Какое расстояние между жидкими молекулами. Расстояния между молекулами сравнимы с размерами молекул (при нормальных условиях) для. Микро- и макропараметры газа

Примером простейшей системы, изучаемой в молекулярной физике, является газ . Согласно статистическому подходу газы рассматриваются как системы, состоящие из очень большого числа частиц (до 10 26 м –3), находящихся в постоянном беспорядочном движении. В молекулярно-кинетической теории пользуются моделью идеального газа , согласно которой считают, что:

1) собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;

2) между молекулами газа отсутствуют силы взаимодействия;

3) столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.

Оценим расстояния между молекулами в газе. При нормальных условиях (н.у.: р=1,03·10 5 Па; t=0ºС) число молекул в единице объема: . Тогда средний объем, приходящийся на одну молекулу:

(м 3).

Среднее расстояние между молекулами: м. Средний диаметр молекулы: d»3·10 -10 м. Собственные размеры молекулы малы по сравнению с расстоянием между ними (в 10 раз). Следовательно, частицы (молекулы) настолько малы, что их можно уподобить материальным точкам.

В газе молекулы большую часть времени находятся так далеко друг от друга, что силы взаимодействия между ними практически равны нулю. Можно считать, что кинетическая энергия молекул газа много больше потенциальной, поэтому последней можно пренебречь.

Однако в моменты кратковременного взаимодействия (столкновения ) силы взаимодействия могут быть значительными, что приводит к обмену энергией и импульсом между молекулами. Столкновения служат тем механизмом, с помощью которого макросистема может переходить из одного доступного ей при данных условиях энергетического состояния в другое.

Модель идеального газа можно использовать при изучении реальных газов, так как они в условиях, близких к нормальным (например, кислород водород, азот, углекислый газ, пары воды, гелий), а также при низких давлениях и высоких температурах близки по своим свойствам к идеальному газу.

Состояние тела может измениться при нагреве, сжатии, изменении формы, то есть при изменении каких - либо параметров. Различают равновесные и неравновесные состояния системы. Равновесное состояние – это состояние, при котором все параметры системы не меняются со временем (в противном случае - это неравновесное состояние ), и нет сил, способных изменить параметры.

Важнейшими параметрами состояния системы являются плотность тела (или величина обратная плотности – удельный объем), давление и температура. Плотность (r ) – масса вещества в единице объема. Давление (р – сила, действующая на единицу площади поверхности тела, направленная по нормали к этой поверхности. Разность температур () – мера отклонения тел от состояния теплового равновесия. Существует температура эмпирическая и абсолютная. Эмпирическая температура (t ) – мера отклонения тел от состояния теплового равновесия с тающим льдом, находящимся под давлением в одну физическую атмосферу. В качестве единицы измерения принят 1 градус Цельсия (1 о С), который определен тем условием, что тающему под атмосферным давлением льду приписывают 0 о С, а кипению воды при том же давлении – 100 о С, соответственно. Различие между абсолютной и эмпирической температурой заключается, прежде всего, в том, что абсолютная температура отсчитывается от предельно низкой температуры – абсолютного нуля , который лежит ниже температуры таяния льда на 273,16 о, то есть

р = f (V,T ). (6.2.2,б)

Отметим, что любая функциональная зависимость, связывающая между собой термодинамические параметры подобно (6.2.2,а), называется также уравнением состояния . Вид функции зависимости между параметрами ((6.2.2,а), (6.2.2,б)) определяется для каждого вещества экспериментально. Однако до сих пор удалось определить уравнение состояния только для газов, находящихся в разряженных состояниях, и, в приближенной форме, для некоторых сжатых газов.

Многие явления природы свидетельствуют о хаотичном движении микрочастиц, молекул и атомов вещества. Чем выше температура вещества, тем более интенсивно это движение. Поэтому теплота тела является отражением беспорядочного движения составляющих его молекул и атомов.

Доказательством того, что все атомы и молекулы вещества находятся в постоянном и беспорядочном движении, может служить диффузия – взаимопроникновение частиц одного вещества в другое (см. рис. 20а). Так, запах быстро распространяется по комнате даже при отсутствии движения воздуха. Капля чернил быстро делает весь стакан с водой однородно чёрным, хотя, казалось бы, сила тяжести должна помогать окрашивать стакан только в направлении сверху-вниз. Диффузию можно обнаружить и в твёрдых телах, если прижать их плотно друг к другу и оставить на длительное время. Явление диффузии демонстрирует, что микрочастицы вещества способны самопроизвольно двигаться во все стороны. Такое движение микрочастиц вещества, а также его молекул и атомов, называют их тепловым движением.

Очевидно, что все молекулы воды в стакане движутся даже, если в нём нет капли чернил. Просто, диффузия чернил делает тепловое движение молекул заметным. Другим явлением, позволяющим наблюдать за тепловым движением и даже оценивать его характеристики, может служить броуновское движение, которым называют видимое в микроскоп хаотическое движение любых мельчайших частичек в совершенно спокойной жидкости. Броуновским оно было названо в честь английского ботаника Р. Броуна, который в 1827 году, рассматривая в микроскоп взвешенные в воде споры пыльцы одного из растений, обнаружил, что они непрерывно и хаотически движутся.

Наблюдение Броуна подтвердили многие другие ученые. Оказалось, что броуновское движение не связано ни с потоками в жидкости, ни с ее постепенным испарением. Мельчайшие частички (их тоже назвали броуновскими) вели себя, как живые, и этот «танец» частиц ускорялся с нагревом жидкости и с уменьшением размера частиц и, наоборот, замедлялся при замене воды на более вязкую среду. Особенно заметным было броуновское движение, когда его наблюдали в газе, например, следили за частичками дыма или капельками тумана в воздухе. Это удивительное явление никогда не прекращалось, и его можно было наблюдать сколь угодно долго.

Объяснение броуновского движения было дано только в последней четверти XIX века, когда многим ученым стало очевидно, что движение броуновской частицы вызвано беспорядочными ударами молекул среды (жидкости или газа), совершающих тепловое движение (см. рис. 20б). В среднем, молекулы среды воздействуют на броуновскую частицу со всех сторон с равной силой, однако, эти удары никогда в точности не уравновешивают друг друга, и в результате, скорость броуновской частицы беспорядочно меняется по величине и направлению. Поэтому броуновская частица движется по зигзагообразному пути. При этом, чем меньше размеры и масса броуновской частицы, тем более заметным становится её движение.



В 1905 году А. Эйнштейн создал теорию броуновского движения, считая, что в каждый данный момент времени ускорение броуновской частицы зависит от числа соударений с молекулами среды, а значит, оно зависит от числа молекул в единице объема среды, т.е. от числа Авогадро. Эйнштейн вывел формулу, по которой можно было вычислить, как изменяется средний квадрат перемещения броуновской частицы со временем, если знать температуру среды, её вязкость, размер частицы и число Авогадро, которое в то время ещё было неизвестно. Справедливость этой теории Эйнштейна была подтверждена экспериментально Ж. Перреном, который первым и получил значение числа Авогадро. Таким образом, анализ броуновского движения заложил основы современной молекулярно-кинетической теории строения вещества.

Вопросы для повторения:

· Что такое диффузия, и как она связана с тепловым движением молекул?

· Что называют броуновским движением, и является ли оно тепловым?

· Как изменяется характер броуновского движения при нагревании?

Рис. 20. (а) – в верхней части показаны молекулы двух различных газов, разделённых перегородкой, которую убирают (см. нижнюю часть), после чего начинается диффузия; (б) в левой нижней части показано схематическое изображение броуновской частицы (синяя), окружённой молекулами среды, столкновения с которыми являются причиной движения частицы (см. три траектории движения частицы).

§ 21. МЕЖМОЛЕКУЛЯРНЫЕ СИЛЫ: СТРОЕНИЕ ГАЗООБРАЗНЫХ, ЖИДКИХ И ТВЁРДЫХ ТЕЛ

Мы привыкли к тому, что жидкость можно перелить из одного сосуда в другой, а газ быстро заполняет весь предоставленный ему объём. Вода может течь только вдоль русла реки, а воздух над ней не знает границ. Если бы газ не стремился занять всё пространство вокруг, мы бы задохнулись, т.к. выдыхаемый нами углекислый газ скапливался бы около нас, не давая нам сделать глоток свежего воздуха. Да, и автомобили бы скоро остановились по той же причине, т.к. для сгорания топлива им тоже нужен кислород.

Почему же газ, в отличие от жидкости, заполняет весь предоставленный ему объём? Между всеми молекулами действует межмолекулярные силы притяжения, величина которых очень быстро падает с удалением молекул друг от друга, и поэтому на расстоянии, равном нескольким диаметрам молекул, они вообще не взаимодействуют. Легко показать, что расстояние между соседними молекулами газа во много раз больше, чем у жидкости. Используя формулу (19.3) и зная плотность воздуха (r=1,29 кг/м3) при атмосферном давлении и его молярную массу (M=0,029 кг/моль), можно вычислить среднее расстояние между молекулами воздуха, которое окажется равным 6,1.10-9 м, что в двадцать раз превышает расстояние между молекулами воды.

Таким образом, между молекулами жидкости, расположенными почти вплотную друг к другу, действуют силы притяжения, препятствующие этим молекулам разлететься в разные стороны. Наоборот, ничтожные силы притяжения между молекулами газа не в состоянии удержать их вместе, и поэтому газы могут расширяться, заполняя весь предоставленный им объём. В существовании межмолекулярных сил притяжения можно убедиться, поставив простой опыт – прижать друг к другу два свинцовых бруска. Если поверхности соприкосновения будут достаточно гладкими, то бруски слипнутся, и их будет тяжело разъединить.

Однако межмолекулярные силы притяжения одни не могут объяснить все различия между свойствами газообразных, жидких и твёрдых веществ. Почему, например, уменьшить объём жидкости или твёрдого тела очень тяжело, а сжать воздушный шарик относительно легко? Объясняется это тем, что между молекулами существуют не только силы притяжения, но и межмолекулярные силы отталкивания, действующие тогда, когда электронные оболочки атомов соседних молекул начинают перекрываться. Именно эти силы отталкивания препятствуют тому, чтобы одна молекула не проникала в объём, уже занятый другой молекулой.

Когда на жидкое или твёрдое тело не действуют внешние силы, расстояние между их молекулами такое (см. r0 на рис.21а), при котором результирующая сил притяжения и отталкивания равна нулю. Если пытаться уменьшить объём тела, то расстояние между молекулами уменьшается, и со стороны сжатого тела начинает действовать результирующая возросших сил отталкивания. Наоборот, при растяжении тела возникающие силы упругости связаны с относительным ростом сил притяжения, т.к. при отдалении молекул друг от друга силы отталкивания падают гораздо быстрее, чем силы притяжения (см. рис.21а).

Молекулы газов находятся на расстояниях в десятки раз больших, чем их размеры, в результате чего эти молекулы не взаимодействуют между собой, и поэтому газы гораздо легче сжимаются, чем жидкости и твёрдые тела. Газы не имеют какой-либо определённой структуры и представляют собой совокупность движущихся и сталкивающихся молекул (см. рис. 21б).

Жидкость – это совокупность молекул, почти вплотную прилегающих друг к другу (см. рис. 21в). Тепловое движение позволяет молекуле жидкости время от времени менять своих соседей, перескакивая с одного места на другое. Этим и объясняется текучесть жидкостей.

Атомы и молекулы твёрдых тел лишены возможности менять своих соседей, а их тепловое движение – это лишь небольшие колебания относительно положения соседних атомов или молекул (см. рис. 21г). Взаимодействие между атомами может приводить к тому, что твёрдое вещество становится кристаллом, а атомы в нём занимают положения в узлах кристаллической решётки. Так как молекулы твёрдых тел не движутся относительно соседей, то эти тела сохраняют свою форму.

Вопросы для повторения:

· Почему молекулы газа не притягиваются друг к другу?

· Какие свойства тел определяют межмолекулярные силы отталкивания и притяжения?

· Как объясняют текучесть жидкости?

· Почему все твёрдые тела сохраняют свою форму?

§ 22. ИДЕАЛЬНЫЙ ГАЗ. ОСНОВНОЕ УРАВНЕНИЕ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ ГАЗОВ.

    Расстояния между молекулами сравнимы с размерами молекул (при нормальных условиях) для

    1. жидкостей, аморфных и кристаллических тел

      газов и жидкостей

      газов, жидкостей и кристаллических тел

    В газах при нормальных условиях среднее расстояние между молекулами

    1. примерно равно диаметру молекулы

      меньше диаметра молекулы

      примерно в 10 раз больше диаметра молекулы

      зависит от температуры газа

    Наименьшая упорядоченность в расположении частиц характерна для

    1. жидкостей

      кристаллических тел

      аморфных тел

    Расстояние между соседними частицами вещества в среднем во много раз превышает размеры самих частиц. Это утверждение соответствует модели

    1. только модели строения газов

      только модели строения аморфных тел

      моделям строения газов и жидкостей

      моделям строения газов, жидкостей и твердых тел

    В процессе перехода воды из жидкого состояния в кристаллическое

    1. увеличивается расстояние между молекулами

      молекулы начинают притягиваться друг к другу

      увеличивается упорядоченность в расположении молекул

      уменьшается расстояние между молекулами

    При постоянном давлении концентрация молекул газа увеличилась в 5 раз, а его масса не изменилась. Средняя кинетическая энергия поступательного движения молекул газа

    1. не изменилась

      увеличилась в 5 раз

      уменьшилась в 5 раз

      увеличилась в корень из пяти раз

    В таблице приведены температуры плавления и кипения некоторых веществ:

вещество

Температура кипения

вещество

Температура плавления

нафталин

Выберите верное утверждение.

    Температура плавления ртути больше температуры кипения эфира

    Температура кипения спирта меньше температуры плавления ртути

    Температура кипения спирта больше температуры плавления нафталина

    Температура кипения эфира меньше температуры плавления нафталина

    Температура твердого тела понизилась на 17 ºС. По абсолютной шкале температур это изменение составило

1) 290 К 2) 256 К 3) 17 К 4) 0 К

9. В сосуде неизменного объема находится идеальный газ в количестве 2 моль. Как надо изменить абсолютную температуру сосуда с газом при выпуске из сосуда 1 моль газа, чтобы давление газа на стенки сосуда увеличилось в 2 раза?

1) увеличить в 2 раза 3) увеличить в 4 раза

2) уменьшить в 2 раза 4) уменьшить в 4 раза

10. При температуре Т и давлении р один моль идеального газа занимает объем V. Каков объем этого же газа, взятого в количестве 2 моль, при давлении 2р и температуре 2Т?

1) 4V 2) 2V 3) V 4) 8V

11. Температура водорода, взятого в количестве 3 моль, в сосуде равна Т. Какова температура кислорода, взятого в количестве 3 моль, в сосуде того же объема и при том же давлении?

1) Т 2) 8Т 3) 24 Т 4) Т/8

12. В сосуде, закрытом поршнем, находится идеальный газ. График зависимости давления газа от температуры при изменениях его состояния представлен на рисунке. Какому состоянию газа соответствует наименьшее значение объема?

1) А 2) В 3) С 4) D

13. В сосуде постоянного объема находится идеальный газ, массу которого изменяют. На диаграмме показан процесс изменения состояния газа. В какой из точек диаграммы масса газа наибольшая?

1) А 2) В 3) С 4) D

14. При одной и той же температуре насыщенный пар в закрытом сосуде отличается от ненасыщенного пара в таком же сосуде

1) давлением

2) скоростью движения молекул

3) средней энергией хаотичного движения молекул

4) отсутствием примеси посторонних газов

15. Какой точке на диаграмме соответствует максимальное давление газа?

    нельзя дать точный ответ

17. Воздушный шар объемом 2500 куб.м с массой оболочки 400 кг имеет внизу отверстие, через которое воздух в шаре нагревается горелкой. До какой минимальной температуры нужно нагреть воздух в шаре, чтобы шар взлетел вместе с грузом (корзиной и воздухоплавателем) массой 200 кг? Температура окружающего воздуха 7ºС, его плотность 1,2 кг на куб.м. Оболочку шара считать нерастяжимой.

МКТ и термодинамика

МКТ и термодинамика

По данному разделу в каждый вариант было включено пять заданий с выбором

ответа, из которых 4 – базового уровня и 1 – повышенного. По результатам экзамена

усвоенными оказались следующие элементы содержания:

Применение уравнения Менделеева–Клапейрона;

Зависимость давления газа от концентрации молекул и температуры;

Количество теплоты при нагревании и охлаждении (расчет);

Особенности теплопередачи;

Относительная влажность воздуха (расчет);

Работа в термодинамике (график);

Применение уравнения состояния газа.

Среди заданий базового уровня затруднения вызвали следующие вопросы:

1) Изменение внутренней энергии в различных изопроцессах (например, при

изохорном увеличении давления) – 50% выполнения.

2) Графики изопроцессов – 56%.

Пример 5.

Постоянная масса идеального газа участвует в процессе, показанном

на рисунке. Наибольшее давление газа в процессе достигается

1) в точке 1

2) на всем отрезке 1–2

3) в точке 3

4) на всем отрезке 2–3

Ответ: 1

3) Определение влажности воздуха – 50%. Эти задания содержали фотографию

психрометра, по которой необходимо было снять показания сухого и влажного

термометров, а затем определить влажность воздуха, воспользовавшись частью

психрометрической таблицы, приведенной в задании.

4) Применение первого закона термодинамики. Эти задания оказались наиболее

сложными среди заданий базового уровня по данному разделу – 45%. Здесь

необходимо было воспользоваться графиком, определить вид изопроцесса

(использовались либо изотермы, либо изохоры) и в соответствии с этим

определить один из параметров по заданному другому.

Среди заданий повышенного уровня были представлены расчетные задачи на

применение уравнения состояния газа, с которыми справилось в среднем 54%

учащихся, а также использовавшиеся ранее задания на определение изменения

параметров идеального газа в произвольном процессе. С ними успешно справляется

лишь группа сильных выпускников, а средний процент выполнения составил 45%.

Одно из таких заданий приведено ниже.

Пример 6

В сосуде, закрытом поршнем, находится идеальный газ. Процесс

изменения состояния газа показан на диаграмме (см. рисунок). Как

менялся объем газа при его переходе из состояния А в состояние В?

1) все время увеличивался

2) все время уменьшался

3) сначала увеличивался, затем уменьшался

4) сначала уменьшался, затем увеличивался

Ответ: 1

Виды деятельности Кол-во

заданий %

фотографий2 10-12 25,0-30,0

4. ФИЗИКА

4.1. Характеристика контрольных измерительных материалов по физике

2007 года

Экзаменационная работа для единого государственного экзамена в 2007 г. имела

ту же структуру, что и в течение двух предыдущих лет. Она состояла из 40 заданий,

различающихся формой представления и уровнем сложности. В первую часть работы

было включено 30 заданий с выбором ответа, где к каждому заданию приводилось

четыре варианта ответа, из которых верным был только один. Вторая часть содержала 4

задания с кратким ответом. Они представляли собой расчетные задачи, после решения

которых требовалось привести ответ в виде числа. Третья часть экзаменационной

работы – это 6 расчетных задач, к которым необходимо было привести полное

развернутое решение. Общее время выполнения работы составляло 210 минут.

Кодификатор элементов содержания образования и спецификация

экзаменационной работы были составлены на основе Обязательного минимума

1999 г. № 56) и учитывали Федеральный компонент государственного стандарта

среднего (полного) образования по физике, профильный уровень (Приказ МО от 5

марта 2004 г. № 1089). Кодификатор элементов содержания не претерпел изменений по

сравнению с 2006 г. и включал в себя лишь те элементы, которые одновременно

присутствуют как в Федеральном компоненте государственного стандарта

(профильный уровень, 2004 г.), так и в Обязательном минимуме содержания

образования 1999 г.

По сравнению с контрольными измерительными материалами 2006 г. в варианты

ЕГЭ 2007 г. были внесены два изменения. Первое из них состояло в перераспределении

заданий в первой части работы по тематическому признаку. Независимо от сложности

(базовый или повышенный уровни), сначала следовали все задания по механике, затем

по МКТ и термодинамике, электродинамике и, наконец, по квантовой физике. Второе

изменение касалось целенаправленного введения заданий, проверяющих

сформированность методологических умений. В 2007 г. задания А30 проверяли умения

анализировать результаты экспериментальных исследований, выраженных в виде

таблицы или графика, а также строить графики по результатам эксперимента. Подбор

заданий для линии А30 осуществлялся исходя из необходимости проверки в данной

серии вариантов одного вида деятельности и, соответственно, независимо от

тематической принадлежности конкретного задания.

В экзаменационной работе были представлены задания базового, повышенного

и высокого уровней сложности. Задания базового уровня проверяли усвоение наиболее

важных физических понятий и законов. Задания повышенного уровня контролировали

умение использовать эти понятия и законы для анализа более сложных процессов или

умение решать задачи на применение одного-двух законов (формул) по какой-либо из

тем школьного курса физики. Задания высокого уровня сложности - это расчетные

задачи, которые отражают уровень требований к вступительным экзаменам в вузы и

требуют применения знаний сразу из двух-трех разделов физики в измененной или

новой ситуации.

В КИМ 2007 г. были включены задания по всем основным содержательным

разделам курса физики:

1) «Механика» (кинематика, динамика, статика, законы сохранения в механике,

механические колебания и волны);

2) «Молекулярная физика. Термодинамика»;

3) «Электродинамика» (электростатика, постоянный ток, магнитное поле,

электромагнитная индукция, электромагнитные колебания и волны, оптика);

4) «Квантовая физика» (элементы СТО, корпускулярно-волновой дуализм, физика

атома, физика атомного ядра).

В таблице 4.1 показано распределение заданий по блокам содержания в каждой

из частей экзаменационной работы.

Таблица 4.1

в зависимости от типа заданий

Вся работа

(с выбором

(с кратким

заданий % Кол-во

заданий % Кол-во

заданий %

1 Механика 11-131 27,5-32,5 9-10 22,5-25,0 1 2,5 1-2 2,5-5,0

2 МКТ и термодинамика 8-10 20,0-25,0 6-7 15,0-17,5 1 2,5 1-2 2,5-5,0

3 Электродинамика 12-14 30,0-35,5 9-10 22,5-15,0 2 5,0 2-3 5,0-7,5

4 Квантовая физика и

СТО 6-8 15,0-20,0 5-6 12,5-15,0 – – 1-2 2,5-5,0

В таблице 4.2 показано распределение заданий по блокам содержания в

зависимости от уровня сложности.

Таблица 4.2

Распределение заданий по разделам курса физики

в зависимости от уровня сложности

Вся работа

Базовый уровень

(с выбором

Повышенный

(с выбором ответа

и кратким

Высокий уровень

(с развернутым

Раздел ответом)

заданий % Кол-во

заданий % Кол-во

заданий % Кол-во

заданий %

1 Механика 11-13 27,5-32,5 7-8 17,5-20,0 3 7,5 1-2 2,5-5,0

2 МКТ и термодинамика 8-10 20,0-25,0 5-6 12,5-15,0 2 5,0 1-2 2,5-5,0

3 Электродинамика 12-14 30,0-35,5 7-8 17,5-20,0 4 10,0 2-3 5,0-7,5

4 Квантовая физика и

СТО 6-8 15,0-20,0 4-5 10,0-12,5 1 2,5 1-2 2,5-5,0

При разработке содержания экзаменационной работы учитывалась

необходимость проверки овладения различными видами деятельности. При этом

задания каждой из серии вариантов подбирались с учетом распределения по видам

деятельности, представленном в таблице 4.3.

1 Изменение числа заданий по каждой из тем связано с различной тематикой комплексных задач С6 и

заданий А30, проверяющих методологические умения на материале разных разделов физики, в

различных сериях вариантов.

Таблица 4.3

Распределение заданий по видам деятельности

Виды деятельности Кол-во

заданий %

1 Понимать физический смысл моделей, понятий, величин 4-5 10,0-12,5

2 Объяснять физические явления, различать влияние различных

факторов на протекание явлений, проявления явлений в природе или

их использования в технических устройствах и повседневной жизни

3 Применять законы физики (формулы) для анализа процессов на

качественном уровне 6-8 15,0-20,0

4 Применять законы физики (формулы) для анализа процессов на

расчетном уровне 10-12 25,0-30,0

5 Анализировать результаты экспериментальных исследований 1-2 2,5-5,0

6 Анализировать сведения, получаемые из графиков, таблиц, схем,

фотографий2 10-12 25,0-30,0

7 Решать задачи различного уровня сложности 13-14 32,5-35,0

Все задания первой и второй частей экзаменационной работы оценивались в 1

первичный балл. Решения задач третьей части (С1-С6) проверялись двумя экспертами в

соответствии с обобщенными критериями оценивания, с учетом правильности и

полноты ответа. Максимальный балл за все задания с развернутым ответом составлял 3

балла. Задача считалась решенной, если учащийся набрал за нее не менее 2-х баллов.

На основе баллов, выставленных за выполнение всех заданий экзаменационной

работы, осуществлялся перевод в «тестовые» баллы по 100-балльной шкале и в отметки

по пятибалльной шкале. В таблице 4.4 отражены соотношения между первичными,

тестовыми отметками по пятибалльной системе в течение последних трех лет.

Таблица 4.4

Соотношение первичных баллов , тестовых баллов и школьных отметок

Годы, баллы 2 3 4 5

2007 первичные 0-11 12-22 23-35 36-52

тестовые 0-32 33-51 52-68 69-100

2006 первичные 0-9 10-19 20-33 34-52

тестовые 0-34 35-51 52-69 70-100

2005 первичные 0-10 11-20 21-35 36-52

тестовые 0-33 34-50 51-67 68-100

Сравнение границ первичных баллов показывает, что в этом году условия

получения соответствующих отметок были более строгими по сравнению с 2006 г., но

примерно соответствовали условиям 2005 г. Это было связано с тем, что в прошлом

году единый экзамен по физике сдавали не только те, кто собирался поступать в вузы

по соответствующему профилю, но и почти 20% учащихся (от общего числа сдающих),

которые изучали физику на базовом уровне (для них этот экзамен был по решению

региона обязательным).

Всего для проведения экзамена в 2007 г. было подготовлено 40 вариантов,

которые представляли собой пять серий по 8 вариантов, созданных по разным планам.

Серии вариантов различались контролируемыми элементами содержания и видами

деятельности для одной и той же линии заданий, но в целом все они имели примерно

2 В этом случае имеется в виду форма представления информации в тексте задания или дистракторах,

поэтому одно и то же задание может проверять два вида деятельности.

одинаковый средний уровень сложности и соответствовали плану экзаменационной

работы, приведенному в Приложении 4.1.

4.2. Характеристика участников ЕГЭ по физике 2007 года

Число участников ЕГЭ по физике в этом году составило 70 052 человека, что

существенно ниже, чем в предыдущем году, и примерно соответствует показателям

2005 г. (см. таблицу 4.5). Число регионов, в которых выпускники сдавали ЕГЭ по

физике, увеличилось до 65. Количество выпускников, выбравших физику в формате

ЕГЭ, существенно отличается для разных регионов: от 5316 чел. в Республике

Татарстан до 51 чел. в Ненецком автономном округе. В процентном отношении к

общему числу выпускников количество участников ЕГЭ по физике колеблется от

0,34% в г. Москве до 19,1% в Самарской области.

Таблица 4.5

Число участников экзамена

Год Число Девушки Юноши

регионов

участников Число % Число %

2005 54 68 916 18 006 26,1 50 910 73,9

2006 61 90 3893 29 266 32,4 61 123 67,6

2007 65 70 052 17 076 24,4 52 976 75,6

Экзамен по физике выбирают преимущественно юноши, и лишь четверть от

общего числа участников составляют девушки, выбравшие для продолжения

образования вузы физико-технического профиля.

Практически не меняется год от года и распределение участников экзамена по

типам населенных пунктов (см. таблицу 4.6). Почти половина выпускников, сдававших

ЕГЭ по физике, живет в крупных городах и лишь 20% – это учащиеся, закончившие

сельские школы.

Таблица 4.6

Распределение участников экзамена по типам населенных пунктов , в которых

расположены их образовательные учреждения

Число экзаменуемых Процент

Тип населенного пункта экзаменуемых

Населенный пункт сельского типа (село,

деревня, хутор и пр.) 13 767 18 107 14 281 20,0 20,0 20,4

Населенный пункт городского типа

(рабочий поселок, поселок городского

типа и пр.)

4 780 8 325 4 805 6,9 9,2 6,9

Город с населением менее 50 тыс. человек 7 427 10 810 7 965 10,8 12,0 11,4

Город с населением 50-100 тыс. человек 6 063 8 757 7 088 8,8 9,7 10,1

Город с населением 100-450 тыс. человек 16 195 17 673 14 630 23,5 19,5 20,9

Город с населением 450-680 тыс. человек 7 679 11799 7 210 11,1 13,1 10,3

Город с населением более 680 тыс.

человек 13 005 14 283 13 807 18,9 15,8 19,7

г. Санкт-Петербург – 72 7 – 0,1 0,01

г. Москва – 224 259 – 0,2 0,3

Нет данных – 339 – – 0,4 –

Всего 68 916 90 389 70 052 100% 100% 100%

3 В 2006 г. в одном из регионов вступительные экзамены в вузы по физике проводились только в

формате ЕГЭ. Это повлекло за собой столь существенный рост числа участников ЕГЭ.

Практически не меняется состав участников экзамена по типам образовательных

учреждений (см. таблицу 4.7). Как и в прошлом году, подавляющее большинство

тестируемых заканчивали общеобразовательные учреждения, и лишь около 2%

выпускников пришли на экзамен из образовательных учреждений начального или

среднего профессионального образования.

Таблица 4.7

Распределение участников экзамена по типам образовательных учреждений

Число

экзаменуемых

Процент

Тип образовательного учреждения экзаменуемых

2006 г . 2007 г . 2006 г . 2007 г .

Общеобразовательные учреждения 86 331 66 849 95,5 95,4

Вечерние (сменные) общеобразовательные

учреждения 487 369 0,5 0,5

Общеобразовательная школа-интернат,

кадетская школа, школа-интернат с

первоначальной лётной подготовкой

1 144 1 369 1,3 2,0

Образовательные учреждения начального и

среднего профессионального образования 1 469 1 333 1,7 1,9

Нет данных 958 132 1,0 0,2

Итого: 90 389 70 052 100% 100%

4.3. Основные результаты выполнения экзаменационной работы по физике

В целом результаты выполнения экзаменационной работы в 2007 г. оказались

несколько выше результатов прошлого года, но примерно на том же уровне, что и

показатели позапрошлого года. В таблице 4.8 приведены итоги ЕГЭ по физике в 2007 г.

по пятибалльной шкале, а в таблице 4.9 и на рис. 4.1 – по тестовым баллам в 100-

балльной шкале. Для наглядности сравнения результаты представлены в сравнении с

предыдущими двумя годами.

Таблица 4.8

Распределение участников экзамена по уровню

подготовки (процент от общего числа )

Годы «2» Отметки« п3о» 5-ти балл«ь4н»о й шкале «5»

2005 10,5% 40,7% 38,1% 10,7%

2006 16,0% 41,4% 31,1% 11,5%

2007 12,3% 43,2% 32,5% 12,0%

Таблица 4.9

Распределение участников экзамена

по полученным тестовым баллам в 2005-2007 гг .

Год Интервал шкалы тестовых баллов

мена 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

2005 0,09% 0,57% 6,69% 19,62% 24,27% 24,44% 16,45% 6,34% 1,03% 0,50% 68 916

2006 0,10% 0,19% 6,91% 23,65% 23,28% 19,98% 15,74% 7,21% 2,26% 0,68% 90 389

2007 0,07% 1,09% 7,80% 19,13% 27,44% 20,60% 14,82% 6,76% 1,74% 0,55% 70 052

0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Тестовый балл

Процент учащихся, получивших

соответствующий тестовый балл

Рис . 4.1 Распределение участников экзамена по полученным тестовым баллам

В таблице 4.10 приведено сравнение шкалы в тестовых баллах в 100-балльной

шкале с результатами выполнения заданий экзаменационного варианта в первичных

Таблица 4.10

Сравнение интервалов первичных и тестовых баллов в 2007 году

Интервал шкалы

тестовых баллов 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Интервал шкалы

первичных баллов 0-3 4-6 7-10 11-15 16-22 23-29 30-37 38-44 45-48 49-52

Для получения 35 баллов (оценка 3, первичный балл – 13) тестируемому

достаточно было правильно ответить на 13 самых простых вопросов первой части

работы. Чтобы набрать 65 баллов (оценка 4, первичный балл – 34), выпускник должен

был, например, верно ответить на 25 заданий с выбором ответа, решить три из четырех

задач с кратким ответом, и еще справиться с двумя задачами высокого уровня

сложности. Те, кто получил 85 баллов (оценка 5, первичный балл – 46), практически

идеально выполняли первую и вторую части работы и решали не менее четырех задач

третьей части.

Лучшим из лучших (интервал от 91 до 100 баллов) необходимо не только

свободно ориентироваться во всех вопросах школьного курса физики, но и практически

не допускать даже технических ошибок. Так, для получения 94 баллов (первичный балл

– 49) можно было «не добрать» лишь 3 первичных балла, допустив, например,

арифметические погрешности при решении одной из задач высокого уровня сложности

расстояний ... между наружными и внутренними влияниями и различия условий для ... при нормальном давлении достигает 100°, то при ... для ее эксплуатации в больших размерах , для ...

  • Винер норберт кибернетика второе издание винер н кибернетика или управление и связь в животном и машине – 2-е издание – м наука главная редакция изданий для зарубежных стран 1983 – 344 с

    Документ

    Либо сравнимого ... для выполнения нормальных процессов мышления. При таких условиях ... размера для соединительных линий между разными извилинами расстояние ... которого меньшие молекулы компонентов смеси...

  • Винер н кибернетика или управление и связь в животном и машине – 2-е издание – м наука главная редакция изданий для зарубежных стран 1983 – 344 с

    Документ

    Либо сравнимого ... для выполнения нормальных процессов мышления. При таких условиях ... размера , но – с гладкой поверхностью. С другой стороны, для соединительных линий между разными извилинами расстояние ... которого меньшие молекулы компонентов смеси...

  • Чему равно среднее расстояние между молекулами насыщенного водяного пара при температуре 100° C?

    Задача №4.1.65 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

    Дано:

    \(t=100^\circ\) C, \(l-?\)

    Решение задачи:

    Рассмотрим водяной пар в некотором произвольном количестве, равном \(\nu\) моль. Чтобы определить объем \(V\), занимаемый данным количеством водяного пара, нужно воспользоваться уравнением Клапейрона-Менделеева:

    В этой формуле \(R\) — универсальная газовая постоянная, равная 8,31 Дж/(моль·К). Давление насыщенного водяного пара \(p\) при температуре 100° C равно 100 кПа, это известный факт, и его должен знать каждый учащийся.

    Чтобы определить количество молекул водяного пара \(N\), воспользуемся следующей формулой:

    Здесь \(N_А\) — число Авогадро, равное 6,023·10 23 1/моль.

    Тогда на каждую молекулу приходится куб объема \(V_0\), очевидно определяемый по формуле:

    \[{V_0} = \frac{V}{N}\]

    \[{V_0} = \frac{{\nu RT}}{{p\nu {N_А}}} = \frac{{RT}}{{p{N_А}}}\]

    Теперь посмотрите на схему к задаче. Каждая молекула условно находится в своем кубе, расстояние между двумя молекулами может меняться от 0 до \(2d\), где \(d\) — длина ребра куба. Среднее же расстояние \(l\) будет равно длине ребра куба \(d\):

    Длину ребра \(d\) можно найти так:

    В итоге получим такую формулу:

    Переведем температуру в шкалу Кельвина и посчитаем ответ:

    Ответ: 3,72 нм.

    Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.