Анион радикальный механизм нуклеофильного замещения. Реакции sn1, sn2 и sni. Реакции по α -углеродному атому

При нуклеофильном замещении атакующий реагент (нуклеофил) отдает субстрату свою электронную пару, с помощью которой образуется новая связь, а уходящая группа (нуклеофуг) отщепляется со своей электронной парой:

R?X + Y > R?Y + X

Нуклеофил может быть нейтральным или отрицательным, субстрат либо нейтрален, либо заряжен положительно. Y должен иметь свободную пару электронов, поэтому все нуклеофилы являются основаниями Льюиса. Если Y это растворитель, тогда реакция называется сольволизом. В реакциях нуклеофильного замещения в зависимости от природы субстрата, нуклеофила, уходящей группы и условий реакции могут реализоваться несколько разных механизмов. Однако в каждом из них атакующий агент имеет электронную пару, поэтому сходства между ними больше чем различий.

Механизм SN2

Механизм является синхронным, без интермедиата и с единственным определяющим скорость реакции переходным состоянием. Согласно этому механизму субстрат атакуется нуклеофилом со стороны, противоположной уходящей группе, причем образование связи с нуклеофилом протекает одновременно с разрывом связи между углеродным атомом и уходящей группой. Переходное состояние представляет собой тригональную бипирамиду с пентакоординированным углеродом. Нуклеофил и уходящая группа связаны с центральным углеродом посредством 2р-орбитали углерода и свободных электронных пар нуклеофила и уходящей группы. Поскольку атакующие частицы непосредственно участвуют в стадии, определяющей скорость реакции, то скорость зависит не только от их концентрации, но и от химической природы нуклеофила. Поскольку в переходном состоянии припрямом замещении заряд более рассредоточен, чем в основном состоянии, увеличение диэлектрической проницаемости среды будет стабилизировать основное состояние больше, чем переходное. Это приводит к увеличению энергии активации и уменьшению скорости реакции. В ходе реакции происходит обращение конфигурации, которое энергетически выгоднее, чем сохранение конфигурации.

Механизм SN1 Ионизационный механизм нуклеофильного замещения включает стадию, определяющую скорость всей реакции, гетеролитической диссоциации субстрата на трехкоординационный карбкатион и уходящую группу. За диссоциацией следует быстрая стадия взаимодействия очень сильного электрофила? карбкатиона с основанием Льюиса, имеющимся в среде. Следствия из такого механизма очевидны. Реакция будет показывать суммарный первый порядок, причем скорость разложения субстрата не зависит от концентрации или природы нуклеофила. Структурные факторы включают электронные и пространственные эффекты. Наиболее очевидным электронным эффектом является стабилизация карбениевого иона за счет подачи электронов и стабилизации уходящей группы путем увеличения ее способности принимать электронную пару. Пространственные эффекты существенны потому, что при переходе от ковалентно построенного субстрата к трехкоординационному карбкатиону происходит изменение конфигурации.

Механизм SNi Кроме тех случаев, о которых шла речь выше, известно несколько реакций, протекающих с сохранением конфигурации, т.е. реакции, при которых как исходное вещество, так и продукт обладают одинаковой конфигурацией. Конкретным случаем является замещение ОН на CL в присутствии тионилхлорида. Эта реакция подчиняется уравнению второго порядка. Однако нельзя считать, что она протекает строго в соответствии с механизмом SN2, поскольку при этом происходит обращение конфигурации, чего в действительности не наблюдается. На стадии (1) изменение конфигурации не происходит, поскольку связь С-О на этой стадии не разрывается. На стадии (2), когда эта связь разрывается, атака атомом CL в соответствии с ориентацией промежуточного соединения происходит с той же стороны углеродного атома. Вторая стадия напоминает реакцию типа SN1, в процессе которой распад промежуточного соединения протекает через ионную пару. Хлорсульфит-анион распадается на SO2 и CL- , причем распад происходит настолько быстро, что CL- может осуществлять фронтальную атаку карбониевого иона до того как этот ион успеет оказаться сплющенным до плоского состояния. В результате образуется продукт, конфигурация которого не отличается от конфигурации исходного соединения.

Аммонолиз галогенкарбоновых кислот

Один из наиболее распространенных методов синтеза Ь- аминокислот заключается в аммонолизе галогензамещенной кислоты, которую обычно получают по реакции Геля-Фольгарда-Зелинского:

Процессы, известные как реакции «викариозного нуклеофильного замещения» атома водорода (в англоязычной литературе принято обозначение VNS — Vicarious Nucleophilic Substitution ), широко применимы как к карбоциклическим, так и гетероциклическим ароматическим соединениям .

Обычно для реализации такого нуклеофильного замещения необходимо присутствие нитрогруппы в молекуле субстрата, что обеспечивает возможность присоединения углеродного нуклеофила, образующегося из C(X)(Y)(R), где X — потенциально уходящая группа, a Y — группа, стабилизирующая анион. Присутствие электроноакцепторной группы Y позволяет также получить в результате депротонирования соответствующий анион на первой стадии процесса. Наиболее часто X представляет собой атом галогена, a Y — арилсульфонильную группу. Типичная последовательность превращений при викариозном нуклеофильном замещении приведена ниже.

Первоначально происходит присоединение углеродного нуклеофила по орто - или пара -положению относительно нитрогруппы, затем элиминирование молекулы НХ из образующегося в результате присоединения сопряжённого неароматического нитроната, а затем последующее протонирование приводит к образованию ароматической молекулы продукта замещения. Обычно в таких процессах используется избыток основания, который генерирует карбанион и направляет процесс дальше за счёт отщепления и необратимого связывания молекулы НХ.

Примеры реакций викариозного нуклеофильного замещения даны в некоторых последующих главах книги. Ниже приведены три типичных примера таких превращений. Первый пример связан с реакцией викариозного нуклеофильного замещения в пятичленных гетероциклических соединениях . Во втором примере стабилизирующая анион трифторметансульфонильная группа (Y) одновременно служит и уходящей группой (X) . Третий пример в некоторой степени необычен, поскольку нуклеофил присоединяется не по орта - или пара -положению относительно нитрогруппы. Присоединение карбаниона проходит по положению C (2) 6-нитрохиноксалина; образующийся в результате такого присоединения анион стабилизирован делокализацией отрицательного заряда одновременно с участием атома азота N (1) и нитрогруппы .

2012-2019. Химия гетероциклических соединений. Heterocyclic Chemistry.
Правила определения основного гетероцикла: Основным считается цикл, у которого гетероатомы имеют наименьшие локанты (до объединения).

В учебном издании, написанном известными английскими учёными, изложены основные теоретические представления о реакционной способности и методах синтеза различных классов гетероциклических соединений и отдельных их представителей; показана роль гетероциклических соединений в химии твёрдого тела, биологических процессах, химии полимеров-полупроводников. Особое внимание уделено освещению последних достижений в этой важной области органической химии, имеющей большое значение в медицинской химии, фармакологии и биохимии. По полноте и широте представленного материала может использоваться как справочно-энциклопедическое издание.

При нуклеофильном замещении нуклеофил атакует молекулу субстрата, предоставляя ей для образования новой связи свои электроны. Электроны разрывающейся связи уходят вместе с освобождающимся ионом. Такие ионные реакции идут преимущественно в жидкой фазе, поскольку растворитель стабилизирует образующиеся ионы за счет сольватации, что невозможно в газовой фазе.

Нуклеофильное замещение позволяет вводить в молекулу органического соединения большое количество функциональных групп, способных выступать в роли нуклеофилов. Например:

В роли нуклеофилов могут выступать и нейтральные молекулы, например:

Примеры реакций с участием бромистого этила, в качестве субстрата, приведены ниже:

Особенностью реакций нуклеофильного замещения является то, что они одни из самых распространенных в органической химии, а соответственно одни из самых изученных. В частности изучение кинетики реакции нуклеофильного замещения. Химическая кинетика - это изучение изменения концентрации реагентов или продуктов во времени. Изменение характеризуется производной концентрации по времени dc/dt. Устанавливают взаимосвязь производной с концентрациями реагентов или, при необходимости, с концентрациями продуктов.

Изучение изменения концентрации реагентов во времени в условиях реакции нуклеофильного замещения показало, что возможны два случая:

В первом случае изменение концентрации пропорционально только концентрации субстрата dc/dt = К[галоидный алкил]

Во втором случае изменение концентрации пропорционально концентрации субстрата и концентрации нуклеофильной частицы - dc/dt = К[галоидный алкил]×[нуклеофил]

Механизм, соответствующий первому случаю назван мономолекулярным нуклеофильным замещением и обозначается S N 1 .

Механизм, соответствующий второму случаю назван бимолекулярным нуклеофильным замещением и обозначается S N 2

1.4.2. Механизм S N 1 . Мономолекулярное замещение

По механизму S N 1 , например протекает гидролиз трет -бутилбромида:

В механизме S N 1 различают следующие стадии:

На первой стадии происходит ионизация галогенопроизводного с образованием карбкатиона и бромид-иона. Эта стадия является скоростьлимитирующей и характеризуется наиболее высокой энергией активации:

Бромид-ион образует с молекулами воды водородные связи и тем самым стабилизируется. Образующийся карбкатион также стабилизируется сольватацией растворителем. Но большее значение имеет стабильность самого карбкатиона. Он должен быть стабилизирован внутримолекулярными электронными эффектами, т.н. быть третичным или находиться в сопряжении с π-электронной системой (быть резонансно-стабилизированным).

На второй стадии происходит быстрое взаимодействие карбкатиона с нуклеофилом, в частности с водой.

Благодаря доступности галогеналканов и легкости, с которой они вступают в реакции, круг этих реакций очень широк. Наиболее важные из них приведены в таблице 11.1.

Таблица 11.1

Реакции нуклеофильного замещения

Метилгалогениды CH 3 -X, первичные RCH 2 -X, вторичные R 1 R 2 CH-X, третичные R 1 R 2 R 3 С-X алкилгалогениды взаимодействуют с нуклеофильными реагентами по разным механизмам в зависимости от строения алкила.

Бимолекулярное нуклеофильное замещение

Типичный механизм взаимодействия метилгалогенидов и первичных алкилгалогенидов с Nu - бимолекулярное нуклеофильное замещение S N 2 . По такому механизму протекает реакция бромметана с едким натром (гидролиз бромметана).

Стадии процесса. Нуклеофил атакует атом углерода с тыла, со стороны, наиболее удаленной от брома (рис. 11.1, а). Если сталкивающиеся частицы имеют достаточную энергию, то начинает образовываться связь углерод-кислород, а связь углерод-бром растягивается, атом углерода переходит в sp 2 -состояние. В этом состоянии атом углерода связан сразу с пятью атомами. Три атома водорода и углерод лежат в одной плоскости, а группы НО– и Br– располагаются на прямой, перпендикулярной этой плоскости (рис. 11.1, б). Отрицательный заряд на атоме кислорода уменьшился, так как кислород уже подал свою пару электронов на атом углерода, а отрицательный заряд на атоме брома увеличился, поскольку бром в определенной мере оттянул на себя пару электронов от углерода. Реакция заканчивается отщеплением иона брома и образованием ковалентной связи углерод-кислород, атом углерода опять становится тетраэдрическим (рис. 11.1, в).



Рис. 11.1. Бимолекулярное нуклеофильное замещение:

а - исходные соединения: заряд локализован на атоме кислорода; б - переходное состояние (активированный комплекс), отрицательный заряд распределен между атомом кислорода и атомом брома; в - продукты реакции.

Энергетическая диаграмма реакции (рис. 11.2) изображает изменение потенциальной энергии в ходе реакции нуклеофильного замещения.

Рис. 11.2. Диаграмма изменения потенциальной энергии в реакции

бимолекулярного нуклеофильного замещения, S N 2 - процесс

согласованный одностадийный:

а - энергия исходных веществ, б - энергия переходного состояния, в - энергия продуктов реакции

Скорость реакции. Гидролиз бромистого метила является реакцией второго порядка, скорость его зависит от концентрации двух веществ и определяется по формуле v = k · . Термин «бимолекулярное замещение» означает, что в стадии, определяющей скорость реакции, участвуют две частицы. Поскольку разрыв связи углерод-уходящая группа и образование связи нуклеофил-углерод происходят одновременно, бимолекулярное нуклеофильное замещение называют согласованным процессом.

Концентрация нуклеофильного реагента. Увеличение концентрации нуклеофила увеличивает скорость S N 2- реакции.

Растворитель. Выбор растворителя диктуется следующимиусловиями:

а) достаточно хорошая растворимость реагентов,

б) лучшая сольватация переходного состояния по сравнению с исходными соединениями,

в) предотвращение побочных реакций.

Реакции, в которых из нейтральных молекул образуется полярное переходное состояние, значительно ускоряются при увеличении полярности растворителя: более полярный растворитель в большей степени стабилизирует полярное переходное состояние (АК), чем исходную систему (рис. 11.3, а).

Рис. 11.3. Влияние полярности растворителя на скорость S N 2:

а - повышение полярности растворителя стабилизирует АК в большей степени, чем исходное соединение, энергия активации уменьшается, скорость реакции увеличивается,

б - повышение полярности растворителя стабилизирует исходную систему в большей степени, чем АК, энергия активации увеличивается, скорость реакции уменьшается

Если в исходной системе имеется нуклеофил с полным отрицательным зарядом, то в присутствии полярного растворителя этот нуклеофил стабилизируется в результате электростатического притяжения между молекулами полярного растворителя и ионом Nu Ө .

В активированном комплексе заряд распределен между атомом, образующим новую связь, и уходящей группой. Полярный растворитель будет стабилизировать и активированный комплекс и исходное состояние. Однако активированный комплекс будет стабилизироваться в меньшей степени. Увеличение полярности растворителя несколько замедлит реакцию, так как замена менее полярного растворителя на более полярный увеличит в большей степени стабильность исходного соединения (Nu Ө), в меньшей - активированного комплекса (рис. 11.3, б).

Наиболее подходящими для синтеза соединений и изучения механизма S N 2 являются апротонные биполярные растворители, т.е. растворители с высокой диэлектрической проницаемостью, но не способные к образованию водородных связей:

Апротонные растворители хорошо сольватируют катионы. Они не могут сольватировать анионы ни за счёт образования водородных связей с ними, ни за счёт связи с положительным зарядом растворителя, т.к. он находится внутри молекулы растворителя. Поэтому химики называют такие анионы «голыми». Биполярные апротонные растворители особенно необходимы для осуществления реакций S N 2 в случае применения малоактивных нуклеофилов. В реакции бромэтана с гидроксид-анионом (S N 2) лучшим растворителем является водный раствор этанола с массовой долей 80 %. Добавление воды к этанолу необходимо для предотвращения побочной реакции отщепления бромоводорода и улучшения растворимости щелочи.

Сила нуклеофила. Чем сильнее атом удерживает пару электронов, тем меньше его способность выступать в качестве нуклеофила. Активность аниона выше, чем активность нейтральной молекулы.

Нуклеофильный реагент, предоставляющий пару электронов электронодефицитному атому углерода, способен подавать эту пару водороду и отщеплять его, превращаясь в кислоту, т.е. каждый нуклеофильный реагент является основанием. Нуклеофильность и основность изменяются параллельно только для реагентов, у которых пара электронов находится на одном и том же атоме или неподеленная пара электронов находится у атомов элементов, принадлежащих одному периоду.

В апротонных растворителях (ДМФА, ДМСО) реакционная способность нуклеофилов с атомами, находящимися в одной группе, зависит от положения элемента в этой группе: чем меньше размер Иона, тем выше электронная плотность и тем больше его нуклеофильная сила.

Однако в протонных растворителях этот ряд инвертируется: нуклеофильность аниона тем выше, чем больше размер иона.

Такой порядок изменения нуклеофильности в протонном растворителе объясняется тем, что анионы разного размера в протонном растворителе в различной степени сольватированы за счет образования водородных связей: анион малого размера с концентрированным зарядом сольватируется сильнее и стабилизирован в большей степени, чем анион большего размера, в котором отрицательный заряд распределен в большей степени.

Уходящие группы . В субстратах «хорошими» уходящими группами (нуклеофугами) являются те группы, которые, оторвавшись от атома углерода, образуют устойчивые анионы. Сильные основания являются обычно «плохими» уходящими группами, слабые основания - «хорошими» уходящими группами.

В ряду I Ө , Br Ө , Cl Ө , F Ө сила основания увеличивается, а способность быть хорошей уходящей группой уменьшается. Наилучшими уходящими группами являются ионы - сопряженные основания сильных кислот, так как они являются очень слабыми основаниями (отрицательный заряд распределен).

Cтереохимия . Бимолекулярное нуклеофильное замещение у хирального реакционного центра протекает с полным обращением конфигурации (инверсия), т.е. происходит обращение конфигурации каждой реагирующей молекулы.

Конфигурация исходного 2-бромоктана при атаке хирального атома углерода с тыла меняется на противоположную, молекула субстрата «выворачивается». Полное обращение конфигурации хирального углерода может служить доказательством S N 2-механизма.

Реакционная способность. При рассмотрении реакционной способности галогеналканов в реакциях нуклеофильного замещения следует изучать влияние, главным образом, двух факторов: пространственного (стерического) и электронного. В случае бимолекулярного нуклеофильного замещения наиболее важную роль играет стерический фактор. По мере увеличения числа и объема заместителей у атома углерода - реакционного центра - возможность достижения переходного состояния (АК) уменьшается. Это могут быть как алифатические, так и ароматические заместители, или те и другие.

В S N 2-реакциях реакционная способность уменьшается в ряду:

В случае вторичных и первичных алкилгалогенидов, как правило, реакция идёт как бимолекулярное нуклеофильное замещение S N 2 :

S N 2 реакции являются синхронными процессами – нуклеофил (в данном случае OH -) атакует атом углерода, постепенно образуя с ним связь; одновременно с этим постепенно разрывается связь С-Br. Уходящий из молекулы субстрата бромид-ион в называется уходящей группой или нуклеофугом .

В случае S N 2 реакций скорость реакции зависит от концентрации и нуклеофила, и субстрата:

v = k [S]

v – скорость реакции,

k- константа скорости реакции

[S] – концентрация субстрата (т.е. в данном случае алкилгалогенида)

– концентрация нуклеофила

В случае третичных алкилгалогенидов нуклеофильное замещение идёт по механизму мономолекулярного нуклеофильного замещения S N 1 :

трет-бутилхлорид трет-бутанол

Механизм этой реакции очень напоминает механизм реакций обмена в неорганической химии, является диссоциативным и идёт в две стадии:

карбокатион нуклеофил продукт

В случае S N 1 реакций скорость реакции зависит от концентрации субстрата и не зависит от концентрации нуклеофила: v = k [S]

По таким же механизмам идут реакции нуклеофильного замещения и в случае спиртов и во многих других случаях.

Кроме реакций S N 1 и S N 2 замещение может идти по механизму S N i . Нуклеофильное замещение у винильного атома углерода может осуществляться по 10 различным механизмам, а нуклеофильное замещение в ароматических системах может идти по 4 различным механизмам.

Реакции элиминирования (отщепления) – дегидрогалогенирования

В результате реакций элиминирования в случае алкилгалогенидов образуется алкены и галогеноводороды.

Например, при нагревании этилхлорида с щёлочью в спирте происходит элиминирование HCl и идёт образование этилена:

Следует обратить внимание на то, что если проводить эту реакцию в воде, а не в спирте, то основным продуктом будет спирт, а не алкен.

В случае несимметричных алкилгалогенидов реакции дегидрогалогенирования идут в соответствии с правилом Зайцева :



Отщепление атома водорода в реакциях отщепления HX происходит от наименее гидрогенизированного атома углерода.

Например, отщепление бромоводорода от 2-бромбутана может происходить двумя путями:

Действительно, реализуются оба пути, но преимущественно образуется бутен-2 (80%), в то время как бутен-1 образуется в малом количестве (20%).

Механизмы реакций элиминирования

Элиминирование галогеноводородов может осуществляться по 3 основным механизмам: E1, E2 и E1cb

Механизм E1

Алкилгалогенид диссоциирует с образованием карбокатиона и галогенид-иона. Основание (B:) отрывает от образующегося карбокатиона протон с образованием продукта – алкена:

субстрат карбокатион продукт

Такой механизм характерен для третичных алкилгалогенидов.

Механизм E1cb

В этом случае последовательность другая: основание отрывает от алкилгалогенида протон с образованием карбоаниона, от которого потом отщепляется галогенид-ион с образованием алкена:

карбоанион

Этот механизм встречается нечасто, например он показан для реакции элиминирования HF от 1,1,1-трифтор-2,2-дихлорэтана.

Механизм E2

В этом случае отрыв протона и галогенид-иона происходит синхронно, т. е. одновременно:

Механизм E2 характерен в основном для первичных и вторичных алкилгалогенидов.

Аналогичные механизмы наблюдаются в случае элиминирования воды от спиртов и в других случаях.