Тепловой эффект реакции обмена. Определение теплового эффекта химической реакции. Тепловой эффект химической реакции

Любая химическая реакция сопровождается выделением или поглощением энергии обычно в виде теплоты. Раздел химической термодинамики, изучающий тепловые эффекты химических процессов, называется термохимией. Тепловые эффекты реакций можно определить как экспериментально, так и с помощью термохимических расчетов.

Тепловым эффектом химической реакции называется количество теплоты, выделенное или поглощенное в результате химического взаимодействия. Реакции, сопровождающиеся выделением теплоты, называются экзотермическими, сопровождающиеся поглощением теплоты – эндотермическими .

Подавляющее большинство химических реакций – изобарные процессы. Поэтому целесообразно оценивать энергетический или тепловой эффект реакции изменением энтальпии системы. Тепловой эффект реакции, протекающей при постоянном давлении, равен изменению энтальпии системы Q p = ΔH .

В экзотермических реакциях теплота выделяется в окружающее пространство, энтальпия или внутренняя энергия системы уменьшается и значения ΔH и ΔU для них отрицательны (ΔН < 0, ΔU < 0). В эндотермических реакциях теплота поглощается из окружающего пространства, энергосодержание системы увеличивается и изменения Δ H и ΔU положительны (ΔН > 0, ΔU > 0).

Уравнения химических реакций, в которых указаны тепловые эффекты и агрегатные состояния веществ называют термохимическими уравнениями .

В термохимических уравнениях указывается также фазовое состояние и полиморфная модификация реагирующих и образующихся веществ: (г) – газовое, (ж) – жидкое, (к) – кристаллическое, (т) – твердое, (р) – растворенное и др.

Например, термохимическое уравнение синтеза воды имеет вид

2Н 2(г) + О 2(г) = 2Н 2 О (ж) ; ΔH 0 298 = -571,6 кДж

из уравнения следует, что реакция является экзотермической (ΔН < 0) и при взаимодействии 2 моль водорода и 1 моль кислорода образуется 2 моль воды и выделяется 571,6 кДж теплоты.

По термохимическим уравнениям реакций можно проводить различные расчеты. Для решения задач по термохимическим уравнениям нужно записать уравнение протекающей реакции, затем на основе данных составить пропорцию и решить ее.

Пример №1. Вычислите по термохимическому уравнению

4Р (к) + 5О 2(г) = 2Р 2 О 5(к) ; ΔH= –3010кДж

количество телоты, выделяемой при сгорании 6,2 г фосфора.

Решение: Рассчитаем количество вещества фосфора:

n(P) = m(P)/M(P) = 6,2/31 = 0,2 моль

Составим пропорцию и найдем количество теплоты:

при сгорании 4 моль Р - выделяется 3010 кДж теплоты;

при сгорании 0,2 моль Р - выделяется X кДж теплоты;

4/0,2 = 3010/ X; X = (0,2 · 3010)/4 = 150,5 кДж.

Пример №2. Составьте термохимическое уравнение реакции горения магния, если известно, что при сгорании 6 г магния выделилось 153,6 кДж теплоты.

Решение. Рассчитаем количество вещества сгоревшего магния:

n(Mg) = m(Mg)/M(Mg) = 6/24 = 0,25 моль.

Составим уравнение реакции горения:

2Mg (т) + O 2(г) = 2MgO (т)

найдем количество теплоты, которое выделяется при сгорании 2 моль:

при сгорании 0,25 моль магния - выделяется 153,6 кДж;

при сгорании 2 моль магния - выделяется X кДж теплоты;

0,25/2 = 153,6/X; X = (2 · 153,6)/0,254 = 1228,8 кДж.

Следовательно, термохимическое уравнение реакции имеет вид

2Mg (т) + O 2(г) = 2MgO (т) ; ΔH = –1228,8 кДж

Пример №3. По термохимическому уравнению

С (т) + О 2(г) = СО 2 (г) ; ΔH = – 394 кДж

Определите, сколько литров оксида углерода (IV) (н.у.) образуется, если выделяется 591 кДж теплоты?

Решение. Рассчитаем, при образовании какого количества оксида углерода (IV) выделяется 591 кДж теплоты. Исходя из уравнения реакции составим пропорцию:

При образовании 1 моль СО 2 (н.у.) выделяется 394 кДж теплоты;

При образовании X моль СО 2 (н.у.) выделяется 591 кДж теплоты;

1/X = 394/591; X = 591/394 = 1,5 моль СО 2 (н.у.).

По следствию из закона Авогадро: 1 моль любого газа (при н.у.) занимает объем 22,4 л, составим пропорцию:

1 моль СО 2 (н.у.) занимает объем 22,4 л;

1,5 моль СО 2 (н.у.) занимают X л;

1/1,5 = 22,4/X; X = 1,5 · 22,4/1 = 33,6 л.

Для того, чтобы можно было сравнить тепловые эффекты различных процессов термохимические расчеты обычно относят к 1 моль вещества и стандартным состояниям и условиям. За стандартные условия приняты: давление 101 325 Па и температура 25 0 С (298 К). Стандартным состоянием вещества является состояние, устойчивое при стандартных условиях. Тепловой эффект при стандартных условиях называется стандартным тепловым эффектом реакции и обозначается ΔH 0 298 или ΔH 0 .

Основным законом термохимии является закон Г.И.Гесса (1841г.): тепловой эффект химического процесса зависит только от начального и конечного состояния веществ и не зависит от пути процесса, т.е. числа и характера промежуточных стадий.

Так, процесс превращения исходных веществ (состояние 1) в продукты (состояние 2) может быть осуществлен несколькими путями, представленными на рис.3;


Рис.3. Изменение энтальпии реакции с течением времени

По закону Гесса тепловой эффект процесса может быть рассчитан следующим образом:

ΔH 1 = ΔH 2 + ΔH 3 + ΔH 4 + ΔH 5 = ΔH 6 + ΔH 7

тепловой эффект реакции равен разности суммы энтальпий образования продуктов реакции и суммы энтальпий образования исходных веществ с учетом стехиометрических коэффициентов:

ΔH 0 = ∑ΔH 0 f прод - ∑ ΔH f исх.

Для расчета теплового эффекта реакции используют энтальпии (теплоты) образования веществ. Энтальпией образования называется тепловой эффект реакции образования 1 моль вещества из простых веществ.

Стандартные энтальпии образования обозначают ΔH 0 обр,298 или ΔH 0 f,298 , где индекс f - formation (образование). Часто один из индексов опускают. Стандартные энтальпии образования простых веществ, устойчивых в стандартных условиях (газообразный кислород O 2(г) , жидкий бром Br 2(ж) , кристаллический иод I 2(к) , ромбическая сера S (р) , углерод C (графит) и т.д.), равны нулю.

Стандартной энтальпией образования называется изменение энтальпии в реакции образования 1 моль химического соединения из простых веществ, измеренное в стандартных условиях.

С помощью термохимических расчетов можно определить тепловой эффект реакций, энергию химических связей, энергию кристаллической решетки, межмолекулярного взаимодействия, энтальпию растворения и сольватации (гидратации), энергетические эффекты фазовых превращений и т.д.

Значения стандартных энтальпий образования ряда веществ приведены в Приложении 1.

Пример №4. На основаниизначений стандартной энтальпии образования вычислите тепловой эффект реакции, сделайте вывод, экзотермической или эндотермической она является:

Сu 2 S (к) + 2 O 2(г) = 2 CuO (к) + SO 2(г)

Решение. :

Согласно следствию из закона Гесса:

ΔH 0 = (2 ΔH 0 f, CuO (к) + ΔH 0 f, SO 2(г)) - (ΔH 0 f, Cu 2 S(к) + 2 ΔH 0 f, O 2(г)) =

= – (-82,01 + 2 · 0) = -545,5 кДж.

Так как ΔH 0 < 0, следовательно, реакция экзотермическая, сопровождается выделением 545,5 кДж тепла.

Пример №5. Рассчитайте тепловой эффект реакции взаимодействия кристаллического оксида алюминия и газообразного оксида серы (IV):

Al 2 O 3(к) + 3 SO 3(г) = Al 2 (SO 4) 3(к)

Решение.

ΔH 0 = ΔH 0 f, Al 2 (SO 4) 3 (к) – ( ΔH 0 f, Al 2 O 3 (к) + 3 ΔH 0 f, SO3(г)) =

= (-3442,2) – [(1676,0 + 3(-396,1)] = -577,9 кДж.

Так как ΔH 0 < 0, следовательно, реакция экзотермическая, сопровождается выделением 577,9 кДж энергии.

2H 2 S (г) + CO 2(г) = CS 2(г) + 2H 2 O (г)

Решение. Выпишем из Прил. 1 значения стандартных энтальпий образования веществ

Тепловой эффект реакции в стандартных условиях определяется:

ΔH 0 = [ ΔH 0 f, CS2 (г) + 2ΔH 0 f, H2 O (г) ] – =

= – = 65,33 кДж

Тепловой эффект реакции составляет ΔH 0 = 65,33 кДж, так как ΔH 0 > 0, следовательно, реакция эндотермическая, протекает с поглощением тепла.

Пример №7. Определить тепловой эффект растворения КОН.

КОН (к) = К + (р) + ОН - (р)

Решение. Выпишем из Прил. 1 значения стандартных энтальпий образования веществ

ΔH 0 раств. = (ΔH 0 f , К(к) + + ΔH 0 f, ОН(р) -) - ΔH 0 f, КОН(к) ) =[(-251,2) + (230,2)] – (-425,8) = -55,6 кДж

Процесс растворения щелочи экзотермический, сопровождается выделением 55,6 кДж.

Пример №8. Определитетепловой эффект фазового перехода:

SO 3(ж) = SO 3(г)

Решение: Выпишем из Прил. 1 значения стандартных энтальпий образования.

Соединение…………. SO 3 (ж) SO 3 (г)

ΔH 0 f , кДж/моль…….. -439,0 -396,1

Тепловой эффект фазового перехода рассчитывается по уравнению:

ΔH 0 исп. = (ΔH 0 f , SO3 (г)) – (ΔH 0 f , SO3 (ж) ) = (-396,1) – (-439,0) = 42,9 кДж

Процесс испарения оксида серы (VI) эндотермический, требует затраты энергии в 42,9 кДж.

Или изменение энтальпии системы вследствие протекания химической реакции - отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

  • Реакция должна протекать либо при постоянном объёме Q v (изохорный процесс), либо при постоянном давлении Q p (изобарный процесс).
  • В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔH r O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Стандартная энтальпия образования (стандартная теплота образования)

Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивых стандартных состояниях .

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

С(тв) + 2H 2 (г) = CH 4 (г) + 76 кДж/моль.

Стандартная энтальпия образования обозначается ΔH f O . Здесь индекс f означает formation (образование), а перечеркнутый кружок, напоминающий диск Плимсоля - то, что величина относится к стандартному состоянию вещества. В литературе часто встречается другое обозначение стандартной энтальпии - ΔH 298,15 0 , где 0 указывает на равенство давления одной атмосфере (или, несколько более точно, на стандартные условия ), а 298,15 - температура. Иногда индекс 0 используют для величин, относящихся к чистому веществу , оговаривая, что обозначать им стандартные термодинамические величины можно только тогда, когда в качестве стандартного состояния выбрано именно чистое вещество . Стандартным также может быть принято, например, состояние вещества в предельно разбавленном растворе. «Диск Плимсоля» в таком случае означает собственно стандартное состояние вещества, независимо от его выбора.

Энтальпия образования простых веществ принимается равной нулю, причем нулевое значение энтальпии образования относится к агрегатному состоянию, устойчивому при T = 298 K. Например, для йода в кристаллическом состоянии ΔH I 2 (тв) 0 = 0 кДж/моль, а для жидкого йода ΔH I 2 (ж) 0 = 22 кДж/моль. Энтальпии образования простых веществ при стандартных условиях являются их основными энергетическими характеристиками.

Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствие закона Гесса):

ΔH реакции O = ΣΔH f O (продукты) - ΣΔH f O (реагенты)

Термохимические эффекты можно включать в химические реакции. Химические уравнения в которых указано количество выделившейся или поглощенной теплоты, называются термохимическими уравнениями. Реакции, сопровождающиеcя выделением тепла в окружающую среду имеют отрицательный тепловой эффект и называются экзотермическими . Реакции, сопровождающиеся поглощением тепла имеют положительный тепловой эффект и называются эндотермическими . Тепловой эффект обычно относится к одному молю прореагировавшего исходного вещества, стехиометрический коэффициент которого максимален.

Температурная зависимость теплового эффекта (энтальпии) реакции

Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т 1 до Т 2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений):

Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:

где ΔC p (T 1 ,T f) - изменение теплоемкости в интервале температур от Т 1 до температуры фазового перехода; ΔC p (T f ,T 2) - изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и T f - температура фазового перехода.

Стандартная энтальпия сгорания - ΔH гор о, тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

Стандартная энтальпия растворения - ΔH раств о, тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава - гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс - ΔH реш > 0, а гидратация ионов - экзотермический, ΔH гидр < 0. В зависимости от соотношения значений ΔH реш и ΔH гидр энтальпия растворения может иметь как положительное, так и отрицательное значение. Так растворение кристаллического гидроксида калия сопровождается выделением тепла:

ΔH раствKOH о = ΔH реш о + ΔH гидрК + о + ΔH гидрOH − о = −59 КДж/моль

Под энтальпией гидратации - ΔH гидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.

Стандартная энтальпия нейтрализации - ΔH нейтр о энтальпия реакции взаимодействия сильных кислот и оснований с образованием 1 моля воды при стандартных условиях:

HCl + NaOH = NaCl + H 2 O H + + OH − = H 2 O, ΔH нейтр ° = −55,9 кДж/моль

Стандартная энтальпия нейтрализации для концентрированных растворов сильных электролитов зависит от концентрации ионов, вследствие изменения значения ΔH гидратации ° ионов при разбавлении.

Примечания

Литература

  • Кнорре Д. Г., Крылова Л. Ф., Музыкантов В. С. Физическая химия. - М. : Высшая школа, 1990
  • Эткинс П. Физическая химия. - Москва. : Мир, 1980

Wikimedia Foundation . 2010 .

  • Ненюков, Дмитрий Всеволодович
  • Witching Hour

Смотреть что такое "Тепловой эффект химической реакции" в других словарях:

    тепловой эффект химической реакции - Теплота, поглощаемая (выделяемая) в результате химического превращения исходных веществ в продукты реакции в количествах, соответствующих уравнению химической реакции при следующих условиях: 1) единственно возможной работой при этом является… … Справочник технического переводчика

    Тепловой эффект химической реакции - –теплота, поглощаемая (выделяемая) в результате химического превращения исходных веществ в продуктыреакции в количествах, соответствующих уравнению химической реакции при следующих условиях: … … Энциклопедия терминов, определений и пояснений строительных материалов

    тепловой эффект химической реакции - тепловой эффект химической реакции; тепловой эффект Сумма теплоты, поглощенной системой, и всех видов работы, совершенных над ней, кроме работы внешнего давления, причем все величины отнесены к одинаковой температуре начального и конечного… …

    тепловой эффект - химической реакции; тепловой эффект Сумма теплоты, поглощенной системой, и всех видов работы, совершенных над ней, кроме работы внешнего давления, причем все величины отнесены к одинаковой температуре начального и конечного состояний системы … Политехнический терминологический толковый словарь

    ТЕПЛОВОЙ ЭФФЕКТ РЕАКЦИИ - количество теплоты, выделяемой или поглощаемой системой при химической реакции. Тепловой эффект работы равен изменению внутренней энергии системы при постоянном объеме или изменению ее энтальпии при постоянном давлении и отсутствии работы внешних … Большой Энциклопедический словарь

    тепловой эффект реакции - количество теплоты, выделяемой или поглощаемой системой при химической реакции. Тепловой эффект реакции равен изменению внутренней энергии системы при постоянном объёме или изменению её энтальпии при постоянном давлении и отсутствии работы… … Энциклопедический словарь

    тепловой эффект реакции - количество теплоты, выделенное или поглощенное в термодинамической системе в ходе протекания химической реакции при условии, что система не совершает работы, кроме работы против внешнего давления, а температура… … Энциклопедический словарь по металлургии

    Тепловой эффект реакции - алгебраическая сумма теплоты, поглощённой при данной реакции химической (См. Реакции химические), и совершенной внешней работы за вычетом работы против внешнего давления. Если при реакции теплота выделяется или работа совершается системой … Большая советская энциклопедия

    изобарный тепловой эффект - Тепловой эффект химической реакции, протекающей при постоянном давлении … Политехнический терминологический толковый словарь

    изохорный тепловой эффект - Тепловой эффект химической реакции, протекающей при постоянном объеме … Политехнический терминологический толковый словарь

При протекании химической реакции происходит перестройка химических связей в молекулах, переход из одного агрегатного состояния в другое и т.д. Все это приводит к изменению внутренней энергии системы. При этом система может совершать работу и обмениваться энергией с окружающей средой. Поскольку все виды энергии можно свести к эквивалентному количеству теплоты, то в химической термодинамике говорят о тепловом эффекте химической реакции.

Тепловой эффект химической реакции – количество теплоты, которое выделяется или поглощается в ходе реакции при выполнении следующих условий:

Процесс протекает необратимо при постоянном объеме или давлении;

В системе не совершается никаких работ, кроме работы расширения;

Продукты реакции имеют ту же температуру, что и исходные вещества.

Согласно первому началу термодинамики тепловой эффект реакции равен: DQ =DU + p× DV. Поскольку теплота не является функцией состояния, то величина теплового эффекта химической реакции зависит от условий осуществления (пути) процесса. Различают тепловой эффект химической реакции, проведенной в изохорных условиях (DQ V =DU V ) и в изобарных (DQ p =DU p + p× DV =DН ).

Очевидно, что DQ p –DQ V =DV . Для реакций, протекающих в конденсированной фазе (жидкости, твердые вещества), DV »0, а DQ p » DQ V .

Чаще всего химические реакции проводят при постоянном давлении, поэтому при проведении термодинамических расчетов обычно используют тепловой эффект при постоянном давлении DQ p . В этом случае он соответствует изменению энтальпии системы в ходе реакции DQ p =D r Н (индекс r указывает на изменение термодинамической функции, в данном случае энтальпии, в ходе химической реакции).

Реакции, протекающие с выделением теплоты в окружающую среду, называются экзотермическими , а реакции, протекающие с поглощением теплоты из окружающей среды, – эндотермическими . Так как тепловой эффект реакции соответствует изменению энтальпии системы, то очевидно, что для экзотермических процессов D r Н <0, а для эндотермических D r Н >0.

Поскольку для химических реакций, протекающих в изобарных или изохорных условиях, теплота приобретает свойства функции состояния , то можно утверждать, что тепловой эффект реакции зависит только от вида и состояния исходных веществ и конечных продуктов и не зависит от пути превращения одних веществ в другие (промежуточных стадий). Это утверждение можно рассматривать как приложение первого начала термодинамики к химическим реакциям. Оно называется законом Гесса и является основным законом термохимии.

Г.И. Гесс (СПб Академия наук) опытным путем установил, что «если из одних исходных веществ можно получить некоторые другие вещества несколькими способами, то суммарное количество тепла, выделившееся при образовании этих веществ, будет всегда одним и тем же, независимо от способа получения».

Пример. Рассмотрим реакцию взаимодействия одного моля углерода (графит) и кислорода с образованием диоксида углерода при температуре Т =298 К.

Данный процесс можно осуществить двумя путями:

1) C(графит) + O 2 = CO 2 ; D r Н 1 = –393,51 кДж;

2) C(графит) + 0,5O 2 = CO; D r Н 2 = –110,53 кДж;

CO + 0,5O 2 = CO 2 ; D r Н 3 = –282,98 кДж.

Рис. 5‑3 Диаграмма изменения энтальпии системы при взаимодействии одного моля углерода с кислородом с образованием диоксида углерода

Диаграмма изменения энтальпии системы приведена на рис.5.3. Из нее видно, что D r Н 1 =D r Н 2 + D r Н 3 . Если неизвестен тепловой эффект одной из реакций, то его можно вычислить, зная остальные. Например, если известны D r Н 1 и D r Н 3 , то D r Н 2 =D r Н 1 –D r Н 3 .

Таким образом, используя закон Гесса, можно рассчитывать тепловые эффекты химических реакций в тех случаях, когда их экспериментальное определение невозможно или затруднено. Более того, на основе имеющихся экспериментальных данных для относительно небольшого числа химических реакций можно проводить термодинамические расчеты как реально протекающих, так и гипотетических процессов.

Тепловой эффект реакции в общем случае учитывает переход определенного числа молей исходного вещества в определенное число молей конечного вещества, согласно уравнению реакции. В этом случае численное значение теплового эффекта относится к уравнению конкретной химической реакции и его размерность [кДж]. Уравнение химической реакции, включающее в себя ее тепловой эффект, называется термохимическим уравнением .

Часто тепловой эффект реакции относят к превращениям одного моля какого-либо вещества. Стехиометрический коэффициент в уравнении реакции у данного вещества равен единице, а коэффициенты у других веществ могут быть как целыми, так и дробными. В этом случае размерность теплового эффекта [кДж/моль]. Принято тепловые эффекты реакций образования одного моля вещества обозначать D f Н , а тепловые эффекты реакций сгорания одного моля вещества – D c Н .

Цель работы: определить опытным путем тепловые эффекты процессов растворения из полученных данных, пользуясь законом Гесса, рассчитать теплоты гидратации солей.

Теоретическая часть.

Все химические реакции сопровождаются выделением или поглощением энергии, чаще всего в виде тепла Количество последней может быть измерено и выражено в единицах энергии (Дж, кал и т.д.)

Разница первоначального и конечного уровней энергии системы представляет собой энергетический эффект или изменение энтальпии реакции, который обозначается ΔН r .

При экзотермических реакциях система с большим запасом энергии переходит в состояние с меньшим запасом энергии. Такие реакции сопровождаются выделением тепла, и их тепловой эффект считается отрицательным (ΔН r <0).

При эндотермических реакциях, наоборот, система с меньшим запасом энергии переходит в состояние с более высоким запасом энергии. Такие реакции сопровождаются поглощением тепла, и их тепловой эффект принято считать положительным (ΔН r >0).

Для термохимических расчетов большое значение имеют величины энтальпий образования веществ.

Под энтальпией образования вещества понимается изменение энтальпии реакции образования одного моля сложного вещества из простых веществ, например:

90,4 кДж/моль;

Верхний и нижний индексы при ΔН указывают на то, что энтальпия образования приведена к стандартным условиям (давление 101325 Па или 1 атм и температура 298 К или 25 0 С).

Значения энтальпий образования веществ приведены в таблицах термодинамических потенциалов.

Термохимические расчеты основаны на использовании закона Гесса и вытекающих из него следствий :

1. Тепловой эффект химического процесса равен сумме тепловых эффектов всех промежуточных стадий процесса.

Например, процесс получения двуокиси углерода из угля и кислорода может быть проведен в одну стадию:

С(т) + О 2 (г) = СО 2 (г) ΔН r = -94 ккал

Но этот же процесс можно провести в две стадии:

С(т) + 1/2 О 2 (г) -= СО(г) ΔН r = -26,4 ккал

CO(г) + 1/2O 2 (г) = CO 2 (г) ΔН r =-67,6 ккал

Согласно закону Гесса, сумма тепловых эффектов двух последних реакций должна равняться тепловому эффекту первой реакции, что и наблюдается в действительности: {-26,4-67,6 = -94 (ккал)}.

2. Тепловой эффект химической реакции равен разности теплот образования конечных и исходных участников реакции, умноженных на их стехиометрические коэффициенты (т.e. коэффициенты перед формулами данных веществ в уравнении реакции).

Например, реакция горения пропана протекает по схеме:

С 3 Н 8 (г) + 5О г (г) = ЗСО 2 (г) + 4Н 2 О(г)

Теплоты образования и соответственно равны -103,8; -393,6 и-241,9 кДж/моль.



Тепловой эффект реакции горения С 3 Н 8 (г) рассчитывается по формуле:

Практическая часть

Методика проведения опытов:

Для определения тепловых эффектов процессов, протекающих в водных растворах, используют простейший калориметр, приведенный на рис 2.1.

Рис.2.1. Схема калориметра:

1- внешний стакан калориметра; 2 -внутренний стакан калориметра, 3 - теплоизолирующая прокладка; 4-термометр; 5 - мешалка.

Так как слой воздуха, находящийся между стенками внешнего и внутреннего стаканов калориметра, является хорошим теплоизолятором, то все тепло, выделяющееся (или поглощающееся) в результате протекания реакции, идет на нагревание (или охлаждение) реакционной смеси и внутреннего стакана калориметра. Экспериментально определяется изменение температуры реакционной смеси, сопровождающее данный процесс. Для этого во внутренний стакан калориметра отмеривают с помощью мерного цилиндра 25 - 30 мл воды и измеряют начальную температуру t нач. с помощью термометра, который помещают непосредственно в жидкость, следя, чтобы он не касался дна и стенок внутреннего стакана (см. рис.1).

Не вынимая термометра из жидкости, во внутренний стакан засыпают сухую соль. Раствор перемешивают мешалкой до полного растворения, следя одновременно за показаниями термометра. Температура в ходе процесса может повышаться или понижаться. Конечную температуру t кон. фиксируют в тот момент, когда столбик термометра останавливается.

Все данные, необходимые для расчетов, сводят в таблицу (форма таблицы дана в описании опытов).

Тепловой эффект процесса, протекающего в калориметре, рассчитывается по формуле:

где С р. ра - удельная теплоемкость раствора, находящегося во внутреннем стакане калориметра, которую можно принять равной удельной теплоемкости воды С н 0 - 4,18 Дж/г град;

т р-ра - масса раствора во внутреннем стакане калориметра, г;

С кал - удельная теплоемкость внутреннего стакана калориметра;

т кал - масса калориметра;

Δt - изменение температуры в ходе опыта, град С.

Учитывая, что удельная теплоёмкость стекла, из которого сделан внутренний стакан калориметра, мала, вторым слагаемым можно пренебречь, тогда формула для расчета теплового эффекта примет вид:

Опыт №1 . Определение мольной теплоты растворения соли.

Опыт проводят согласно описанию с выданной преподавателем навеской соли. Химическая формула соли и ее масса указаны на обертке навески. Данные, необходимые для расчета, сводят в таблицу 2.1.

Таблица 2.1. Параметры для расчета мольной теплоты растворения соли.


Мольную теплоту растворения, то есть теплоту, выделяющуюся или поглощающуюся при растворении в воде 1 моля соли, рассчитывают по формуле:

Пользуясь приведенной в конце работы таблицей, в которой приведены теоретические значения мольных теплот растворения некоторых солей, рассчитайте относительную погрешность определения:

Опыт №2. Определены мольной теплоты гидратации соли .

Гидратацией называют процесс присоединения к соли определенного количества молекул воды с образованием кристаллогидрата данной соли, например:

Na 2 СO 3 + l0H 2 O = Na 2 CO 3 · 10Н 2 О.

Для определения мольной теплоты гидратации в воде растворяют сначала навеску

безводной соли:

Na 2 СO 3 + п H 2 O = Na 2 CO 3 · п Н 2 О; ΔНрастворения безв.соли

а затем навеску кристаллогидрата данной соли

Na 2 CO 3 · 10Н 2 О + (п -10)H 2 O = Na 2 CO 3 · п Н 2 О; ΔНрастворения кристаллогидрата

Оба процесса проводят согласно описанию, данному в практической части, и данные вносят в таблицу 2.1.

Пользуясь формулой для расчета мольной теплоты растворения, приведенной в 1-ом опыте, рассчитывают ΔН растворения безводной соли и кристаллогидрата.

Теплоту гидратации вычисляют, пользуясь законом Гесса:

ΔНрастворения безв.соли = ΔНгидратации + ΔНрастворения кристаллогидрата

Относительную погрешность определения рассчитывают исходя из данных табл.2.

Таблица 2.2. Мольные теплоты растворения и гидратации для некоторых солей и кристаллогидратов

Формула соли или кристаллогидрата ΔНгидратации, кДж/моль ΔНрастворения, кДж/моль
CuSO 4 · 5Н 2 О 77,8 +10,50
ZnSO 4 · 7H 2 O -95,0 +18,87
K 2 Cr 2 0 7 +70,0
Na 2 CO 3 безв. -25.0
MgSO 4 -84,8
СаС1 2 -72,8
Na 2 SO 4 ·10H 2 O 80,5
NH 4 NO 3 +26,8
Na 2 S 2 O 3 +27,6

Выводы:

в выводах каждого опыта должно быть указано, какой тип реакций - экзо- или эндотермическая - наблюдается для данной соли и на основании чего можно сделать такое заключение.

Лабораторная работа №3

Стандартной теплотой образования (энтальпией образования) вещества называется энтальпия реакции образования 1 моля этого вещества из элементов (простых веществ, то есть состоящих из атомов одного вида), находящихся в наиболее устойчивом стандартном состоянии. Стандартные энтальпии образования веществ (кДж/моль) приводятся в справочниках. При использовании справочных значений необходимо обращать внимание на фазовое состояние веществ, участвующих в реакции. Энтальпия образования наиболее устойчивых простых веществ равна 0.

Следствие из закона Гесса о расчете тепловых эффектов химических реакций по теплотам образования : стандартный тепловой эффект химической реакции равен разности теплот образования продуктов реакции и теплот образования исходных веществ с учетом стехиометрических коэффициентов (количества молей) реагентов :

CH 4 + 2 CO = 3 C ( графит ) + 2 H 2 O.

газ газ тв. газ

Теплоты образования веществ в указанных фазовых состояниях приведены в табл. 1.2.

Таблица 1.2

Теплоты образования веществ

Р е ш е н и е

Так как реакция проходит при P = const, то стандартный тепловой эффект находим в виде изменения энтальпии по известным теплотам образования по следствию из закона Гесса (формула (1.17):

ΔН о 298 = { 2 · (–241,81) + 3·0} – {–74,85 + 2 · (–110,53)} = –187,71 кДж = = –187710 Дж.

ΔН о 298 < 0, реакция является экзотермической, протекает с выделением теплоты.

Изменение внутренней энергии находим на основании уравнения (1.16):

ΔU о 298 = ΔH о 298 Δ ν · RT .

Для данной реакции изменений числа молей газообразных веществ за счет прохождения химической реакции Δν = 2 – (1 + 2) = –1; Т = 298 К, тогда

Δ U о 298 = –187710 – (–1) · 8,314· 298 = –185232 Дж.

Расчет стандартнвх тепловых эффектов химических реакций по стандартным теплотам сгорания веществ, участвующих в реакции

Стандартной теплотой сгорания (энтальпией сгорания) вещества называется тепловой эффект полного окисления 1 моля данного вещества (до высших оксидов или специально указываемых соединений) кислородом при условии, что исходные и конечные вещества имеют стандартную температуру. Стандартные энтальпии сгорания веществ
(кДж/моль) приводятся в справочниках. При использовании справочной величины необходимо обратить внимание на знак величины энтальпии реакции сгорания, которая всегда является экзотермической (Δ H <0), а в таблицах указаны величины
.Энтальпии сгорания высших оксидов (например, воды и диоксида углерода) равны 0.

Следствие из закона Гесса о расчете тепловых эффектов химических реакций по теплотам сгорания : стандартный тепловой эффект химической реакции равен разности теплот сгорания исходных веществ и теплот сгорания продуктов реакции с учетом стехиометрических коэффициентов (количества молей) реагентов:

C 2 H 4 + H 2 O = С 2 Н 5 ОН.