Что такое атомная энергетика. Об атомной энергетике. Развитие новых мощностей

фр. Pierre de Ronsard

французский поэт XVI века

Краткая биография

Знаменитый французский поэт, которого считают основателем лирической национальной поэзии. Благодаря ему французская поэзия получила в свое распоряжение огромное количество стихотворных размеров, стала более музыкальной, гармоничной, масштабной и глубокой. В поэзию Ронсар ввел тему природы, любви, в которой одновременно сочетались платонизм и чувственность.

Будущий поэт родился 11 сентября 1524 г. в провинции Вандомуа в долине Луары, где находился их замок Ла-Поссоньер. Ронсар являлся потомком знатного семейства, его отец был придворным Франциска I. У этого же монарха сам Пьер служил пажом, затем в том же качестве подвизался при шотландском дворе, пройдя соответствующий курс в Наваррском коллеже.

Затем Ронсар служил секретарем одного из выдающихся гуманистов того времени, известного дипломата Лазара де Баифа. По делам службы Ронсару довелось побывать в Англии, Шотландии и эльзасском городе Хагенау. Путешествие подарило ему знакомство с целым рядом знаменитых людей, в т.ч. ученых, но в то же время его настигло тяжелое заболевание, из-за которого впоследствии развилась глухота. Поскольку о карьере военного или дипломата в связи с этим не могло быть и речи, Пьер де Ронсар углубился в изучение литературы, в частности, поэзии. В Париже он получил гуманитарное образование, в столичном коллеже Кокре под руководством Ж. Дора постигал тонкости древних языков и философии.

Собственные стихотворные опыты им были предприняты в 1542 г. Первая публикация относится к 1547 г. В 1549 г. Ронсар вместе с де Баифом и дю Белле выступил создателем плана масштабной реформы стихосложения, которая нашла отражение в работе дю Белле «Защита и прославление французского языка».

Впервые предложенные принципы были воплощены на практике в 1550 г., когда публика познакомилась с ронсаровскими «Одами». Выходившие до 1552 г., они имели огромный успех и помогли автору снискать славу большого поэта. Ронсар был руководителем поэтической школы, которую в честь древних александрийских поэтов назвали «Плеядами»; все ее члены славились огромным интересом к учебе и трудолюбием. В течение 1552-1553 гг. Ронсар пишет любовную лирику в стиле Ф. Петрарки.

С 1554 г. ему присваивают статус придворного поэта короля Генриха II. В нем он оставался до 1574 г. После этого времени он окончательно порвал с двором, поскольку после смерти Карла IX оказался в немилости. После этого события его биография была связана с аббатствами Круаваль (Вандомуа) и Сен-Ком (Турень).

Творческое наследие Ронсара достаточно обширно. Сюда входят философские, религиозно-политические стихи, неоконченная и признанная неудачной героико-эпическая поэма «Фронсиада» (тем не менее она позволила считать Ронсара основателем нового жанра), многочисленные сонеты, теоретическая работа «Краткое изложение поэтического искусства». Однако именно лирика сделала Ронсара прославленным поэтом, позволила ему снискать всеобщее уважение и окружить себя почетом, каким позже будет окружен Гюго . Сборники «Любовные стихотворения», «Продолжение любовных стихотворений», «Сонеты к Елене» прославили его за пределами родины - в Голландии, Германии, Швеции, Италии, Польше. Его произведения в значительной мере повлияли на дальнейшее развитие не только французской, но и европейской поэзии, в частности, таких поэтов, как Херрик, Сидни, Шекспир , Спенсер. Скончался Пьер де Ронсар 27 декабря 1585 г. в Сен-Ком-сюр-Луар.

Биография из Википедии

Пьер де Ронса́р (фр. Pierre de Ronsard; между 1 сентября и 11 сентября 1524, замок Ла-Поссоньер, Вандомуа- 27 декабря 1585, аббатство Сен-Ком, близ Тура) - французский поэт XVI века. Возглавлял объединение «Плеяда», проповедовавшее обогащение национальной поэзии изучением греческой и римской литератур.группы «Плеяда», создавшей национальную поэтическую школу. Первым серьезным произведением этой группы стал ее литературный манифест Защита и прославление французского языка (1549), традиционно приписываемый Жоашену Дю Белле (1522–1560), где ясно декларировались новые представления о национальной культуре и литературе. Автор связывал подъём и расцвет культуры с общенациональным подъёмом и процветанием; уровень развития культуры, таким образом, определялся уровнем развития государства и народа. При этом в манифесте прослеживается характерный для Ренессанса культ античности и декларирован лозунг подражания древним авторам. Художественная программа «Плеяды» утверждала приоритет французского языка и его равенство с латинским и итальянским, провозглашала высокое назначение поэта-творца. Язык провозглашался родом искусства, а поэзия – его высшей формой. Античное же наследие они считали стимулом для развития национальной литературы. Состав группы менялся, но ведущими в ней были Пьер Ронсар (1524–1585), Жоашен Дю Белле и Жан Антуан Баиф. В наибольшей степени дух культуры Возрождения и ее идеалы были выражены в творчестве лидера «Плеяды» Ронсара. Гуманист, он воспевал радость жизни, человека и человеческую любовь как вершину его жизни. Культ природы, ощущение и восприятие красоты мира, характерные для миросозерцания поэта, отразились в утверждении идеи органического единства человека и природы. В наследии Ронсара проявилось и его критическое восприятие общества (Гимн золоту, стихи, протестующие против гражданских войн) и философские размышления о судьбах человечества. В то же время он стремился прославить свою родину (Гимн Франции). Особое место в его творчестве занимали темы любви и природы, он оставил несколько книг, посвященных любви (Любовь к Кассандре, Любовь к Марии и др.). Ему принадлежит эпическая поэма Франсиада. Он по праву считался современниками «князем поэтов».

Ронсар родился в замке Ла-Поссоньер неподалёку от Вандомуа в знатной семье. Он был сыном Луи де Ронсара, придворного короля Франциска I и участника битвы при Павии. Служил пажом у Франциска I, потом при шотландском дворе. Получил гуманистическое образование в Париже; изучал философию и древние языки под руководством Жана Дора. C 1540 года Ронсар стал терять слух (возможно, вследствие перенесённого сифилиса).

С 1542 сочинял стихи; первое стихотворение Ронсара опубликовано в 1547. Заявил о себе как о крупном поэте, создав в 1550-1552 гг. произведение «Оды». В это время он возглавлял поэтическую школу «Плеяда», сформировавшуюся в 1549 г. и названную так в честь группы из семи александрийских поэтов III в. до н. э., носившую такое же название. В «Плеяду», руководителем которой стал Ронсар, входили ещё семь менее знаменитых поэтов, освоивших жанры оды, сонета, элегии, эклоги, комедии и трагедии и развившие эти жанры в духе эпохи Возрождения. В 1549 разработал - совместно с дю Белле и де Баифом - план обширной поэтической реформы, изложенный в «Защите и прославлении французского языка» дю Белле. В 1552-1553 гг. Ронсар написал «Любовные стихи» в стиле Петрарки. В сонетах 1555-1556 гг. он воспел юную крестьянку Марию Дюпен, придав стихам простоту и естественность.

В эти же годы он создал цикл философских стихов под названием «Гимны», где затрагивались основные вопросы человеческого бытия. К ним примыкают и религиозно-политические стихи «Рассуждения о бедствиях времени», написанные в 1560-1562 гг. В 1565 г. Ронсар написал теоретический труд «Краткое изложение поэтического искусства», а в 1571 г. создал героико-эпическую поэму «Фронсиада», разработав ещё один литературный жанр.

С 1554 придворный поэт Генриха II. После кончины Карла IX (1574) впал в немилость и окончательно отошёл от двора.

Его творчество оказало сильное влияние на дальнейшее развитие не только французской, но и почти всей европейской поэзии.

Творчество

Основные произведения

«Оды» (1550) были первым практическим применением доктрины Ронсара. Они встречены были ликованием. Среди других сочинений: «Любовные стихи» и «Оды» (1552), «Гимны» (1555-1556), «Эклоги» и «Любовь к Марии» (1560), «Рассуждение о бедствиях нашего времени» (1562), «Краткое изложение поэтического искусства» (1565), незавершённая поэма «Франсиада» (1572).

Значение творчества

Ронсар окружен был при жизни такой же славой и почетом, как позднее - В. Гюго. В XVII веке Ронсар был осуждён Буало в «Поэтическом искусстве» и с тех пор был совершенно не известен до начала XIX века, когда Сент-Бев и романтики восстановили славу его лирики. Ронсар - по преимуществу лирик. Условность разработанной им доктрины побуждала его сочинять искусственные «пиндаровские оды», в которых поэзия подавлена учёностью; но стих его в этой трудной школе приобрёл большую гибкость. Отбросив антистрофу и эпод, Ронсар ввёл лирические формы высокой красоты и звучности. Он внёс во французскую поэзию бесконечное разнообразие поэтических размеров и создал гармонию стиха. Он не заимствовал у древности внешних форм, но был проникнут античным духом, сказавшимся во всём его творчестве. В его лирике заметна также значительная доля итальянского влияния. В его песнях и сонетах (около 600) петраркизм сочетается с чувственностью и нежной грустью, рисуя любовь, смерть, жизнь природы. В некоторых стихотворениях (например, «Mignonne, allons voir si la rose », «Nous vivons, ma Panias », «Quand Vous serez vieille ») Ронсар - прямой предшественник лиризма XIX века. Великим поэтом Ронсар может быть назван прежде всего как созидатель богатой лирической формы, разнообразных новых размеров (ронсаровская строфа в 6 стихов aabccd и др.). Попытка Ронсара создать эпопею («Франсиада») оказалась неудачной.

По уровню научно-технических разработок российская атомная энергетика является одной из лучших в мире. Предприятия имеют огромные возможности для решения повседневных или масштабных задач. Специалисты прогнозируют перспективное будущее в этой области, так как РФ имеет большие запасы руд для выработки энергии.

Краткая история развития атомной энергетики в России

Атомная отрасль берет свое начало со времен СССР, когда планировалось реализовать один из авторских проектов о создании взрывчатки из уранового вещества. Летом, в 1945 году благополучно прошло испытание атомное оружие в США, а в 1949 году на Семипалатинском полигоне впервые использовали ядерную бомбу РДС-1. Дальнейшее развитие атомной энергетики в России было следующим:


Научно-производственные коллективы трудились много лет для достижения высокого уровня в атомном оружии, и останавливаться на достигнутом не собираются. Позже вы узнаете о перспективах в этой области до 2035 года.

Действующие АЭС в России: краткая характеристика

В настоящее время существует 10 действующих АЭС. Особенности каждой из них будут рассмотрены далее.


  • №1 и №2 с реактором АМБ;
  • №3 с реактором БН-600.

Вырабатывает до 10% от общего объема электрической энергии. В настоящее время многие системы Свердловска находятся в режиме длительной консервации, а эксплуатируется только энергоблок БН-600. Белоярская АЭС расположена в г. Заречный.

  1. Билибинская АЭС – единственный источник, снабжающий теплом г. Билбино и имеющий мощность 48 МВт. Станция вырабатывает около 80% энергии и соответствует всем требованиям, предъявляемым к установке аппаратуры:
  • максимальная простота эксплуатации;
  • повышенная надежность работы;
  • защита от механических повреждений;
  • минимальный объем монтажных работ.

Система имеет важное преимущество: при неожиданном прерывании работы блока ей не наносится вред. Станция расположена в Чукотском автономном округе, в 4,5, расстояние до Анадыря – 610 км.


Каково состояние атомной энергетики сегодня?

Сегодня существует более 200 предприятий, специалисты которых не покладая рук трудятся над совершенством атомной энергетики России . Поэтому мы уверенно двигаемся вперед в этом направлении: разрабатываем новые модели реакторов и постепенно расширяем производство. Согласно мнению участников Всемирной ядерной ассоциации, сильная сторона России — развитие технологий на быстрых нейронах.

Российские технологии, многие из которых были разработаны компанией «Росатом», высоко ценятся за рубежом за относительно небольшую стоимость и безопасность. Следовательно, у нас достаточно высокий потенциал в атомной отрасли.

Зарубежным партнерам РФ оказывает множество услуг, касающихся рассматриваемой деятельности. К их числу относится:

  • возведение атомных энергоблоков с учетом правил безопасности;
  • поставка ядерного топлива;
  • вывод использованных объектов;
  • подготовка международных кадров;
  • помощь в развитии научных работ и ядерной медицины.

Россия строит большое количество энергоблоков за границей. Успешно были такие проекты, как «Бушер» или «Куданкулам», созданные для иранской и индийской АЭС. Они позволили создавать чистые, безопасные и эффективные источники энергии.

Какие проблемы, связанные с атомной отраслью, возникали в России?

В 2011 году на строящейся ЛАЭС-2 произошел обвал металлических конструкций (вес около 1200 тонн). В ходе надзорной комиссии обнаружилась поставка несертифицированной арматуры, в связи с чем были приняты следующие меры:

  • наложение штрафа на ЗАО «ГМЗ-Химмаш» в размере 30 тыс. руб.;
  • выполнение расчетов и проведение работ, направленных на усиление арматуры.

По мнению Ростехнадзора, главной причиной нарушения является недостаточный уровень квалификации специалистов «ГМЗ-Химмаш». Слабое знание требований федеральных норм, технологий изготовления подобного оборудования и конструкторской документации привело к тому, что многие подобные организации лишились лицензий.

В Калининской АЭС повысился уровень тепловой мощности реакторов. Такое событие крайне нежелательно, так как появляется вероятность возникновения аварии с серьезными радиационными последствиями.

Многолетние исследования, проведенные в зарубежных странах, показали, что соседство с АЭС приводит к росту заболеваний лейкемией. По этой причине в России было множество отказов от эффективных, но очень опасных проектов.

Перспективы АЭС в России

Прогнозы дальнейшего использования атомной энергии противоречивы и неоднозначны. Большинство из них сходится к мнению, что к середине XXI века потребность возрастет в связи с неизбежным увеличением численности населения.

Министерство энергетики РФ сообщило энергетическую стратегию России на период до 2035 года (сведения поступили в 2014 году). Стратегическая цель атомной энергетики включает в себя:


С учетом установленной стратегии, в дальнейшем предусматривается решить следующие задачи:

  • улучшить схему производства, обращения и захоронения топливно-сырьевых ресурсов;
  • развить целевые программы, обеспечивающие обновление, устойчивость и повышение эффективности имеющейся топливной базы;
  • реализовать наиболее эффективные проекты с высоким уровнем безопасности и надежности;
  • увеличить экспорт ядерных технологий.

Государственная поддержка массового производства атомных энергоблоков – основа благополучного продвижения товаров за рубеж и высокой репутации России на международном рынке.

Что препятствует развитию атомной энергетики в России?

Развитие атомной энергетики в РФ сталкивается с определенными трудностями. Вот основные из них:


В России атомная энергетика является одним из важных секторов экономики. Успешная реализация разрабатываемых проектов способна помочь развить остальные отрасли, но для этого нужно приложить немало усилий.

Статья написана по материалам МАГАТЭ и Всемирной Ядерной Ассоциации

Некоторые факты:

Первые промышленные атомные электростанции введены в эксплуатацию в 1950-х годах.
Сегодня существуют более 430-ти промышленных ядерных реакторов в 31-й стране мира, которые имеют общую мощность 370 000 МВт. Около 70 атомных реакторов находятся в стадии строительства.
Они обеспечивают более 11% электроэнергии в мире без выбросов углекислого газа.
В 56 странах работают в общей сложности около 240 исследовательских реакторов и еще 180 ядерных энергетических реакторов, около 150 кораблей и подводных лодок.

Из истории

Ядерная технология использует энергию, выделяемую путем расщепления атомов определенных элементов. Это технология была впервые разработана в 1940-х годах в ходе второй мировой войны, исследования были сосредоточены на производстве бомб, для расщепления использовались изотопы урана или плутония.

В 1950-х годах внимание было обращено к мирным целям ядерного расщепления, в частности для производства электроэнергии. Многие страны построили исследовательские реакторы, чтобы иметь источник для научных исследований и производства медицинских и промышленных изотопов. Сегодня, только восемь стран в мире, как известно, имеют ядерное оружие.

Состояние атомной энергетики в мире

В 56-ти развивающихся странах действуют около 240 исследовательских реакторов. Около 70 новых ядерных реакторов находятся в стадии строительства, что эквивалентно 20% существующего потенциала, планируется постройка еще 160 реакторов, что эквивалентно половине нынешних мощностей.

Шестнадцать стран получаю четверть своей электроэнергии от АЭС. Франция получает около трех четвертей ядерной электроэнергии. В то время как в Бельгии, Чехии, Венгрии, Словакии, Швеции, Швейцарии, Словении и Украине получают одну треть или более.

Южная Корея, Болгария и Финляндия получает около 30% ядерной энергии. В США, Великобритании, Испании и России почти пятая часть энергии - ядерная.

Меньше всего от ядерной энергетики зависит Италия и Дания, там доля атомной энергии составляет 10 %.

Кроме того, что атомная энергия дешевле, чем энергия из полезных ископаемых, есть и другие преимущества. АЭС могут оперативно реагировать на изменение потребления электроэнергии и не зависят напрямую от поставок топлива. Кроме того атомные электростанции не выделяют СО 2 , следовательно не способствуют глобальному потеплению. Благодаря вышеуказанным преимуществам, доля атомной энергетики каждый год растет.

Каждый год происходит модернизация существующих электростанций, благодаря чему они отдают больше электроэнергии. А внедрение реакторов 4-го поколения позволит не только повысить энергоэффективность но и снизить количество радиоактивных отходов.

С 1990 года по 2010 год мощность АЭС во всем мире выросла на 57 ГВт, то есть примерно на 17 %. Примерно 36 % получено за счет строительства новых АЭС, 57 % - за счет расширения существующих электростанций, 7 % - за счет модернизации.

Как развивается атомная энергетика в мире?

Китай

Китайское правительство планирует увеличить ядерные генерирующие мощности с 30 ГВт до 58 ГВт к 2020 году.

С 2002 по 2013 год Китай завершил строительство и начал эксплуатацию 17 новых атомных реакторов, около 30 новых реакторов находятся в стадии строительства.

Среди них четыре современных реактора Westinghouse AP1000 с высокотемпературным газовым охлаждением.

Индия

К 2020 году Индия планирует иметь 14,5 ГВт атомной энергии, в рамках своей национальной энергетической политики. Семь реакторов находятся на стадии строительства

Россия

Россия планирует увеличить свой ядерный потенциал до 30,5 ГВт к 2020 году, используя свои реакторы на легкой воде мирового класса. Россия принимает активное участие в строительстве и финансировании новых атомных электростанций в ряде стран.

Европа

Ряд стран Восточной Европы в настоящее время имеют программы по строительству новых атомных электростанций (Болгария, Чехия, Венгрия, Румыния, Словакия, Словения и Турция).

Правительство Великобритании в середине 2006 года одобрило замену стареющего парка страны ядерных реакторов.

Швеция отказалась от своих планов по досрочному выводу из эксплуатации реакторов, и теперь активно инвестирует в их модернизацию. Венгрия, Словакия и Испания не планирует строительства новых АЭС, а только модернизирует старые. Германия согласилась продлить срок эксплуатации своих атомных станций, изменив предшествующие намерения закрыть их.

Польша разрабатывает ядерную программу, планируя получить 6000 МВт энергии. Беларусь начала строительство своего первого реактора.

США

В США, есть пять реакторов в стадии строительства, четыре из них новые конструкции AP1000.

Южная Америка

Аргентина и Бразилия имеют ядерные реакторы, генерирующие электричество, и реакторы, которые находятся в стадии строительства. Чили имеет исследовательский реактор и намерения строить промышленные реакторы.

Южная Корея

Южная Корея планирует возведение атомных реакторов. Эта страна также участвует в интенсивных исследованиях, посвященных конструкциям реакторов.

Юго-Восточная Азия

Вьетнам намерен построить свой первый атомный реактор в сотрудничестве с Россией. Индонезия и Таиланд планируют ядерно-энергетические программы.

Южная Азия

Бангладеш одобрил российское предложение о строительстве на своей территории первой атомной электростанции. Пакистан с китайской помощью строит три маленьких реактора и готовится построить два большие вблизи Карачи.

Центральная Азия

Казахстан с его обилием урана работает в тесном сотрудничестве с Россией в планировании развития строительства новых реакторов для собственного потребления и экспорта .

Ближний Восток

Объединенные Арабские Эмираты строят первые два из четырех реакторов, мощностью 1450 МВт. Сумма инвестиций составляет около 20 млрд долларов.

Первый реактор в Иране находится в работе, больше строительство не планируется.

Саудовская Аравия, Иордания и Египет также движутся в направлении использования ядерной энергии.

Африка

Нигерия искала поддержку Международного агентства по атомной энергии в разработке планов по строительству для двух атомных реакторов, мощностью 1000 МВт.

Новые страны

В сентябре 2012 года Международное агентство по атомной энергии (МАГАТЭ) ожидает запуск атомных программ в 7 странах, в ближайшем будущем. Наиболее вероятные кандидаты: Литва, ОАЭ, Турция, Беларусь, Вьетнам, Польша.

Двадцатый век прошел под знаком освоения энергии нового вида, заключенной в ядрах атомов, и стал веком ядерной физики. Эта энергия многократно превышает энергию топлива, применявшуюся человечеством в течение всей его истории.

Уже к середине 1939 года ученые мира располагали важными теоретическими и экспериментальными открытиями в области ядерной физики, что позволило выдвинуть обширную программу исследований в этом направлении. Оказалось, что атом урана можно расщепить на две части. При этом освобождается огромное количество энергии. Кроме того, в процессе расщепления выделяются нейтроны, которые в свою очередь могут расщепить другие атомы урана и вызвать цепную ядерную реакцию. Ядерная реакция деления урана весьма эффективна и далеко превосходит самые бурные химические реакции. Сравним атом урана и молекулу взрывчатого вещества – тринитротолуола (тротила). При распаде молекулы тротила выделяется 10 электронвольт энергии, а при распаде ядра урана – 200 млн. электрон-вольт, т. е. в 20 млн. раз больше.

Эти открытия произвели в научном мире сенсацию: в истории человечества не было научного события, более значительного по своим последствиям, чем проникновение в мир атома и овладение его энергией. Ученые понимали, что главное ее предназначение – производство электроэнергии и применение в других мирных направлениях. С вводом в эксплуатацию в СССР в 1954 г. первой в мире промышленной атомной электростанции мощностью 5 МВт в г. Обнинске началась эра атомной энергетики. Источником производства электроэнергии стало расщепление ядер урана.

Опыт эксплуатации первых АЭС показал реальность и надежность ядерно-энергетической технологии для промышленного производства электроэнергии. Развитые индустриальные страны приступили к проектированию и строительству АЭС с реакторами разных типов. К 1964 г. суммарная мощность АЭС в мире выросла до 5 млн. кВт.

С этого времени началось стремительное развитие атомной энергетики, которая, внося все более значимый вклад в общее производство электроэнергии в мире, стала новой многообещающей энергетической альтернативой. Начался бум заказов на строительство АЭС в США, позднее в Западной Европе, Японии, СССР. Темпы роста атомной энергетики достигли около 30% в год. Уже к 1986 г. в мире работали на АЭС 365 энергоблоков суммарной установленной мощностью 253 млн.кВт. Практически за 20 лет мощность АЭС увеличилась в 50 раз. Строительство АЭС велось в 30 странах мира (рис.1.1).

К тому времени широкую известность получили исследования Римского клуба – авторитетного сообщества ученых с мировыми именами. Выводы авторов исследований сводились к неизбежности достаточно близкого исчерпания природных запасов органических энергетических ресурсов, в том числе нефти, ключевых для мировой экономики, их резкого подорожания в ближайшей перспективе. С учетом этого атомная энергетика пришлась как нельзя более ко времени. Потенциальные запасы ядерного топлива (2 8 U, 2 5 U, 2 2 Th) на длительную перспективу решали жизненно важную проблему топливообеспечения при различных сценариях развития атомной энергетики.

Условия развития атомной энергетики были крайне благоприятны, причем экономические показатели АЭС также вселяли оптимизм, АЭС уже могли успешно конкурировать с ТЭС.

Атомная энергетика позволяла уменьшить потребление органического топлива и резко сократить выбросы загрязняющих веществ в окружающую среду от ТЭС.

Развитие атомной энергетики базировалось на сформировавшемся энергетическом секторе военно-промышленного комплекса – достаточно хорошо освоенных промышленных реакторах и реакторах для подводных лодок с использованием уже созданного для этих целей ядерного топливного цикла (ЯТЦ), приобретенных знаниях и значительном опыте. Атомная энергетика, имевшая огромную государственную поддержку, успешно вписалась в существующую энергетическую систему с учетом присущих этой системе правил и требований.

Проблема энергетической безопасности, обострившаяся в 70-е годы ХХ в. в связи с энергетическим кризисом, вызванным резким повышением цен на нефть, зависимостью ее поставки от политической обстановки, заставила многие страны пересмотреть свои энергетические программы. Развитие атомной энергетики, уменьшая потребление органического топлива, снижает энергетическую зависимость стран, не имеющих или имеющих ограниченные собственные топливно-энерге

тические ресурсы, от их ввоза и укрепляет энергетическую безопасность этих стран.

В процессе быстрого развития атомной энергетики из двух основных типов энергетических ядерных реакторов – на тепловых и быстрых нейтронах – наибольшее распространение в мире получили реакторы на тепловых нейтронах.

Разработанные разными странами типы и конструкции реакторов с разными замедлителями и теплоносителями стали основой национальной ядерной энергетики. Так, в США основными стали водо-водяные реакторы под давлением и кипящие реакторы, в Канаде – тяжеловодные реакторы на природном уране, в бывшем СССР – водо-водяные реакторы под давлением (ВВЭР) и уранографитовые кипящие реакторы (РБМК), росла единичная мощность реакторов. Так, реактор РБМК-1000 электрической мощностью 1000 МВт был установлен на Ленинградской АЭС в 1973 г. Мощность крупных АЭС, например Запорожской АЭС (Украина), достигла 6000 МВт.

Учитывая, что блоки АЭС работают практически с постоянной мощностью, покрывая

АЭС «Три Майл Айленд» (США)

базовую часть суточного графика нагрузок объединенных энергосистем, параллельно с АЭС в мире строились высокоманевренные ГАЭС для покрытия переменной части графика и закрытия ночного провала в графике нагрузок.


Высокие темпы развития атомной энергетики не соответствовали уровню ее безопасности. На основании опыта эксплуатации объектов атомной энергетики, возрастающего научно-технического понимания процессов и возможных последствий возникла необходимость пересмотра технических требований, что вызывало увеличение капвложений и эксплуатационных затрат.

Серьезный удар развитию атомной энергетики был нанесен тяжелой аварией на АЭС «Три Майл Айленд» в США в 1979 г., а также на ряде других объектов, что привело к радикальному пересмотру требований безопасности, ужесточению действующих нормативов и пересмотру программ развития АЭС во всем мире, причинило огромный моральный и материальный ущерб атомной энергетике. В США, которые являлись лидером в атомной энергетике, с 1979 г. прекратились заказы на строительство АЭС, также сократилось их строительство в других странах.

Тяжелейшая авария на Чернобыльской АЭС в Украине в 1986 г., квалифицируемая по международной шкале ядерных инцидентов как авария самого высокого седьмого уровня и вызвавшая экологическую катастрофу на огромной территории, гибель людей, переселение сотен тысяч людей, подорвала доверие мирового сообщества к атомной энергетике.

«Трагедия в Чернобыле – это предупреждение. И не только в ядерной энергетике», – говорил академик В.А. Легасов, член правительственной комиссии, первый заместитель академика А.П. Александрова, возглавлявшего Институт атомной энергии имени И.В. Курчатова.

Во многих странах были приостановлены программы развития атомной энергетики, а в ряде стран вообще отказались от намеченных ранее планов по ее развитию.

Несмотря на это, к 2000 г. на АЭС, работающих в 37 странах мира, вырабатывалось 16% мирового производства электроэнергии.

Предпринятые беспрецедентные усилия по обеспечению безопасности эксплуатируемых АЭС позволили в начале XXI в. восстановить доверие общества к атомной энергетике. Наступает время «ренессанса» в ее развитии.

Кроме высокой экономической эффективности и конкурентоспособности, обеспеченности топливными ресурсами, надежности, безопасности, одним из важных факторов является то, что атомная энергетика относится к экологически наиболее чистым источникам электроэнергии, хотя остается проблема утилизации отработанного топлива.

Стала очевидной необходимость воспроизводства (бридинга) ядерного топлива, т.е. строительства также реакторов на быстрых нейтронах (бридеров), внедрения переработки полученного топлива. Развитие этого направления имело серьезные экономические стимулы и перспективы, велось во многих странах.

В СССР первые экспериментальные работы по промышленному использованию реакторов на быстрых нейтронах были начаты в

1949 г., а с середины 1950-х годов начался ввод в эксплуатацию серии опытно-экспериментальных реакторов БР-1, БР-5, БОР-60 (1969 г.), в 1973 г. была введена в действие двухцелевая АЭС с реактором мощностью 350 МВт для производства электроэнергии и опреснения морской воды, в 1980 году запущен промышленный реактор БН-600 мощностью 600 МВт.

Обширная программа развития этого направления реализовывалась в США. В 1966–1972 гг. был построен экспериментальный реактор «Enrico Fermi l», а в 1980 году введен в эксплуатацию крупнейший в мире исследовательский реактор FFTF мощностью 400 МВт. В Германии первый реактор начал работать в 1974 году, а построенный реактор большой мощности SNR-2 так и не был введен в эксплуатацию. Во Франции в 1973 году был пущен реактор «Phenix» мощностью 250 МВт, а в 1986 г. – «Superphenix» мощностью 1242 МВт. Япония в 1977 г. ввела в эксплуатацию опытный реактор «Joyo», а в 1994 г. – реактор «Monju» мощностью 280 МВт.

В условиях экологического кризиса, с которым мировое сообщество вошло в ХХI век, атомная энергетика может внести значительный вклад в обеспечение надежного электроснабжения, снижение выбросов в окружающую среду парниковых газов и загрязняющих веществ.

Атомная энергетика наилучшим образом отвечает принятым в мире принципам устойчивого развития, одним из важнейших требований которого является наличие достаточных топливно-энергетических ресурсов при стабильном их потреблении в долгосрочной перспективе.

В соответствии с прогнозами, основанными на расчетах и моделировании развития общества и мировой экономики в XXI веке, доминирующая роль электроэнергетики сохранится. К 2030 г. по прогнозу Международного энергетического агентства (МЭА) производство электроэнергии в мире увеличится более чем в 2 раза и превысит 30 трлн. кВт·ч, а согласно прогнозам Международного агентства по атомной энергии (МАГАТЭ) в условиях «ренессанса» атомной энергетики ее доля увеличится до 25% мирового производства электроэнергии, причем уже в течение ближайших 15 лет в мире будет построено свыше 100 новых реакторов, а мощность АЭС возрастет с 370 млн. кВт в 2006 г. до 679 млн. кВт в 2030 г.

В настоящее время активно развивают атомную энергетику страны с высокой ее долей в общем объеме вырабатываемой электроэнергии, включая США, Японию, Южную Корею, Финляндию. Франция, переориентировав электроэнергетику страны на атомную и продолжая ее развивать, с успехом решила энергетическую проблему на многие десятилетия. Доля АЭС в производстве электроэнергии в этой стране достигает 80%. Развивающиеся страны с незначительной еще долей ядерной генерации электроэнергии высокими темпами строят АЭС. Так, Индия заявила о намерении в долгосрочной перспективе построить АЭС мощностью 40 млн. кВт, а Китай – более 100 млн. кВт.

Из 29 блоков АЭС, строившихся в 2006 г., 15 находились в Азии. Планируют впервые ввести АЭС Турция, Египет, Иордания, Чили, Таиланд, Вьетнам, Азербайджан, Польша, Грузия, Белоруссия и другие страны.

Дальнейшее развитие атомной энергетики планирует Россия, которая предусматривает к 2030 г. построить АЭС мощностью 40 млн. кВт. В Украине в соответствии с Энергетической стратегией Украины на период до 2030 г. предусматривается увеличивать выработку АЭС до 219 млрд. кВт·ч, сохранив ее на уровне 50% общей выработки, и повысить мощность АЭС практически в 2 раза, доведя ее до 29,5 млн. кВт, при коэффициенте использования установленной мощности (КИУМ) 85%, в том числе за счет ввода новых блоков мощностью 1–1,5 млн.кВт и продления срока эксплуатации действующих блоков АЭС (в 2006 г. в Украине мощность АЭС составила 13,8 млн. кВт с выработкой 90,2 млрд. кВт·ч электроэнергии, или около 48,7% общей выработки).

Ведущиеся во многих странах работы по дальнейшему совершенствованию реакторов на тепловых и быстрых нейтронах позволят обеспечить дальнейшее повышение их надежности, экономической эффективности и экологической безопасности. При этом важное значение приобретает международное сотрудничество. Так, при реализации в будущем международного проекта ГТ МСР (газотурбинный модульный гелиоохлаждаемый реактор), который характеризуется высоким уровнем безопасности и конкурентоспособности, минимизацией радиоактивных отходов, может повыситься к.п.д. до 50%.

Широкое применение в будущем двухкомпонентной структуры атомной энергетики, включающей АЭС с реакторами на тепловых нейтронах и с реакторами на быстрых нейтронах, воспроизводящих ядерное топливо, повысит эффективность использования природного урана и снизит уровень накопления радиоактивных отходов.

Следует отметить важнейшую роль в развитии атомной энергетики ядерно-топливного цикла (ЯТЦ), который фактически является ее системообразующим фактором. Это вызвано следующими обстоятельствами:

  • ЯТЦ должен обеспечиваться всеми необходимыми структурными, технологическими и конструктивными решениями для безопасной и эффективной работы;
  • ЯТЦ является условием социальной приемлемости и экономической эффективности атомной энергетики и ее широкого использования;
  • развитие ЯТЦ приведет к необходимости объединения задач обеспечения требуемого уровня безопасности АЭС, вырабатывающей электроэнергию, и минимизации рисков, связанных с производством ядерного топлива, включая добычу урана, транспортировку, переработку отработанного ядерного топлива (ОЯТ) и захоронение радиоактивных отходов (единая система требований по безопасности);
  • резкое увеличение добычи и использования урана (начальный этап ЯТЦ) ведет к росту опасности попадания природных долгоживущих радионуклидов в среду обитания, что требует повышения эффективности топливоиспользования, уменьшения количества отходов и замыкания топливного цикла.

Экономическая эффективность работы АЭС зависит напрямую от топливного цикла, включая сокращение времени на перегрузку топлива, повышение эксплуатационных характеристик тепловыделяющих сборок (ТВС). Поэтому важное значение имеет дальнейшее развитие и совершенствование ЯТЦ с высоким коэффициентом использования ядерного топлива, созданием малоотходного замкнутого топливного цикла.

Энергетической стратегией Украины предусматривается развитие национального топливного цикла. Так, добыча урана должна увеличиться с 0,8 тыс. т до 6,4 тыс. т в 2030 году, получит дальнейшее развитие отечественное производство циркония, циркониевых сплавов и комплектующих для тепловыделяющих сборок, а в перспективе создание замкнутого топливного цикла, а также участие в международной кооперации по производству ядерного топлива. Предусматривается корпоративное участие Украины в создании мощностей по изготовлению тепловыделяющих сборок для реакторов ВВЭР и в создании Международного центра по обогащению урана в России, вхождение Украины в предложенный США Международный банк ядерного топлива.

Обеспеченность топливом атомной энергетики имеет важнейшее значение для перспективы ее развития. Современные потребности в природном уране в мире составляют порядка 60 тыс. т при общих запасах около 16 млн.т.

В ХХI в. резко возрастет роль атомной энергетики в обеспечении возрастающего производства электроэнергии в мире с использованием более совершенных технологий. Атомная энергетика пока не имеет серьезного конкурента на длительную перспективу. Чтобы реализовать ее развитие в широких масштабах, она, как уже указывалось, должна обладать следующими свойствами: высокой эффективностью, обеспеченностью ресурсами, энергоизбыточностью, безопасностью, приемлемостью экологического воздействия. Первые три требования могут быть выполнены при использовании двухкомпонентной структуры атомной энергетики, состоящей из тепловых и быстрых реакторов. При такой структуре можно значительно увеличить эффективность использования природного урана, снизить его добычу и ограничить уровень поступления радона в биосферу. Пути достижения необходимого уровня безопасности и снижения капитальных затрат для реакторов обоих типов уже известны, нужны время и средства на их реализацию. К моменту осознания обществом необходимости дальнейшего развития атомной энергетики технология двухкомпонентной структуры будет фактически подготовлена, хотя многое еще необходимо сделать в плане оптимизации ЯЭУ и структуры отрасли, включая и предприятия топливного цикла.

Уровень экологического воздействия в основном определяется количеством радионуклидов в топливном цикле (уран, плутоний) и в хранилищах (Np, Am, Cm, продукты деления).

Риск от воздействия короткоживущих изотопов, например 1 1 I и 9 0 Sr, l 7 Cs, может быть снижен до допустимого уровня за счет повышения безопасности АЭС, хранилищ, предприятий топливного цикла. Приемлемость такого риска можно доказать на практике. Но трудно доказать и невозможно продемонстрировать надежность захоронения долгоживущих актиноидов и продуктов деления в течение миллионов лет.

Несомненно, нельзя отказываться от поиска путей надежного захоронения радиоактивных отходов, но необходимо разрабатывать возможность использования актиноидов для получения энергии, т.е. замыкания топливного цикла не только по урану и плутонию, но и по актиноидам (Np, Am, Cm и др.). Трансмутация опасных долгоживущих продуктов деления в системе реакторов на тепловых нейтронах усложнит структуру атомной энергетики за счет дополнительных технологических процессов по изготовлению и переработке ядерного топлива или увеличит число типов ядерно-энергетических установок. Введение Np, Am, Cm, других актиноидов и продуктов деления в топливо реакторов усложнит их конструкцию, потребует разработки новых видов ядерного топлива, отрицательно скажется на безопасности.

В связи с этим рассматривается возможность создания трехкомпонентной структуры атомной энергетики, состоящей из тепловых и быстрых реакторов и реакторов для сжигания Np, Am, Cm и других актиноидов и трансмутации некоторых продуктов деления.

Важнейшими проблемами являются переработка и удаление радиоактивных отходов, которые могут быть преобразованы в ядерное топливо.

В первой половине ХХI века человечеству предстоит осуществить научный и технический прорыв на пути освоения новых видов энергии, в том числе электроядерной с использованием ускорителей заряженных частиц, и в перспективе термоядерной, что требует объединения усилий, международной кооперации.


Тяньваньская АЭС – самая крупная по единичной мощности энергоблоков среди всех строящихся в настоящее время АЭС в Китае. Ее генплан предусматривает возможность строительства четырех энергоблоков мощностью 1000 МВт каждый. Станция расположена между Пекином и Шанхаем на берегу Желтого моря. Строительные работы на площадке начались в 1998 году. Первый энергоблок АЭС с водо-водяным энергетическим реактором ВВЭР-1000/428 и турбиной К-1000-60/3000, запущенный в мае 2006 года, был сдан в эксплуатацию 2 июня 2007 года, а второй такой же блок – 12 сентября 2007 года. В настоящее время оба энергоблока атомной станции работают стабильно на 100% мощности и снабжают электроэнергией китайскую провинцию Цзянсу. Планируется строительство третьего и четвертого энергоблоков АЭС «Тяньвань».

В течение следующих 50 лет человечество будет потреблять энергии больше, чем было израсходовано за всю предыдущую историю. Сделанные ранее прогнозы о темпах роста энергопотребления и развитии новых энерготехнологий не оправдались: уровень потребления растет намного быстрее, а новые источники энергии заработают в промышленном масштабе и по конкурентоспособным ценам не ранее 2030 года. Все острее встает проблема нехватки ископаемых энергоресурсов. Возможности строительства новых гидроэлектростанций тоже весьма ограниченны. Не стоит забывать и о борьбе с «парниковым эффектом», накладывающей ограничения на сжигание нефти, газа и угля на тепловых электростанциях (ТЭС).

Решением проблемы может стать активное развитие ядерной энергетики, одной из самых молодых и динамично развивающихся отраслей глобальной экономики. Все большее количество стран сегодня приходят к необходимости начала освоения мирного атома.

В чем преимущества ядерной энергетики?

Огромная энергоемкость

1 килограмм урана с обогащением до 4%, используемого в ядерном топливе, при полном выгорании выделяет энергию, эквивалентную сжиганию примерно 100 тонн высококачественного каменного угля или 60 тонн нефти.

Повторное использование

Расщепляющийся материал (уран-235) выгорает в ядерном топливе не полностью и может быть использован снова после регенерации (в отличие от золы и шлаков органического топлива). В перспективе возможен полный переход на замкнутый топливный цикл, что означает полное отсутствие отходов.

Снижение «парникового эффекта

Интенсивное развитие ядерной энергетики можно считать одним из средств борьбы с глобальным потеплением. Ежегодно атомные станции в Европе позволяют избежать эмиссии 700 миллионов тонн СО2, а в Японии - 270 миллионов тонн СO2. Действующие АЭС России ежегодно предотвращают выброс в атмосферу 210 млн тонн углекислого газа. По этому показателю Россия находится на четвертом месте в мире.

Развитие экономики

Строительство АЭС обеспечивает экономический рост, появление новых рабочих мест: 1 рабочее место при сооружении АЭС создает более 10 рабочих мест в смежных отраслях. Развитие атомной энергетики способствует росту научных исследований и интеллектуального потенциала страны.

Интерактивное приложение "Сравнение источников генерации электроэнергии"

«К примеру, вы хотите увеличить энергетические мощности вашей страны. Какой источник генерации электроэнергии выбрать? Давайте сравним угольную генерацию, гидроэлектростанцию, ветровую и солнечную электростанции, а также определим основные преимущества атомной энергетики. Запустите работу приложения и определите для себя оптимальный источник энергии для строительства».

Запустите видео, демонстрирующее основные возможности интерактивного приложения "Сравнение источников генерации электроэнергии":

Для работы с приложением:
1. Скачайте приложение по ссылке ниже.
2. Найдите с помощью файлового менеджера на своем компьютере исполняемый файл "ros-atom.exe" и запустите его.
3. Для корректного отображения изображения, установите расширение экрана 1920 х 1080.
4. Нажмите «Play!» для запуска приложения.

Важно! Для корректной работы приложения, пожалуйста, используйте компьютер на базе процессора i7, с операционной системой Windows 7 или 10х64, оперативной памятью не ниже 8 Gb, видеокартой не менее GTX77 и 128 Gb SSD.