Объём данной массы газа при постоянном давлении пропорционален абсолютной температуре. Связь между давлением, температурой, объемом и количеством молей газа ("массой" газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева =

Убе­дим­ся в том, что мо­ле­ку­лы газа дей­стви­тель­но рас­по­ло­же­ны до­ста­точ­но да­ле­ко друг от друга, и по­это­му газы хо­ро­шо сжи­ма­е­мы.Возь­мем шприц и рас­по­ло­жим его пор­шень при­бли­зи­тель­но по­се­ре­дине ци­лин­дра. От­вер­стие шпри­ца со­еди­ним с труб­кой, вто­рой конец ко­то­рой на­глу­хо за­крыт. Таким об­ра­зом, неко­то­рая пор­ция воз­ду­ха будет за­клю­че­на в ци­лин­дре шпри­ца под порш­нем и в труб­ке.В ци­лин­дре под порш­нем за­клю­че­но неко­то­рое ко­ли­че­ство воз­ду­ха. Те­перь по­ста­вим на по­движ­ный пор­шень шпри­ца груз. Легко за­ме­тить, что пор­шень немно­го опу­стит­ся. Это озна­ча­ет, что объем воз­ду­ха умень­шил­ся Дру­ги­ми сло­ва­ми, газы легко сжи­ма­ют­ся. Таким об­ра­зом, между мо­ле­ку­ла­ми газа име­ют­ся до­ста­точ­но боль­шие про­ме­жут­ки. По­ме­ще­ние груза на пор­шень вы­зы­ва­ет умень­ше­ние объ­е­ма газа. С дру­гой сто­ро­ны, после уста­нов­ки груза пор­шень, немно­го опу­стив­шись, оста­нав­ли­ва­ет­ся в новом по­ло­же­нии рав­но­ве­сия. Это озна­ча­ет, что сила дав­ле­ния воз­ду­ха на пор­шень уве­ли­чи­ва­ет­ся и снова урав­но­ве­ши­ва­ет воз­рос­ший вес порш­ня с гру­зом. А по­сколь­ку пло­щадь порш­ня при этом оста­ет­ся неиз­мен­ной, мы при­хо­дим к важ­но­му за­клю­че­нию.

При умень­ше­нии объ­е­ма газа его дав­ле­ние уве­ли­чи­ва­ет­ся.

Будем пом­нить при этом, что масса газа и его тем­пе­ра­ту­ра в ходе опыта оста­ва­лись неиз­мен­ны­ми . Объ­яс­нить за­ви­си­мость дав­ле­ния от объ­е­ма можно сле­ду­ю­щим об­ра­зом. При уве­ли­че­нии объ­е­ма газа рас­сто­я­ние между его мо­ле­ку­ла­ми уве­ли­чи­ва­ет­ся. Каж­дой мо­ле­ку­ле те­перь нужно прой­ти боль­шее рас­сто­я­ние от од­но­го удара со стен­кой со­су­да до дру­го­го. Сред­няя ско­рость дви­же­ния мо­ле­кул оста­ет­ся неиз­мен­ной.Сле­до­ва­тель­но, мо­ле­ку­лы газа реже уда­ря­ют­ся о стен­ки со­су­да, а это при­во­дит к умень­ше­нию дав­ле­ния газа. И, на­о­бо­рот, при умень­ше­нии объ­е­ма газа его мо­ле­ку­лы чаще уда­ря­ют­ся о стен­ки со­су­да, и дав­ле­ние газа уве­ли­чи­ва­ет­ся. При умень­ше­нии объ­е­ма газа рас­сто­я­ние между его мо­ле­ку­ла­ми умень­ша­ет­ся

Зависимость давления газа от температуры

В преды­ду­щих опы­тах тем­пе­ра­ту­ра газа оста­ва­лась неиз­мен­ной, и мы изу­ча­ли из­ме­не­ние дав­ле­ния вслед­ствие из­ме­не­ния объ­е­ма газа. Те­перь рас­смот­рим слу­чай, когда объем газа оста­ет­ся по­сто­ян­ным, а тем­пе­ра­ту­ра газа из­ме­ня­ет­ся. Масса при этом также оста­ет­ся неиз­мен­ной. Со­здать такие усло­вия можно, по­ме­стив неко­то­рое ко­ли­че­ство газа в ци­линдр с порш­нем и за­кре­пив пор­шень

Из­ме­не­ние тем­пе­ра­ту­ры дан­ной массы газа при неиз­мен­ном объ­е­ме

Чем выше тем­пе­ра­ту­ра, тем быст­рее дви­жут­ся мо­ле­ку­лы газа .

Сле­до­ва­тель­но,

Во-пер­вых, чаще про­ис­хо­дят удары мо­ле­кул о стен­ки со­су­да;

Во-вто­рых, сред­няя сила удара каж­дой мо­ле­ку­лы о стен­ку ста­но­вит­ся боль­ше. Это при­во­дит нас к еще од­но­му важ­но­му за­клю­че­нию. При уве­ли­че­нии тем­пе­ра­ту­ры газа его дав­ле­ние уве­ли­чи­ва­ет­ся. Будем пом­нить, что дан­ное утвер­жде­ние спра­вед­ли­во, если масса и объем газа в ходе из­ме­не­ния его тем­пе­ра­ту­ры оста­ют­ся неиз­мен­ны­ми.

Хранение и транспортировка газов.

За­ви­си­мость дав­ле­ния газа от объ­е­ма и тем­пе­ра­ту­ры часто ис­поль­зу­ет­ся в тех­ни­ке и в быту. Если тре­бу­ет­ся пе­ре­вез­ти зна­чи­тель­ное ко­ли­че­ство газа из од­но­го места в дру­гое, или когда газы необ­хо­ди­мо дли­тель­но хра­нить, их по­ме­ща­ют в спе­ци­аль­ные проч­ные ме­тал­ли­че­ские со­су­ды. Эти со­су­ды вы­дер­жи­ва­ют вы­со­кие дав­ле­ния, по­это­му с по­мо­щью спе­ци­аль­ных на­со­сов туда можно за­ка­чать зна­чи­тель­ные массы газа, ко­то­рые в обыч­ных усло­ви­ях за­ни­ма­ли бы в сотни раз боль­ший объем. По­сколь­ку дав­ле­ние газов в бал­ло­нах даже при ком­нат­ной тем­пе­ра­ту­ре очень ве­ли­ко, их ни в коем слу­чае нель­зя на­гре­вать или любым спо­со­бом пы­тать­ся сде­лать в них от­вер­стие даже после ис­поль­зо­ва­ния.

Газовые законы физики.

Физика реального мира в расчетах часто сводится к несколько упрощенным моделям. Наиболее применим такой подход к описанию поведения газов. Правила, установленные экспериментальным путем, были сведены различными исследователями в газовые законы физики и послужили появлению понятия «изопроцесс». Это такое прохождение эксперимента, при котором один параметр сохраняет постоянное значение. Газовые законы физики оперируют основными параметрами газа, точнее, его физического состояния. Температурой, занимаемым объемом и давлением. Все процессы, которые относятся к изменению одного или нескольких параметров и называются термодинамическими. Понятие изостатического процесса сводится к утверждению, что во время любого изменения состояния один из параметров остается неизменным. Это поведение так называемого «идеального газа», которое, с некоторыми оговорками, может быть применено к реальному веществу. Как отмечено выше, в реальности все несколько сложнее. Однако, с высокой достоверностью поведение газа при неизменной температуре характеризуется с помощью закона Бойля-Мариотта, который гласит:

Произведение объема на давление газа - величина постоянная. Это утверждение считается верным в том случае, когда температура не изменяется.

Этот процесс носит название «изотермический». При этом меняются два из трех исследуемых параметров. Физически все выглядит просто. Сожмите надутый шарик. Температуру можно считать неизменной. А в результате внутри шара повысится давление при уменьшении объема. Величина произведения двух параметров останется неизменной. Зная исходное значение хотя бы одного из них, можно легко узнать показатели второго. Еще одно правило в списке «газовые законы физики» - изменение объема газа и его температуры при одинаковом давлении. Это называется «изобарный процесс» и описывается с помощью закона Гей-Люсака. Соотношение объема и температуры газа неизменно. Это верно при условии постоянного значения давления в данной массе вещества. Физически тоже все просто. Если хоть раз заряжали газовую зажигалку или пользовались углекислотным огнетушителем, видели действие этого закона «вживую». Газ, выходящий из баллончика или раструба огнетушителя, быстро расширяется. Его температура резко падает. Можно обморозить кожу рук. В случае с огнетушителем - образуются целые хлопья углекислотного снега, когда газ под воздействием низкой температуры быстро переходит в твердое состояние из газообразного. Благодаря закону Гей-Люсака, можно легко узнать температуру газа, зная его объем в любой момент времени. Газовые законы физики описывают и поведение при условии неизменного занимаемого объема. Такой процесс называется изохорным и описывается законом Шарля, который гласит: При неизменном занимаемом объеме, отношение давления к температуре газа остается неизменным в любой момент времени. В реальности все знают правило: нельзя нагревать баллончики от освежителей воздуха и прочие сосуды, содержащие газ под давлением. Дело кончается взрывом. Происходит именно то, что описывает закон Шарля. Растет температура. Одновременно растет давление, так как объем не меняется. Происходит разрушение баллона в момент, когда показатели превышают допустимые. Так что, зная занимаемый объем и один из параметров, можно легко установить значение второго. Хотя газовые законы физики описывают поведение некой идеальной модели, их можно легко применять для предсказания поведения газа в реальных системах. Особенно в быту, изопроцессы могут легко объяснить, как работает холодильник, почему из баллончика освежителя вылетает холодная струя воздуха, из-за чего лопается камера или шарик, как работает разбрызгиватель и так далее.

Основы МКТ.

Молекулярно-кинетическая теория вещества - способ объяснения тепловых явлений , который связывает протекание теп­ловых явлений и процессов с особенностя­ми внутреннего строения вещества и изу­чает причины, которые обусловливают теп­ловое движение. Эта теория получила при­знание лишь в XX в., хотя исходит из древнегреческого атомного учения о стро­ении вещества.

объясняет тепловые явле­ния особенностями движения и взаимодействия микрочастиц вещества

Основывается на законах классичес­кой механики И. Ньютона, которые позво­ляют вывести уравнение движения микро­частиц. Тем не менее в связи с огромным их количеством (в 1 см 3 вещества находится около 10 23 молекул) невозможно ежесекундно с помощью законов классичес­кой механики однозначно описать движение каждой молекулы или атома. Поэтому для построения современной теории теплоты ис­пользуют методы математической статистики, которые объясняют течение тепловых явле­ний на основании закономерностей поведе­ния значительного количества микрочастиц.

Молекулярно-кинетическая тео­рия построена на основании обобщенных уравнений движе­ния огромного количества мо­лекул.

Молекулярно-кинетическая теория объяс­няет тепловые явления с позиций пред­ставлений о внутреннем строении вещества, то есть выясняет их природу. Это более глубокая, хотя и более сложная теория, которая объясняет сущность тепловых явле­ний и обусловливает законы термодинамики.

Оба существующих подхода - термодинамический подход и молекулярно-кинетическая теория - научно доказаны и взаимно дополняют друг друга, а не проти­воречат друг другу. В связи с этим изучение тепловых явлений и процессов обычно рассматривается с позиций или моле­кулярной физики, или термодинамики, в зависимости от того, как проще изложить материал.

Термодинамический и молекулярно-кинетический подходы взаимно дополняют друг друга при объяснении тепловых явлений и процессов.

Рассмотрим, как зависит давление газа от температуры, когда его масса и объем остаются постоянными.

Возьмем закрытый сосуд с газом и будем нагревать его (рис. 4.2). Температуру газа будем определять с помощью термометра, а давление - манометром М.

Сначала поместим сосуд в тающий снег и давление газа при 0 °С обозначим а затем будем постепенно нагревать наружный сосуд и записывать значения для газа. Оказывается, что график зависимости от построенный на основании такого опыта, имеет вид прямой линии (рис. 4.3, а). Если продолжить этот график влево, то он пересечется с осью абсцисс в точке А, соответствующей нулевому давлению газа.

Из подобия треугольников на рис. 4.3, а можно записать:

Если обозначить постоянную через у, то получим

По смыслу коэффициент пропорциональности у в описанных опытах должен выражать зависимость изменения давления газа от его рода.

Величина характеризующая зависимость изменения давления газа от его рода в процессе изменения температуры при постоянном объеме и неизменной массе газа, называется температурным коэффициентом давления. Температурный коэффициент давления показывает, на какую часть давления газа, взятого при 0 °С, изменяется его давление при нагревании на

Выведем единицу температурного коэффициента у в СИ:

Повторяя описанный опыт для различных газов при различных массах, можно установить, что в пределах ошибок опытов точка А для всех графиков получается в одном и том же месте (рис. 4.3, б). При этом длина отрезка ОА получается равной Таким образом, для всех случаев температура, при которой давление газа должно обращаться в нуль, одинакова и равна а температурный коэффициент давления Отметим, что точное значение у равно При решении задач обычно пользуются приближенным значением у, равным

Из опытов значение у впервые было определено французским физиком Ж. Шарлем, который в 1787 г. установил следующий закон: температурный коэффициент давления не зависит от рода газа и равен Заметим, что это верно только для газов, имеющих небольшую плотность, и при небольших изменениях температуры; при больших давлениях или низких температурах у зависит от рода газа. Точно подчиняется закону Шарля лишь идеальный газ.

Закон идеального газа.

Экспериментальный:

Основными параметрами газа являются температура, давление и объём. Объем газа существенно зависит от давления и температуры газа. Поэтому необходимо найти соотношение между объемом, давлением и температурой газа. Такое соотношение называется уравнением состояния.

Экспериментально было обнаружено, что для данного количества газа в хорошем приближении выполняется соотношение: при постоянной температуре объем газа обратно пропорционален приложенному к нему давлению (рис.1) :

V~1/P , при T=const.

Например, если давление, действующее на газ, увеличится вдвое, то объем уменьшится до половины первоначального. Это соотношение известно как закон Бойля (1627-1691)-Мариотта(1620-1684) , его можно записать и так:

Это означает, что при изменении одной из величин, другая также изменится, причем так, что их произведение останется постоянным.

Зависимость объема от температуры (рис.2) была открыта Ж. Гей-Люссаком. Он обнаружил, что при постоянном давлении объем данного количества газа прямо пропорционален температуре:

V~T , при Р =const.

График этой зависимости проходит через начало координат и, соответственно, при 0К его объём станет равный нулю, что очевидно не имеет физического смысла. Это привело к предположению, что -273 0 С минимальная температура, которую можно достичь.

Третий газовый закон, известный как закон Шарля, названный в честь Жака Шарля (1746-1823). Этот закон гласит: при постоянном объеме давление газа прямо пропорционально абсолютной температуре (рис.3):

Р ~T, при V=const.

Хорошо известным примером действия этого закона является баллончик аэрозоля, который взрывается в костре. Это происходит из-за резкого повышения температуры при постоянном объеме.

Эти три закона являются экспериментальными, хорошо выполняющимися в реальных газах только до тех пор, пока давление и плотность не очень велики, а температура не слишком близка к температуре конденсации газа, поэтому слово "закон" не очень подходит к этим свойствам газов, но оно стало общепринятым.

Газовые законы Бойля-Мариотта, Шарля и Гей-Люссака можно объеденить в одно более общее соотношение между объёмом, давлением и температурой, которое справедливо для определенного количества газа:

Это показывает, что при изменении одной из величин P , V или Т, изменятся и две другие величины. Это выражение переходит в эти три закона, при принятии одной величины постоянной.

Теперь следует учесть ещё одну величину, которую до сих пор мы считали постоянной - количество этого газа. Экспериментально подтверждено, что: при постоянных температуре и давлении замкнутый объём газа увеличивается прямо пропорционально массе этого газа:

Эта зависимость связывает все основные величины газа. Если ввести в эту пропорциональность коэффициент пропорциональности, то мы получим равенство. Однако опыты показывают, что в разных газах этот коэффициент разный, поэтому вместо массы m вводят количество вещества n (число молей).

В результате получаем:

Где n - число молей, а R - коэффициент пропорциональности. Величина R называется универсальной газовой постоянной. На сегодняшний день самое точное значение этой величины равно:

R=8,31441 ± 0,00026 Дж/Моль

Равенство (1) называют уравнением состояния идеального газа или законом идеального газа.

Число Авогадро; закон идеального газа на молекулярном уровне:

То, что постоянная R имеет одно и то же значение для всех газов, представляет собой великолепное отражение простоты природы. Это впервые, хотя и в несколько другой форме, осознал итальянец Амедео Авогадро (1776-1856). Он опытным путём установил, что равные объёмы объемы газа при одинаковых давлении и температуре содержат одинаковое число молекул. Во-первых: из уравнения (1) видно, что если различные газы содержат равное число молей, имеют одинаковые давления и температуры, то при условии постоянного R они занимают равные объёмы. Во-вторых: число молекул в одном моле для всех газов одинаково, что непосредственно следует из определения моля. Поэтому мы можем утверждать, что величина R постоянна для всех газов.

Число молекул в одном моле называется числом Авогадро N A . В настоящее время установлено, что число Авогадро равно:

N A =(6,022045 ± 0,000031) · 10 -23 моль -1

Поскольку общее число молекул N газа равно числу молекул в одном моле, умноженному на число молей (N = nN A), закон идеального газа можно переписать следующим образом:

Где k называется постоянной Больцмана и имеет значение равное:

k= R/N A =(1,380662 ± 0,000044) · 10 -23 Дж/К

Справочник компрессорной техники

ОПРЕДЕЛЕНИЕ

Процессы, при которых один из параметров состояния газа остается постоянным называют изопроцессами .

ОПРЕДЕЛЕНИЕ

Газовые законы - это законы, описывающие изопроцессы в идеальном газе.

Газовые законы были открыты экспериментально, но все они могут быть получены из уравнения Менделеева-Клапейрона.

Рассмотрим каждый из них.

Закон Бойля-Мариотта (изотермический процесс)

Изотермическим процессом называют изменение состояния газа, при котором его температура остаётся постоянной.

Для неизменной массы газа при постоянной температуре произведение давления газа на объем есть величина постоянная:

Этот же закон можно переписать в другом виде (для двух состояний идеального газа):

Этот закон следует из уравнения Менделеева - Клапейрона:

Очевидно, что при неизменной массе газа и при постоянной температуре правая часть уравнения остается постоянной величиной.

Графики зависимости параметров газа при постоянной температуре называются изотермами .

Обозначив константу буквой , запишем функциональную зависимость давления от объема при изотермическом процессе:

Видно, что давление газа обратно пропорционально его объему. Графиком обратной пропорциональности, а, следовательно, и графиком изотермы в координатах является гипербола (рис.1, а). На рис.1 б) и в) представлены изотермы в координатах и соответственно.


Рис.1. Графики изотермических процессов в различных координатах

Закон Гей-Люссака (изобарный процесс)

Изобарным процессом называют изменение состояния газа, при котором его давление остаётся постоянным.

Для неизменной массы газа при постоянном давлении отношение объема газа к температуре есть величина постоянная:

Этот закон также следует из уравнения Менделеева - Клапейрона:

изобарами .

Рассмотрим два изобарных процесса с давлениями и title="Rendered by QuickLaTeX.com" height="18" width="95" style="vertical-align: -4px;">. В координатах и изобары будут иметь вид прямых линий, перпендикулярных оси (рис.2 а,б).

Определим вид графика в координатах .Обозначив константу буквой , запишем функциональную зависимость объема от температуры при изобарном процессе:

Видно, что при постоянном давлении объем газа прямо пропорционален его температуре. Графиком прямой пропорциональности, а, следовательно, и графиком изобары в координатах является прямая, проходящая через начало координат (рис.2, в). В реальности при достаточно низких температурах все газы превращаются в жидкости, к которым газовые законы уже неприменимы. Поэтому вблизи начала координат изобары на рис.2, в) показаны пунктиром.


Рис.2. Графики изобарных процессов в различных координатах

Закон Шарля (изохорный процесс)

Изохорным процессом называют изменение состояния газа, при котором его объем остаётся постоянным.

Для неизменной массы газа при постоянном объеме отношение давления газа к его температуре есть величина постоянная:

Для двух состояний газа этот закон запишется в виде:

Этот закон также можно получить из уравнения Менделеева - Клапейрона:

Графики зависимости параметров газа при постоянном давлении называются изохорами .

Рассмотрим два изохорных процесса с объемами и title="Rendered by QuickLaTeX.com" height="18" width="98" style="vertical-align: -4px;">. В координатах и графиками изохор будут прямые, перпендикулярные оси (рис.3 а, б).

Для определения вида графика изохорного процесса в координатах обозначим константу в законе Шарля буквой , получим:

Таким образом, функциональная зависимость давления от температуры при постоянном объеме является прямой пропорциональностью, графиком такой зависимости является прямая, проходящая через начало координат (рис.3, в).


Рис.3. Графики изохорных процессов в различных координатах

Примеры решения задач

ПРИМЕР 1

Задание До какой температуры нужно изобарически охладить некоторую массу газа с начальной температурой , чтобы объем газа уменьшился при этом на одну четверть?
Решение Изобарный процесс описывается законом Гей-Люссака:

По условию задачи объем газа вследствие изобарного охлаждения уменьшается на одну четверть, следовательно:

откуда конечная температура газа:

Переведем единицы в систему СИ: начальная температура газа .

Вычислим:

Ответ Газ нужно охладить до температуры .

ПРИМЕР 2

Задание В закрытом сосуде находится газ под давлением 200 кПа. Каким станет давление газа, если температуру повысить на 30%?
Решение Так как сосуд с газом закрытый, объем газа не меняется. Изохорный процесс описывается законом Шарля:

По условию задачи температура газа повысилась на 30%, поэтому можно записать:

Подставив последнее соотношение в закон Шарля, получим:

Переведем единицы в систему СИ: начальное давление газа кПа= Па.

Вычислим:

Ответ Давление газа станет равным 260 кПа.

ПРИМЕР 3

Задание В кислородной системе, которой оборудован самолет, имеется кислорода при давлении Па. При максимальной высоте подъема летчик соединяет с помощью крана эту систему с пустым баллоном объемом . Какое давление установится в ней? Процесс расширения газа происходит при постоянной температуре.
Решение Изотермический процесс описывается законом Бойля-Мариотта:

В основе физических свойств газов и законов газового состояния лежит молекулярно-кинетическая теория газов. Большинство законов газового состояния было выведено для идеального газа, молекулярные силы которого равны нулю, а объем самих молекул бесконечно мал по сравнению с объемом межмолекулярного пространства.

Молекулы реальных газов помимо энергии прямолинейного движения обладают энергией вращения и колебания. Они занимают некоторый объем, то есть имеют конечные размеры. Законы для реальных газов несколько отличаются от законов для идеальных газов. Это отклонение тем больше, чем выше давление газов и ниже их температура, оно учитывается введением в соответствующие уравнения поправочного коэффициента сжимаемости.

При транспортировании газов по трубопроводам под высоким давлением коэффициент сжимаемости имеет большое значение.

При давлениях газа в газовых сетях до 1 МПа законы газового состояния для идеального газа достаточно точно отражают свойства природного газа. При более высоких давлениях или низких температурах применяют уравнения, учитывающие объем, занимаемый молекулами, и силы взаимодействия между ними, или вводят в уравнения для идеального газа поправочные коэффициенты - коэффициенты сжимаемости газа.

Закон Бойля - Мариотта.

Многочисленными опытами установлено, что если взять определенное количество газа и подвергать его различным давлениям, то объем этого газа будет изменяться обратно пропорционально величине давления. Эта зависимость между давлением и объемом газа при постоянной температуре выражается следующей формулой:

p 1 /p 2 = V 2 /V 1 , или V 2 = p 1 V 1 /p 2 ,

где p 1 и V 1 - первоначальные абсолютное давление и объем газа; p 2 и V 2 - давление и объем газа после изменения.

Из этой формулы можно получить следующее математическое выражение:

V 2 p 2 = V 1 p 1 = const.

То есть произведение величины объема газа на величину соответствующего этому объему давления газа будет постоянной величиной при постоянной температуре. Этот закон имеет практическое применение в газовом хозяйстве. Он позволяет определять объем газа при изменении его давления и давление газа при изменении его объема при условии, что температура газа остается постоянной. Чем больше при постоянной температуре увеличивается объем газа, тем меньше становится его плотность.

Зависимость между объемом и плотностью выражается формулой:

V 1 /V 2 = ρ 2 /ρ 1 ,

где V 1 и V 2 - объемы, занимаемые газом; ρ 1 и ρ 2 - плотности газа, соответствующие этим объемам.

Если отношение объемов газа заменить отношением их плотностей, то можно получить:

ρ 2 /ρ 1 = p 2 /p 1 или ρ 2 = р 2 ρ 1 /p 1 .

Можно сделать вывод, что при одной и той же температуре плотности газов прямо пропорциональны давлениям, под которыми находятся эти газы, то есть плотность газа (при постоянной температуре) будет тем больше, чем больше его давление.

Пример. Объем газа при давлении 760 мм рт. ст. и температуре 0 °С составляет 300 м 3 . Какой объем займет этот газ при давлении 1520 мм рт. ст. и при той же температуре?

760 мм рт. ст. = 101329 Па = 101,3 кПа;

1520 мм рт. ст. = 202658 Па = 202,6 кПа.

Подставляя заданные значения V , р 1 , р 2 в формулу, получим, м 3:

V 2 = 101, 3-300/202,6 = 150.

Закон Гей-Люссака.

При постоянном давлении с повышением температуры объем газов увеличивается, а при понижении температуры уменьшается, то есть при постоянном давлении объемы одного и того же количества газа прямо пропорциональны их абсолютным температурам. Математически эта зависимость между объемом и температурой газа при постоянном давлении записывается так:

V 2 /V 1 = Т 2 /Т 1

где V - объем газа; Т - абсолютная температура.

Из формулы следует, что если определенный объем газа нагревать при постоянном давлении, то он изменится во столько раз, во сколько раз изменится его абсолютная температура.

Установлено, что при нагревании газа на 1 °С при постоянном давлении его объем увеличивается на постоянную величину, равную 1 /273,2 первоначального объема. Эта величина называется термическим коэффициентом расширения и обозначается р. С учетом этого закон Гей-Люссака можно сформулировать так: объем данной массы газа при постоянном давлении есть линейная функция температуры:

V t = V 0 (1 + βt или V t = V 0 T/273.

Закон Шарля.

При постоянном объеме абсолютное давление неизменного количества газа прямо пропорционально его абсолютным температурам. Закон Шарля выражается следующей формулой:

р 2 /р 1 = Т 2 /Т 1 или p 2 = p 1 T 2 /T 1

где р 1 и р 2 - абсолютные давления; T 1 и Т 2 — абсолютные температуры газа.

Из формулы можно сделать вывод, что при постоянном объеме давление газа при нагревании увеличивается во столько раз, во сколько раз увеличивается его абсолютная температура.