основной компонент динамита, применяемого в горном деле и железнодорожном строительстве в качестве взрывчатого вещества.

Пентаэритрит (HOCH 2) 4 С применяют для получения полиэфиров (пентафталевые смолы), в качестве отвердителя синтетических смол, как пластификатор поливинилхлорида, а также в производстве взрывчатого вещества тетранитропентаэритрита.

Многоатомные спирты ксилит НОСН2–(СНОH)3–CН2ОН и сорбит НОСН2– (СНОН)4–СН2OН имеют сладкий вкус, их используют вместо сахара в производстве кондитерских изделий для больных диабетом и людей страдающих от ожирения. Сорбит содержится в ягодах рябины и вишни .

Михаил Левицкий

(алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами )

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН 3 ОН, этанол С 2 Н 5 ОН, пропанол С 3 Н 7 ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO –С H 2 – CH 2 – OH , глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 .

Соединения, в которых у одного атома углерода

есть две гидроксильных группы, в большинстве случаев нестабильны и легко превращаются в альдегиды, отщепляя при этом воду: RCH (OH ) 2 ® RCH = O + H 2 O , не существуют.

2. По типу атома углерода, с которым связана группа ОН, спирты делят на:

а) первичные, у которых ОН-группа связана с первичным атомом углерода. Первичным называют атом углерода (выделен красным цветом), связанный всего с одним углеродным атомом. Примеры первичных спиртов – этанол С

H 3 – CH 2 – OH , пропанол С H 3 – CH 2 – CH 2 – OH. б) вторичные, у которых ОН-группа связана с вторичным атомом углерода. Вторичный атом углерода (выделен синим цветом) связан одновременно с двумя атомами углерода, например, вторичный пропанол, вторичный бутанол (рис. 1).

Рис. 1. СТРОЕНИЕ ВТОРИЧНЫХ СПИРТОВ

в) третичные, у которых ОН-группа связана с третичным атомом углерода. Третичный углеродный атом (выделен зеленым цветом) связан одновременно с тремя соседними атомами углерода, например, третичный бутанол и пентанол (рис. 2).

Рис. 2. СТРОЕНИЕ ТРЕТИЧНЫХ СПИРТОВ

В соответствии с типом углеродного атома присоединенную к нему спиртовую группу также называют первичной, вторичной или третичной.

У многоатомных спиртов, содержащих две или более ОН-групп, могут присутствовать одновременно как первичные, так и вторичные НО-группы, например, в глицерине или ксилите (рис. 3).

Рис. 3. СОЧЕТАНИЕ В СТРУКТУРЕ МНОГОАТОМНЫХ СПИРТОВ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОН-ГРУПП .

3. По строению органических групп, связанных ОН-группой, спирты подразделяют на предельные (метанол, этанол, пропанол), непредельные, например, аллиловый спирт СН 2 =СН–СН 2 –ОН, ароматические (например, бензиловый спирт С 6 Н 5 СН 2 ОН), содержащие в составе группы

R ароматическую группу.

Непредельные спирты, у которых ОН-группа «примыкает» к двойной связи, т.е. связана с атомом углерода, участвующим одновременно в образовании двойной связи (например, виниловый спирт СН 2 =СН–ОН), крайне нестабильны и сразу же изомеризуются (см .ИЗОМЕРИЗАЦИЯ) в альдегиды или кетоны:

CH 2 =CH–OH ® CH 3 –CH=O Номенклатура спиртов. Для распространенных спиртов, имеющих простое строение, используют упрощенную номенклатуру: название органической группы преобразуют в прилагательное (с помощью суффикса и окончания «овый ») и добавляют слово «спирт»: В том случае, когда строение органической группы более сложное, используют общие для всей органической химии правила. Названия, составленные по таким правилам, называют систематическими. В соответствии с этими правилами, углеводородную цепь нумеруют с того конца, к которому ближе расположена ОН-группа. Далее используют эту нумерацию, чтобы указать положение различных заместителей вдоль основной цепи, в конце названия добавляют суффикс «ол» и цифру, указывающую положение ОН-группы (рис. 4): 4. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ СПИРТОВ . Функциональные (ОН) и замещающие (СН 3) группы, а также соответствующие им цифровые индексы выделены различающимися цветами. Систематические названия простейших спиртов составляют по тем же правилам: метанол, этанол, бутанол. Для некоторых спиртов сохранились тривиальные (упрощенные) названия, сложившиеся исторически: пропаргиловый спирт НС є С–СН 2 –ОН, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 , фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH. Физические свойства спиртов. Спирты растворимы в большинстве органических растворителей, первые три простейших представителя – метанол, этанол и пропанол, а также третичный бутанол (Н 3 С) 3 СОН – смешиваются с водой в любых соотношениях. При увеличении количества атомов С в органической группе начинает сказываться гидрофобный (водоотталкивающий) эффект, растворимость в воде становится ограниченной, а при R , содержащем свыше 9 атомов углерода, практически исчезает.

Благодаря наличию ОН-групп между молекулами спиртов возникают водородные связи.

Рис. 5. ВОДОРОДНЫЕ СВЯЗИ В СПИРТАХ (показаны пунктиром)

В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С, а Т. кип. этана –88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и –0,5° С.

Химические свойства спиртов. Спирты отличаются разнообразными превращениями. Реакции спиртов имеют некоторые общие закономерности: реакционная способность первичных одноатомных спиртов выше, чем вторичных, в свою очередь, вторичные спирты химически более активны, чем третичные. Для двухатомных спиртов, в том случае, когда ОН-группы находятся у соседних атомов углерода, наблюдается повышенная (в сравнении с одноатомными спиртами) реакционная способность из-за взаимного влияния этих групп. Для спиртов возможны реакции, проходящие с разрывом как С–О, так и О–Н – связей.

1. Реакции, протекающие по связи О–Н.

При взаимодействии с активными металлами (Na, K, Mg, Al) спирты проявляют свойства слабых кислот и образуют соли, называемые алкоголятами или алкоксидами:

CH 3 OH + 2 Na ® 2 CH 3 OK + H 2

Алкоголяты химически не стабильны и при действии воды гидролизуются с образованием спирта и гидроксида металла:

C 2 H 5 OК + H 2 O

® C 2 H 5 OH + КOH

Эта реакция показывает, что спирты в сравнении с водой представляют собой более слабые кислоты (сильная кислота вытесняет слабую), кроме того, при взаимодействии с растворами щелочей спирты не образуют алкоголяты. Тем не менее, в многоатомных спиртах (в том случае, когда ОН-группы присоединены к соседним атомам С) кислотность спиртовых групп намного выше, и они могут образовывать алкоголяты не только при взаимодействии с металлами, но и со щелочами:

HO–CH 2 –CH 2 –OH + 2NaOH ® NaO–CH 2 –CH 2 –ONa + 2H 2 O Когда в многоатомных спиртах НО-группы присоединены к не соседствующим атомам С, свойства спиртов близки к одноатомным, поскольку взаимовлияние НО-групп не проявляется.

При взаимодействии с минеральными или органическими кислотами спирты образуют сложные эфиры – соединения, содержащие фрагмент

R – O – A (А – остаток кислоты). Образование сложных эфиров происходит и при взаимодействии спиртов с ангидридами и хлорангидридами карбоновых кислот (рис. 6).

При действии окислителей (К 2 Cr 2 O 7 , KMnO 4) первичные спирты образуют альдегиды, а вторичные – кетоны (рис.7)

Рис. 7. ОБРАЗОВАНИЕ АЛЬДЕГИДОВ И КЕТОНОВ ПРИ ОКИСЛЕНИИ СПИРТОВ

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С, что молекула исходного спирта (рис.8).

8. ВОССТАНОВЛЕНИЕ БУТАНОЛА

2. Реакции, протекающие по связи С–О.

В присутствии катализаторов или сильных минеральных кислот происходит дегидратация спиртов (отщепление воды), при этом реакция может идти в двух направлениях:

а) межмолекулярная дегидратация с участием двух молекул спирта, при этом связи С–О у одной из молекул разраваются, в результате образуются простые эфиры – соединения, содержащие фрагмент

R –О– R (рис. 9А).

б) при внутримолекулярной дегидратации образуются алкены - углеводороды с двойной связью. Часто оба процесса – образование простого эфира и алкена – протекают параллельно (рис. 9Б).

В случае вторичных спиртов при образовании алкена возможны два направления реакции (рис. 9В), преимущественное направление то, при котором в процессе конденсации отщепляется водород от наименее гидрогенизированного атома углерода (отмечен цифрой 3), т.е. окруженного меньшим количеством атомов водорода (в сравнении с атомом 1). Показанные на рис. 10 реакции используют для получения алкенов и простых эфиров.

Разрыв связи С–О в спиртах происходит также при замещении ОН-группы галогеном, или аминогруппой (рис. 10).


Рис. 10. ЗАМЕНА ОН-ГРУППЫ В СПИРТАХ ГАЛОГЕНОМ ИЛИ АМИНОГРУППОЙ

Реакции, показанные на рис. 10, используют для получения галогенуглеводородов и аминов.

Получение спиртов. Некоторые из показанных выше реакций (рис. 6,9,10) обратимы и при изменении условий могут протекать в противоположном направлении, приводя к получению спиртов, например при гидролизе сложных эфиров и галогенуглеводородов (рис.11А и Б, соответственно), а также гидратацией алкенов – присоединением воды (рис.11В).

Рис. 11. ПОЛУЧЕНИЕ СПИРТОВ ГИДРОЛИЗОМ И ГИДРАТАЦИЕЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакция гидролиза алкенов (рис. 11, схема В) лежит в основе промышленного производства низших спиртов, содержащих до 4 атомов С.

Этанол образуется и при так называемом спиртовом брожении сахаров, например, глюкозы С 6 Н 12 О 6 . Процесс протекает в присутствии дрожжевых грибков и приводит к образованию этанола и СО 2:

® 2С 2 Н 5 ОН + 2СО 2

Брожением можно получить не более чем 15%-ный водный раствор спирта, поскольку при более высокой концентрации спирта дрожжевые грибки погибают. Растворы спирта более высокой концентрации получают перегонкой.

Метанол получают в промышленности восстановлением монооксида углерода при 400

° С под давлением 20–30 МПа в присутствии катализатора, состоящего из оксидов меди, хрома, и алюминия: ® Н 3 СОН Если вместо гидролиза алкенов (рис. 11) проводить окисление, то образуются двухатомные спирты (рис. 12) 12. ПОЛУЧЕНИЕ ДВУХАТОМНЫХ СПИРТОВ Применение спиртов. Способность спиртов участвовать в разнообразных химических реакциях позволяет их использовать для получения всевозможных органических соединений: альдегидов, кетонов, карбоновых кислот простых и сложных эфиров, применяемых в качестве органических растворителей, при производстве полимеров, красителей и лекарственных препаратов.

Метанол СН 3 ОН используют как растворитель, а также в производстве формальдегида, применяемого для получения фенолформальдегидных смол, в последнее время метанол рассматривают как перспективное моторное топливо. Большие объемы метанола используют при добыче и транспорте природного газа. Метанол – наиболее токсичное соединение среди всех спиртов, смертельная доза при приеме внутрь – 100 мл.

Этанол С 2 Н 5 ОН – исходное соединение для получения ацетальдегида, уксусной кислоты, а также для производства сложных эфиров карбоновых кислот, используемых в качестве растворителей. Кроме того, этанол – основной компонент всех спиртных напитков, его широко применяют и в медицине как дезинфицирующее средство.

Бутанол используют как растворитель жиров и смол, кроме того, он служит сырьем для получения душистых веществ (бутилацетата, бутилсалицилата и др.). В шампунях он используется как компонент, повышающий прозрачность растворов.

Бензиловый спирт С 6 Н 5 –CH 2 –OH в свободном состоянии (и в виде сложных эфиров) содержится в эфирных маслах жасмина и гиацинта. Он обладает антисептическими (обеззараживающими) свойствами, в косметике он используется как консервант кремов, лосьонов, зубных эликсиров, а в парфюмерии - как душистое вещество.

Фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH обладает запахом розы, содержится в розовом масле, его используют в парфюмерии.

Этиленгликоль HOCH 2 –CH 2 OH используют в производстве пластмасс и как антифриз (добавка, снижающая температуру замерзания водных растворов), кроме того, при изготовлении текстильных и типографских красок.

Диэтиленгликоль HOCH 2 –CH 2 OCH 2 –CH 2 OH используют для заполнения тормозных гидравлических приспособлений, а также в текстильной промышленности при отделке и крашении тканей.

Глицерин

HOCH 2 – CH (OH )– CH 2 OH применяют для получения полиэфирных глифталевых смол, кроме того, он является компонентом многих косметических препаратов. Нитроглицерин (рис. 6) – основной компонент динамита, применяемого в горном деле и железнодорожном строительстве в качестве взрывчатого вещества.

Пентаэритрит (

HOCH 2) 4 С применяют для получения полиэфиров (пентафталевые смолы), в качестве отвердителя синтетических смол, как пластификатор поливинилхлорида, а также в производстве взрывчатого вещества тетранитропентаэритрита.

Многоатомные спирты ксилит НОСН 2 –(СНОH) 3 –CН 2 ОН и сорбит neНОСН 2 – (СНОН) 4 –СН 2 OН имеют сладкий вкус, их используют вместо сахара в производстве кондитерских изделий для больных диабетом и людей страдающих от ожирения. Сорбит содержится в ягодах рябины и вишни.

Михаил Левицкий

ЛИТЕРАТУРА Шабаров Ю.С. Органическая химия . Москва, «Химия», 1994

Органические кислородсодержащие соединения, одними из которых являются различные спирты, являются важными функциональными производными углеводородов. Они бывают одноатомными, двух- и многоатомными. Одноатомные спирты - это, по сути, производные углеводородов, в молекулярной составляющей которых - одна гидроксильная группа (обозначаемая «-OH»), связанная с насыщенными атомами углерода.

Распространение

Одноатомные спирты достаточно широко распространены в природе. Так, метиловый спирт в небольших количествах содержится в соке ряда растений (например, борщевик). Этиловый спирт, являясь продуктом спиртового брожения органических соединений, содержится в подкисших фруктах и ягодах. Цетиловый спирт найден в китовом жире. Пчелиный воск включает цериловый, мирициловый спирты. В лепестках роз обнаружен 2-фенилэтанол. Терпеновые спирты в виде душистых веществ представлены во многих пряно-ароматических культурах.

Классификация

Спирты подразделяют по молекулярному числу гидроксильных групп. Прежде всего на:

  • одноатомные спирты (к примеру, этанол);
  • двухатомные (этандиол);
  • многоатомные (глицерин).

По природе углеводородного радикала спирты подразделяются на ароматические, алифатические, циклические. В зависимости от типа атома углерода, имеющего связь с гидроксильной группой, спирты рассматривают как первичные, вторичные и третичные. Общая формула одноатомного спирта в применении к предельным одноатомным спиртам выражается значением: С n H 2n + 2 O.

Номенклатура

Название спиртов по радикально-функциональной номенклатуре образуется из названия, ассоциируемого с гидроксильной группой радикала, и слова «спирт». По систематической номенклатуре IUPAC название спирта образуется от соответствующего алкана с добавлением окончания «-ол». Например:

  • метанол - метиловый спирт;
  • метилпропанол-1-2 - изобутиловый (третбутиловый);
  • этанол - этиловый;
  • бутанол-1-2 - бутиловый (вторбутиловый);
  • пропанол-1-2 - пропиловый (изопрапиловый).

Нумерация по правилам IUPAC классифицируется положением гидроксильной группы, она получает меньший номер. Например: пентандиол-2-4, 4-метилпентанол-2 и т.д.

Изомерия

Предельные одноатомные спирты обладают следующими типами структурной и пространственной изомерии. Например:

  • Углеродного скелета.
  • Изомерные простым эфирам.
  • Положения функциональной группы.

Пространственная изомерия спиртов представлена оптической изомерией. Оптическая изомерия возможна при наличии в молекуле асимметрического атома углерода (содержащего четыре разных заместителя).

Способы получения одноатомных спиртов

Получить предельный одноатомный спирт можно несколькими методами:

  • Гидролизом галогеналканов.
  • Гидратацией алкенов.
  • Восстановлением альдегидов и кетонов.
  • Магнийорганическим синтезом.

Гидролиз галогеналканов - это один из распространенных лабораторных способов получения спиртов. Обработкой водой (как альтернатива - водным раствором щелочи) спирты получают первичные и вторичные:

CH 3 - CH 2 -Br + NaOH → CH 3 - CH 2 - OH + NaBr.

Третичные галогеноалканы гидролизуются еще легче, однако у них легче протекает побочная реакция элиминирования. Поэтому третичные спирты получают другими методами.

Гидратация алкенов производится присоединением к алкенам воды в присутствии кислотосодержащих катализаторов (H 3 PO 4) . Метод лежит в основе промышленного получения таких спиртов, как этиловый, изопропиловый, трет-бутиловый.

Восстановление карбонильной группы осуществляют водородом в присутствии катализатора гидрирования (Ni или Pt). Из кетонов при этом образуются вторичные спирты, из альдегидов - первичные предельные одноатомные спирты. Формула процесса:

CH 3 - C = O (-H) + H 2 (этаналь) → CH 3 - CH 2 - OH (этанол).

Присоединением к альдегидам и кетонам алкилмагнийгалогенидов получают магний-органические соединения. Реакцию проводят в сухом диэтиловом эфире. Последующий гидролиз магнийорганических соединений образует одноатомные спирты.

Первичные спирты образуются по реакции Гриньяра только из формальдегида и любых алкилмагнийгалогенидов. Другие альдегиды дают по этой реакции вторичные спирты, кетоны - третичные спирты.

Промышленный синтез метанола

Промышленные методы, как правило, являются непрерывными процессами с многократной рециркуляцией больших масс реагирующих веществ, осуществляемые в газовой фазе. Промышленно важными спиртами являются метанол и этанол.

Метанол (его объемы производства самые большие среди спиртов) до 1923 года получали сухой перегонкой (нагреванием без доступа воздуха) древесины. Сегодня его генерируют из синтез-газа (смеси CO и H 2). Процесс проводят под давлением 5-10 МПа с использованием оксидных катализаторов (ZnO + Cr 2 O 3 , CuO + ZnO + Al 2 O 3 и других) в интервале температур 250-400˚С, в результате получали предельные одноатомные спирты. Формула реакции: CO + 2H 2 → CH 3 OH.

В 80-е годы при изучении механизма этого процесса было установлено, что метанол образуется не из угарного газа, а из углекислого газа, получающегося при взаимодействии угарного газа со следами воды.

Промышленный синтез этанола

Распространенным производственным методом синтеза технического этанола является гидратация этилена. Формула одноатомного спирта этанола получит следующий вид:

CH 2 = CH 2 + H 2 O → CH 3 - CH 2 OH.

Процесс проводят под давлением 6-7 МПа в газовой фазе, пропуская этилен и пары воды над катализатором. Катализатором выступают фосфорная либо серная кислоты, нанесенные на силикагель.

Пищевой и медицинский этиловый спирт получают ферментативным гидролизом сахаров, содержащихся в винограде, ягодах, злаках, картофеле с последующим сбраживанием образующейся глюкозы. Брожение сахаристых веществ вызывается дрожжевыми грибками, относящимися к группе ферментов. Для процесса наиболее благоприятна температура 25-30˚С. На промпредприятиях применяют этанол, полученный сбраживанием образующихся при гидролизе древесины и отходов целлюлозно-бумажного производства углеводов.

Физические свойства одноатомных спиртов

В молекулах спиртов существуют атомы водорода, связанные с электроотрицательным элементом - кислородом, практически лишенные электронов. Между этими атомами водорода и атомами кислорода, имеющими неподеленные пары электронов, образуются межмолекулярные водородные связи.

Водородная связь обусловлена специфическими особенностями атома водорода:

  • При оттягивании связывающих электронов к более электроотрицательному атому ядро атома водорода «оголяется», и образуется неэкранированный другими электронами протон. При ионизации любого другого атома все равно остается электронная оболочка, экранирующая ядро.
  • Атом водорода имеет малый размер по сравнению с прочими атомами, вследствие чего он способен достаточно глубоко внедряться в электронную оболочку соседнего отрицательно поляризованного атома, не соединяясь с ним ковалентной связью.

Водородная связь примерно в 10 раз слабее обычной ковалентной. Энергия водородной связи находится в пределах 4-60 кДж/моль, для молекул спиртов она составляет 25 кДж/моль. От обычных s-связей она отличается и большей длиной (0,166 нм) по сравнению с длиной связи O-H (0,107 нм).

Химические свойства

Химические реакции одноатомных спиртов определяются наличием в их молекулах гидроксильной группы, являющейся функциональной. Атом кислорода находится в sp3-гибридном состоянии. Валентный угол близок к тетраэдрическому. Две sp3-гибридные орбитали идут на образование связей с другими атомами, а на двух других орбиталях находятся неподеленные пары электронов. Соответственно, на атоме кислорода сосредоточен частичный отрицательный заряд, а на атомах водорода и углерода - частичные положительные заряды.

Связи C-O и C-H - ковалентные полярные (последняя более полярная). Гетеролитический разрыв связи O-H с образованием H+ обусловливает кислотные свойства одноатомных спиртов. Атом углерода с частичным положительным зарядом может быть объектом атаки нуклеофильного реагента.

Кислотные свойства

Спирты являются очень слабыми кислотами, более слабыми, чем вода, но более сильными, чем ацетилен. Они не вызывают изменения окраски индикатора. Окисление одноатомных спиртов проявляется при взаимодействии с активными металлами (щелочными и щелочно-земельными) с выделением водорода и образованием алкоголятов:

2ROH + 2Na → 2RONa + H 2.

Алкоголяты щелочных металлов - вещества с ионной связью между кислородом и натрием, в растворе одноатомного спирта они диссоциируют с образованием алкосид-ионов:

CH 3 ONa → CH 3 O - + Na + (метоксид-ион).

Образование алкоголятов возможно также осуществить по реакции спирта с амидом натрия:

C 2 H 5 OH + NaNH 2 → C 2 H 5 ONa + NH 3 .

А произойдет ли реакция этанола со щелочью? Практически нет. Вода - более сильная кислота, чем этиловый спирт, поэтому здесь устанавливается равновесие. С увеличением длины углеводородного радикала в молекуле спирта кислотные свойства снижаются. Также предельные одноатомные спирты характеризуются снижением кислотности в ряду: первичный → вторичный → третичный.

Реакция нуклеофильного замещения

В спиртах связь C-O поляризована, на атоме углерода сконцентрирован частичный положительный заряд. Как следствие - атом углерода атакуется нуклеофильными частицами. В процессе разрыва связи C-O происходит замещение другим нуклеофилом гидроксильной группы.

Одной из таких реакций является взаимодействие спиртов с галогенводородами или их концентрированными растворами. Уравнение реакции:

C 2 H 5 OH + HBr → C 2 H 5 Br + H 2 O.

Для облегчения отщепления гидроксильной группы используют в качестве катализатора концентрированную серную кислоту. Она протонирует атом кислорода, тем самым активируя молекулу одноатомного спирта.

Первичные спирты, как и первичные галогеноалканы, вступают в реакции обмена по механизму SN 2 . Вторичные одноатомные спирты, как и вторичные галогеноалканы, реагируют с галогеноводородными кислотами. Условия взаимодействия спиртов подчинены природе реагирующих компонентов. Реакционная способность спиртов подчиняется следующей закономерности:

R 3 COH → R 2 CHOH → RCH 2 OH.

Окисление

В мягких условиях (нейтральные или щелочные растворы перманганата калия, хромовой смеси при температуре 40-50°С) окисляются первичные спирты до альдегидов, при нагревании до более высокой температуры - до кислот. Вторичные спирты проходят процесс окисления до кетонов. Третичные окисляются в присутствии кислоты в очень жестких условиях (например, хромовой смесью при температуре 180°С). Реакция окисления третичных спиртов идет через дегидратацию спирта с образованием алкена и окислением последнего с разрывом двойной связи.

ОПРЕДЕЛЕНИЕ

Предельные одноатомные спирты можно рассматривать как производные углеводородов ряда метана, в молекулах которых один атом водорода замещен на гидроксильную группу.

Итак, предельные одноатомные спирты состоят из углеводородного радикала и функциональной группы -OH. В названиях спиртов гидроксильная группа обозначается суффиксом -ол.

Общая формула предельных одноатомных спиртов C n H 2 n +1 OH или R-OH или C n H 2 n +2 O. Молекулярная формула спирта не отражает строения молекулы, поскольку одной и той же брутто-формуле могут соответствовать два абсолютно разных вещества, например молекулярная формула C 2 H 5 OH является общей и для этилового спирта и для ацетона (диметилкетона):

CH 3 -CH 2 -OH (этанол);

CH 3 -O-CH 3 (ацетон).

Так же как и углеводороды ряда метана предельные одноатомные спирты образуют гомологический ряд метанола.

Составим этот ряд гомологов и рассмотрим закономерности изменения физических свойств соединений этого ряда в зависимости от увеличения углеводородного радикала (табл. 1).

Гомологический ряд (неполный) предельных одноатомных спиртов

Таблица 1. Гомологический ряд (неполный) предельных одноатомных спиртов.

Предельные одноатомные спирты легче воды, поскольку их плотность меньше единицы. Низшие спирты смешиваются с водой во всех отношениях, с увеличением углеводородного радикала эта способность уменьшается. Большинство спиртов хорошо растворимы в органических растворителях. Спирты имеют более высокие температуры кипения и плавления, чем соответствующие углеводороды или галогенпроизводные, что обусловлено возможностью образования ими межмолекулярных связей.

Важнейшими представителями предельных одноатомных спиртов являются метанол (CH 3 OH) и этанол (C 2 H 5 OH).

Примеры решения задач

ПРИМЕР 1

Задание В натуральном жемчуге массовые отношения кальция, углерода и кислорода равны 10:3:12. Какова простейшая формула жемчуга?
Решение Для того, чтобы узнать, в каких отношениях находятся химические элементы в составе молекулы необходимо найти их количество вещества. Известно, что для нахождения количества вещества следует использовать формулу:

Найдем молярные массы кальция, углерода и кислорода (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел). Известно, что M = Mr, значит M(Ca)= 40 г/моль, Ar(C)=12 г/моль, а М(O) = 32 г/моль.

Тогда, количество вещества этих элементов равно:

n (Ca) = m (Ca) / M (Ca);

n (Ca) = 10 / 40 = 0,25моль.

n (C) = m (C) / M (C);

n (C) = 3 / 12 = 0,25 моль.

n (O) = m (O) / M (O);

n (O) = 12 / 16 = 0,75 моль.

Найдем мольное отношение:

n(Ca) :n(C):n(O) = 0,25: 0,25: 0,75= 1: 1: 3,

т.е. формула соединения жемчуга имеет вид CaCO 3 .

Ответ CaCO 3

ПРИМЕР 2

Задание Оксид азота содержит 63,2% кислорода. Какова формула оксида
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Вычислим массовую долю азота в оксиде:

ω (N) = 100% — ω(O) = 100% — 63,2% = 36,8%.

Обозначим количество моль элементов, входящих в состав соединения за «х» (азот) и «у» (кислород). Тогда, мольное отношение будет выглядеть следующим образом (значения относительных атомных масс, взятых из Периодической таблицы Д.И. Менделеева, округлим до целых чисел):

x:y = ω(N)/Ar(N) : ω(O)/Ar(O);

x:y= 36,8/14: 63,2/16;

x:y= 2,6: 3,95 = 1: 2.

Значит формула соединения азота и кислорода будет иметь вид NO 2 . Это оксид азота (IV).

Ответ NO 2

Вещества, образованные от предельных углеводородов и содержащие гидроксильную группу (-ОН), называются насыщенными или предельными одноатомными спиртами. Названия спиртов совпадают с названиями алканов в гомологическом ряду с суффиксом «-ол».

Строение

Общая формула предельных одноатомных спиртов - C n H 2n+1 -OH. Гидроксил является функциональной группой и определяет физические и химические свойства спиртов.

Основные одноатомные спирты (гомологический ряд метанола):

  • метанол или метиловый спирт - CH 3 OH;
  • этанол или этиловый спирт - C 2 H 5 OH;
  • пропанол - C 3 H 7 OH;
  • бутанол - C 4 H 9 OH;
  • пентанол - C 5 H 11 OH.

Рис. 1. Гомологический ряд одноатомных спиртов.

Насыщенным спиртам свойственна структурная и межклассовая изомерия. В зависимости от расположения гидроксильной группы в молекуле вещества различают:

  • первичные спирты - гидроксил прикреплён к первому атому углерода;
  • вторичные спирты - гидроксил находится у второго атома углерода;
  • третичные спирты - гидроксил соединён с третьим атом углерода.

Начиная с бутанола, наблюдается изомерия углеродного скелета. В этом случае название спирта записывается с двумя цифрами: первая указывает на положение метильной группы, вторая - гидроксила.

Рис. 2. Изомерия углеродного скелета насыщенных спиртов.

Одноатомные спирты образуют межклассовые изомеры с простыми эфирами - этиловый спирт (CH 3 CH 2 -OH), диметиловый эфир (CH 3 -O-CH 3).

Несмотря на то, что пропанол содержит три атома углерода, он может образовывать только два изомера по гидроксильной группе - пропанол-1 и пропанол-2.

Свойства

В зависимости от количества атомов углерода меняется агрегатное состояние одноатомных спиртов. Если в молекуле до 15 атомов углерода, то это жидкость, больше 15 - твёрдое вещество. Хорошо смешиваются с водой первые два спирта из гомологического ряда - метанол и этанол, а также структурный изомер пропанол-2. Все спирты плавятся и кипят при высоких температурах.

Активность спиртов объясняется наличием О-Н и С-О связей, которые легко разрываются. Основные химические свойства одноатомных спиртов приведены в таблице.

Реакция

Описание

Уравнение

С металлами

Реагируют только со щелочными и щелочноземельными металлами с разрывом связи О-Н

2C 2 H 5 OH + 2К → 2С 2 Н 5 ОК + Н 2

С кислородом

Горят в присутствии перманганата или дихромата калия (KMnO 4 , K 2 Cr 2 O 7)

C 2 H 5 OH + 3O 2 → 2CO 2 + H 2 O

C галогеноводородами

Гидроксильная группа вытесняется галогеном

C 2 H 5 OH + HBr → C 2 H 5 Br + H 2 O

С кислотами

Реагируют с минеральными и органическими кислотами с образованием сложных эфиров

C 2 H 5 OH + CH 3 COOH → CH 3 COOC 2 H 5

С оксидами металлов

Качественная реакция с образование альдегида

C 2 H 5 OH + CuO → CH 3 COH + H 2 O + Cu

Дегидратация

Протекает в присутствии сильной кислоты при высокой температуре

C 2 H 5 OH → C 2 H 4 + H 2 O

С карбоновыми кислотами

Реакция этерификации - образование сложных эфиров

C 2 H 5 OH + CH 3 COOH → CH 3 COOC 2 H 5 + H 2 O

Рис. 3. Качественная реакция одноатомных спиртов.

Одноатомные спирты имеют широкое применение в промышленности. Наиболее активно применяется этанол. Его используют для изготовления парфюмерии, уксусной кислоты, лекарств, лаков, красителей, растворителей и других веществ.

Что мы узнали?

Из урока химии узнали, что предельные или насыщенные одноатомные спирты являются производными предельных углеводородов с одной гидроксильной группой (гидроксилом). Это жидкости или твёрдые вещества в зависимости от количества атомов углерода. Одноатомные спирты образуют изомеры по гидроксильной, метильной группе и с простыми эфирами. Предельные одноатомные спирты реагируют со щелочными металлами, кислотами, оксидами. Используются для изготовления лекарств, растворителей, кислот.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 173.