Расчет тепловая схема геотермальной электростанции бинарного типа. Геотермальная энергетика: технологии и оборудование. Преобразование геотермальной энергии в электрическую и тепловую

Ресурсы геотермальной энергии на территории России имеют значи­тельный промышленный потенциал, в том числе и энергетический. Запасы тепла Земли с температурой 30-40 °С (рис. 17.20, см. цветную вклейку) имеются практически на всей территории России, а в отдельных регионах имеются геотермальные ресурсы с температурой до 300 °С. В зависимо­сти от температуры геотермальные ресурсы используются в различных отраслях народного хозяйства: электроэнергетике, теплофикации, про­мышленности, сельском хозяйстве, бальнеологии.

При температурах геотермальных ресурсов свыше 130 °С возможно получение электроэнергии на одноконтурных геотермальных электро­станциях (ГеоЭС). Однако ряд регионов России располагают значитель­ными запасами геотермальных вод с более низкой температурой порядка 85 °С и выше (рис. 17.20, см. цветную вклейку). В этом случае можно полу­чить электроэнергию на ГеоЭС с бинарным циклом. Бинарные электриче­ские станции - это двухконтурные станции с использованием в каждом контуре своего рабочего тела. К бинарным также иногда относят одно­контурные станции, которые работают на смеси двух рабочих тел - аммиака и воды (рис. 17.21, см. цветную вклейку).

Первые геотермальные электростанции в России были построены на Камчатке в 1965-1967 гг.: Паужетская ГеоЭС, которая работает и в настоящее время производит самую дешевую электроэнергию на Кам­чатке, и Паратунская ГеоЭС с бинарным циклом. В дальнейшем в мире было построено около 400 ГеоЭС с бинарным циклом.

В 2002 г. введена в эксплуатацию на Камчатке Мутновская ГеоЭС с двумя энергоблоками общей мощностью 50 МВт.

Технологической схемой электростанции предусмотрено использова­ние пара, получаемого двухступенчатой сепарацией пароводяной смеси, забираемой из геотермальных скважин.

После сепарации пар с давлением 0,62 МПа и степенью сухости 0,9998 поступает на двухпоточную паровую турбину, имеющую восемь ступе­ней. В паре с паровой турбиной работает генератор номинальной мощно­стью 25 МВт и напряжением 10,5 кВ.

Для обеспечения экологической чистоты в технологической схеме электростанции предусмотрена система закачки конденсата и сепарата обратно в земные пласты, а также предотвращения выбросов сероводо­рода в атмосферу.

Геотермальные ресурсы широко используются для теплоснабжения, особенно при прямом использовании горячей геотермальной воды.

Низкопотенциальные геотермальные источники тепла с температурой or 10 до 30 °С целесообразно использовать с помощью тепловых насосов. Тепловой насос - машина, предназначенная для передачи внутренней энергии от теплоносителя с низкой температурой к теплоносителю с высокой температурой с помощью внешнего воздействия для совершения работы. В основе принципа работы теплового насоса лежит обратный цикл Карно.

Тепловой насос, потребляя) кВт электрической мощности, выдает в систему теплоснабжения от 3 до 7 кВт тепловой мощности. Коэффициент трансформации изменяется в зависимости от температуры низкопотенци­ального геотермального источника.

Тепловые насосы нашли широкое применение во многих странах мира. Наиболее мощная теплонасосная установка работает в Швеции тепловой мощностью 320 МВт и использует тепло воды Балтийского моря.

Эффективность использования теплового насоса определяется в основном соотношением цен на электрическую и тепловую энергию, а также коэффициентом трансформации, обозначающим, во сколько раз больше производится тепловой энергии по сравнению с затраченной электрической (или механической) энергией.

Наиболее экономична работа тепловых насосов в период прохождения" минимальных нагрузок в энергосистеме. Их работа может способство­вать выравниванию графиков электрической нагрузки энергосистемы.

Литература для самостоятельного изучения

17.1.Использование водной энергии: учебник для вузов / под ред. Ю.С. Васильева. -
4-е изд., перераб. и доп. М.: Энергоатомиздат, 1995.

17.2.Васильев Ю.С, Виссарионов В.И., Кубышкин Л.И. Решение гидроэнергетиче­
ских задач на ЭВМ. М.: Энергоатомиздат, 1987.

17.3.Непорожний П.С., Обрезков В,И. Введение в специальность. Гидроэлектроэнерге­
тика: учебное пособие для вузов. - 2-е изд.. перераб. и доп. М: Энергоатомиздат,
1990.

17.4.Водно-энергетические и водохозяйственные расчеты: учебное пособие для вузов /
под ред. В.И. Виссарионова. М.: Издательство МЭИ, 2001.

17.5.Расчет ресурсов солнечной энергетики: учебное пособие для вузов / под ред.
В.И. Виссарионова. М.: Издательство МЭИ, 1997.

17.6.Ресурсы и эффективность использования возобновляемых источников энергии
в России / Коллектив авторов. СПб.: Наука, 2002.

17.7.Дьяков А.Ф., Перминов Э.М., Шакарян Ю.Г. Ветроэнергетика России. Состояние
и перспективы развития. М.: Издательство МЭИ, 1996.

17.8.Расчет ресурсов ветроэнергетики: учебное пособие для вузов / под ред. В.И. Висса­
рионова. М.: Издательство МЭИ, 1997.

17.9.Мутновский геотермальный электрический комплекс на Камчатке / О.В. Бритвин,

3.4 РАСЧЕТ ГЕОТЕРМАЛЬНОЙ ЭЛЕКТРОСТАНЦИИ

Произведем расчет тепловой схемы геотермальной электростанции бинарного типа, согласно .

Наша геотермальная электростанция состоит из двух турбин:

Первая работает на насыщенном водяном паре, полученном в расширителе. Электрическая мощность - ;

Вторая работает на насыщенном паре хладона R11, который испаряется за счет тепла воды, отводимый из расширителя.

Вода из геотермальных скважин с давлением pгв температурой tгв поступает в расширитель. В расширителе образуется сухой насыщенный пар с давлением pp. Этот пар направляется в паровую турбину. Оставшаяся вода из расширителя идет в испаритель, где охлаждается на и заканчивается обратно в скважину. Температурный напор в испарительной установке = 20°С. Рабочие тела расширяются в турбинах и поступают в конденсаторы, где охлаждаются водой из реки с температурой tхв. Нагрев воды в конденсаторе = 10°С, а недогрев до температуры насыщения = 5°С.

Относительные внутренние КПД турбин. Электромеханический КПД турбогенераторов = 0,95.

Исходные данные приведены в таблице 3.1.

Табл. 3.1. Исходные данные для расчета ГеоЭС

Принципиальная схема ГеоЭС бинарного типа (рис. 3.2).

Рис. 3.2. Принципиальная схема ГеоЭС.

Согласно схеме на рис. 3.2 и исходным данным проводим расчеты.

Расчет схемы паровой турбины, работающей на сухом насыщенном водяном паре

Температура пара при входе в конденсатор турбины:

где - температура охлаждающей воды на входе в конденсатор; - нагрев воды в конденсаторе; - температурный напор в конденсаторе.

Давление пара в конденсаторе турбины определяется по таблицам свойств воды и водяного пара :

Располагаемый теплоперепад на турбину :

где - энтальпия сухого насыщенного пара на входе в турбину; - энтальпия в конце теоретического процесса расширения пара в турбине.

Расход пара из расширителя на паровую турбину:

где - относительный внутренний КПД паровой турбины; - электромеханический КПД турбогенераторов.

Расчет расширителя геотермальной воды

Уравнение теплового баланса расширителя

где - расход геотермальной воды из скважины; - энтальпия геотермальной воды из скважины; - расход воды из расширителя в испаритель; - энтальпия геотермальной воды на выходе из расширителя. Определяется по таблицам свойств воды и водяного пара как энтальпия кипящей воды.

Уравнение материального баланса расширителя

Решая совместно эти два уравнения необходимо определить и.

Температура геотермальной воды на выходе из расширителя определяется по таблицам свойств воды и водяного пара как температура насыщения при давлении в расширителе:

Определение параметров в характерных точках тепловой схемы турбины, работающей в хладоне

Температура паров хладона на входе в турбину:

Температура паров хладона на выходе из турбины:

Энтальпия паров хладона на входе в турбину определяется по p-h диаграмме для хладона на линии насыщения при:

240 кДж/кг.

Энтальпия паров хладона на выходе из турбины определяется по p-h диаграмме для хладона на пересечении линий и линии температуры:

220 кДж/кг.

Энтальпия кипящего хладона на выходе из конденсатора определяется по p-h диаграмме для хладона на кривой для кипящей жидкости по температуре:

215 кДж/кг.

Расчет испарителя

Температура геотермальной воды на выходе из испарителя:

Уравнение теплового баланса испарителя:

где - теплоемкость воды. Принять =4,2 кДж/кг.

Из этого уравнения необходимо определить.

Расчет мощности турбины, работающей на хладоне

где - относительный внутренний КПД хладоновой турбины; - электромеханический КПД турбогенераторов.

Определение мощности насоса для закачки геотермальной воды в скважину

где - КПД насоса, принимается 0,8; - средний удельный объем геотермальной воды .

Электрическая мощность ГеоЭС

Альтернативные источники энергии. Грозовая электростанция

Расчет грозовой электростанции рассчитан, в первую очередь, на определение выходной мощности. Ведь задача любой электростанции заключается в максимальной энергетической эффективности, чтобы окупить средства на эксплуатацию и установку...

Производим основные расчеты производительности насосной секции. Итак, при волне в 1м тело, находящееся на плаву, поднимается вверх на 0,5 м, а затем опускается на 0,5 м. ниже спокойного уровня воды...

Виды и расчет волновой электростанции

Методика расчетов волновой электростанции описана в статье . В курсовом проекте рассмотрены основные формулы и пример расчета мощности волновой ГЭС при установленных параметрах. Максимальная возможная мощность в одном цикле прилив-отлив...

Возобновляемые источники энергии. Расчет, виды и задачи геотермальной электростанции

Существует несколько способов получения энергии на ГеоЭС: - прямая схема: пар направляется по трубам в турбины, соединённые с электрогенераторами; - непрямая схема: аналогична прямой схеме, но перед попаданием в трубы пар очищают от газов...

Геотермальная энергия

Еще 150 лет тому назад на нашей планете использовались исключительно возобновляемые и экологически безопасные источники энергии: водные потоки рек и морских приливов - для вращения водяных колес...

Геотермальная энергия

Геотермальная энергетика - получение тепловой или электрической энергии за счет тепла земных глубин. Экономически эффективна в районах...

Геотермальная энергия

Существует мнение, что использование низкотемпературной геотермальной энергии малых глубин можно рассматривать как революцию в системе теплообеспечения, основанную на неисчерпаемости ресурса, повсеместности его распространения...

Геотермальная энергия и ее применение

Рассмотрим управление современной ГеоТЭС на примере системы управления первой в Прибалтике показательной Клайпедской геотермальной электростанцией мощностью 43 МВт...

В соответствии с требованиями Регистра произведем расчет нагрузки СЭС в ходовом режиме. Воспользуемся табличным методом расчета. При заполнении таблицы нагрузок в графы 2-4 вносят данные задания, в графы 5-8 - параметры двигателей...

Расчет судовой электрической станции

Расчет электрической системы на основе схемы замещения

Принципиальная схема трёхобмоточного трансформатора представлена на рис. 4.3, а полная схема замещения совпадает со схемой замещения автотрансформатора (см. рис.3.2). Состав каталожных данных отличается от приведённого в п. 3 тем...

Теплоснабжение промышленных предприятий

Для привода механизмов собственных нужд кпд брутто определяется без учёта затрат энергии. Для ПТУ, работающих по циклу Ренкина, кпд брутто с учётом затрат на привод насоса: где - энтальпия пара в точках 1 и 2 диаграммы...

РАСЧЕТ ГЕОТЕРМАЛЬНОЙ ЭЛЕКТРОСТАНЦИИ

Произведем расчет тепловой схемы геотермальной электростанции бинарного типа, согласно .

Наша геотермальная электростанция состоит из двух турбин:

Первая работает на насыщенном водяном паре, полученном в расширителе. Электрическая мощность - ;

Вторая работает на насыщенном паре хладона R11, который испаряется за счет тепла воды, отводимый из расширителя.

Вода из геотермальных скважин с давлением pгв температурой tгв поступает в расширитель. В расширителе образуется сухой насыщенный пар с давлением pp. Этот пар направляется в паровую турбину. Оставшаяся вода из расширителя идет в испаритель, где охлаждается на и заканчивается обратно в скважину. Температурный напор в испарительной установке = 20°С. Рабочие тела расширяются в турбинах и поступают в конденсаторы, где охлаждаются водой из реки с температурой tхв. Нагрев воды в конденсаторе = 10°С, а недогрев до температуры насыщения = 5°С.

Относительные внутренние КПД турбин. Электромеханический КПД турбогенераторов = 0,95.

Исходные данные приведены в таблице 3.1.

Табл. 3.1. Исходные данные для расчета ГеоЭС

Принципиальная схема ГеоЭС бинарного типа (рис. 3.2).

Рис. 3.2.

Согласно схеме на рис. 3.2 и исходным данным проводим расчеты.

Расчет схемы паровой турбины, работающей на сухом насыщенном водяном паре

Температура пара при входе в конденсатор турбины:

где - температура охлаждающей воды на входе в конденсатор; - нагрев воды в конденсаторе; - температурный напор в конденсаторе.

Давление пара в конденсаторе турбины определяется по таблицам свойств воды и водяного пара :

Располагаемый теплоперепад на турбину :

где - энтальпия сухого насыщенного пара на входе в турбину; - энтальпия в конце теоретического процесса расширения пара в турбине.

Расход пара из расширителя на паровую турбину:

где - относительный внутренний КПД паровой турбины; - электромеханический КПД турбогенераторов.

Расчет расширителя геотермальной воды

Уравнение теплового баланса расширителя

где - расход геотермальной воды из скважины; - энтальпия геотермальной воды из скважины; - расход воды из расширителя в испаритель; - энтальпия геотермальной воды на выходе из расширителя. Определяется по таблицам свойств воды и водяного пара как энтальпия кипящей воды.

Уравнение материального баланса расширителя

Решая совместно эти два уравнения необходимо определить и.

Температура геотермальной воды на выходе из расширителя определяется по таблицам свойств воды и водяного пара как температура насыщения при давлении в расширителе:

Определение параметров в характерных точках тепловой схемы турбины, работающей в хладоне

Температура паров хладона на входе в турбину:

Температура паров хладона на выходе из турбины:

Энтальпия паров хладона на входе в турбину определяется по p-h диаграмме для хладона на линии насыщения при:

240 кДж/кг.

Энтальпия паров хладона на выходе из турбины определяется по p-h диаграмме для хладона на пересечении линий и линии температуры:

220 кДж/кг.

Энтальпия кипящего хладона на выходе из конденсатора определяется по p-h диаграмме для хладона на кривой для кипящей жидкости по температуре:

215 кДж/кг.

Расчет испарителя

Температура геотермальной воды на выходе из испарителя:

Уравнение теплового баланса испарителя:

где - теплоемкость воды. Принять =4,2 кДж/кг.

Из этого уравнения необходимо определить.

Расчет мощности турбины, работающей на хладоне

где - относительный внутренний КПД хладоновой турбины; - электромеханический КПД турбогенераторов.

Определение мощности насоса для закачки геотермальной воды в скважину

где - КПД насоса, принимается 0,8; - средний удельный объем геотермальной воды .

Цель лекции: показать возможности и способы использования геотермального тепла в системах электроснабжения.

Тепло в виде горячих источников и гейзеров может быть исполь-зовано для производства электроэнергии по различным схемам на гео-термальных электростанциях (ГеоЭС). Наиболее легко выполнимой схемой является схема с применением пара жидкостей, имеющих низ-кую температуру кипения. Горячая вода из природных источников, обогревая такую жидкость в испарителе, обращает ее в пар, используе-мый в турбине и служащей приводом генератора тока.

На рисунке 1 изображен цикл с одним рабочим телом, например с водой или фреоном (а ); цикл с двумя рабочими телами – водой и фрео-ном (б ); прямой паровой цикл (в ) и двухконтурный цикл (г ).

Технологии производства электрической энергии в значительной степени зависят от теплового потенциала термальных вод.

Рисунок. 1 - Примеры организации цикла для производства электроэнергии:

I – геотермальный источник; II – турбинный цикл; III – охлаждающая вода

Высокопотенциальные месторождения позволяют использовать практически традиционные конструкции тепловых электростанций с паровыми турбинами.

Таблица 1 -Технические характеристики геотермальных электростанций

На рисунке 2 представлена наиболее простая схема небольшой электростанции (ГеоЭС) использующей тепло горячего подземного ис-точника.

Вода из горячего источника с температурой около 95 °С насосом 2 подается в газоудалитель 3, где происходит отделение растворенных в ней газов.

Далее вода поступает в испаритель 4, в котором происходит ее превращение в насыщенный пар и небольшой перегрев за счет тепла пара (от вспомогательного котла), предварительно отработавшего в эжекторе конденсатора.

Слегка перегретый пар совершает работу в турбине 5, на валу ко-торой находится генератор тока. Отработавший пар конденсируется в конденсаторе 6, охлаждае-мом водой с обычной температурой.

Рисунок 2-. Схема небольшой ГеоЭС:

1 – приемник горячей воды; 2 – насос горячей воды; 3 – газоудалитель;

4 – испаритель; 5 – паровая турбина с генератором тока; 6 – конденсатор; 7 – циркуляционный насос; 8 – приемник охлаждающей воды

Такие простейшие установки функционировали в Африке уже в 50-х годах.

Очевидным вариантом конструкции современной энергоустановки является геотермальная электростанция с низкокипящим рабочим веще-ством, представленная на рисунке 3. Горячая вода из бака-аккумулятора поступает в испаритель 3, где отдает свое тепло какому-либо веществу с низкой температурой кипе-ния. Такими веществами могут быть углекислота, различные фреоны, шестифтористая сера, бутан и др. Конденсатор 6 – смешивающего типа, который охлаждается холодным жидким бутаном, поступающим из поверхностного воздушного охладителя. Часть бутана из конденсатора питательным наосом 9 подается в подогреватель 10, а затем в испаритель 3.

Важной особенностью этой схемы является возможность работы в зимнее время с низкими температурами конденсации. Эта температура может быть близкой к нулю или даже отрицательной, т. к. все перечис-ленные вещества имеют очень низкие температуры замерзания. Это по-зволяет значительно расширить пределы температур, используемых в цикле.

Рисунок 3. Схема геотермальной электростанции с низкокипящим рабочим веществом:

1 – скважина, 2 – бак-аккумулятор, 3 – испаритель, 4 – турбина, 5 – генератор, 6 – конденсатор, 7 – циркуляционный насос, 8 – поверхностный воздушный охладитель, 9 – питательный насос, 10 – подогреватель рабочего вещества

Геотермальная электростанция с непосредственным использованием природного пара.

Самая простая и доступная геотермальная энергоустановка пред-ставляет собой паротурбинную установку с противодавлением. Природный пар из скважины подается прямо в турбину с последующим вы-ходом в атмосферу или в устройство, улавливающее ценные химиче-ские вещества. В турбину с противодавлением можно подавать вторич-ный пар или пар, получаемый из сепаратора. По этой схеме электро-станция работает без конденсаторов, и отпадает необходимость в ком-прессоре для удаления из конденсаторов неконденсирующихся газов. Эта установка наиболее простая, капитальные и эксплуатационные за-траты на нее минимальны. Она занимает небольшую площадь, почти не требует вспомогательного оборудования и ее легко приспособить как переносную геотермальную электростанцию (рисунок 4).

Рисунок 4 - Схема геотермальной электростанции с непосредственным ис-пользованием природного пара:

1 – скважина; 2 – турбина; 3 – генератор;

4 – выход в атмосферу или на химический завод

Рассмотренная схема может стать самой выгодной для тех рай-онов, где имеются достаточные запасы природного пара. Рациональная эксплуатация обеспечивает возможность эффективной работы такой ус-тановки даже при переменном дебите скважин.

В Италии работает несколько таких станций. Одна из них – мощ-ностью 4 тыс. кВт при удельном расходе пара около 20 кг/с или 80 т/ч; другая – мощностью 16 тыс. кВт, где установлено четыре турбогенератора мощностью по 4 тыс. кВт. Последняя снабжается паром от 7–8 скважин.

Геотермальная электростанция с конденсационной турбиной и прямым использованием природного пара (рисунок 5) – это наиболее современная схема для получения электрической энергии.

Пар из скважины подается в турбину. Отработанный в турбине, он попадает в смешивающий конденсатор. Смесь охлаждающей воды и конденсата уже отработанного в турбине пара выпускается из конденса-тора в подземный бак, откуда забирается циркуляционными насосами и направляется для охлаждения в градирню. Из градирни охлаждающая вода опять попадает в конденсатор (рисунок 5).

По такой схеме с некоторыми изменениями работают многие гео-термальные электростанции: «Лардерелло-2» (Италия), «Вайракей» (Новая Зеландия) и др.

Областью применения двухконтурных энергоустановок на низко-кипящих рабочих веществах (хладон-R12, водоаммиачная смесь,) является использование тепла термальных вод с температурой 100…200 °C, а также отсепарированной воды на ме-сторождениях парогидротерм.

Рисунок 5 - Схема геотермальной электростанции с конденсационной турбиной и прямым использованием природного пара:

1 – скважина; 2 – турбина; 3 – генератор; 4 – насос;

5 – конденсатор; 6 – градирня; 7 – компрессор; 8 – сброс

Комбинированное производствоэлектрическойитепловойэнергии

Комбинированное производство электрической и тепловой энер-гии возможно на геотермальных тепловых электрических станциях (ГеоТЭС).

Наиболее простая схема ГеоТЭС вакуумного типа для использо-вания тепла горячей воды с температурой до 100 °С приведена на рисунке 6.

Работа такой электростанции протекает следующим образом. Го-рячая вода из скважины 1 поступает в бак-аккумулятор 2. В баке она ос-вобождается от растворенных в ней газов и направляется в расширитель 3, в котором поддерживается давление 0,3 атм. При этом давлении и при температуре 69 °С небольшая часть воды превращается в пар и на-правляется в вакуумную турбину 5, а оставшаяся вода насосом 4 пере-качивается в систему теплоснабжения. Отработавший в турбине пар сбрасывается в смешивающий конденсатор 7. Для удаления воздуха из конденсатора устанавливается вакуумный насос 10. Смесь охлаждаю-щей воды и конденсата отработавшего пара забирается из конденсатора насосом 8 и отдается для охлаждения в вентиляционную градирню 9. Охлажденная в градирне вода подается в конденсатор самотеком за счет разряжения.

Верхне-Мутновская ГеоТЭС мощностью 12 МВт (3х4 МВт) явля-ется опытно-промышленной очередью Мутновской ГеоТЭС проектной мощностью 200 МВт, создаваемой для электроснабжения Петропав-ловск-Камчатского промышленного района.

Рисунок 6 -. Схема вакуумной ГеоТЭС с одним расширителем:

1 – скважина, 2 – бак-аккумулятор, 3 – расширитель, 4 – насос горячей воды, 5 – вакуумная турбина 750 кВт, 6 – генератор, 7 – смешивающий конденсатор,

8 – насос охлаждающей воды, 9 – вентиляторная градирня, 10 – вакуумный насос

На Паужетской ГеоТЭС (юг Камчатки) мощностью 11 МВт используется на па-ровых турбинах только отсепарированный геотермальный пар из паро-водяной смеси, получаемой из геотермальных скважин. Большое коли-чество геотермальной воды (около 80 общего расхода ПВС) с темпе-ратурой 120 °C сбрасывается в нерестовую реку Озерная, что приводит не только к потерям теплового потенциала геотермального теплоноси-теля, но и существенно ухудшает экологическое состояние реки.

Тепловые насосы

Тепловой насос - устройство для переноса тепловой энергии от источника низкопотенциальной тепловой энергии с низкой температурой к потребителю теплоносителя с более высокой температурой,. Термодинамически тепловой насос представляет собой обращённую холодильную машину. Если в холодильной машине основной целью является производство холода путём отбора теплоты из какого-либо объёма испарителем, а конденсатор осуществляет сброс теплоты в окружающую среду, то в тепловом насосе картина обратная (рисунок 7). Конденсатор является теплообменным аппаратом, выделяющим теплоту для потребителя, а испаритель -теплообменным аппаратом, утилизирующим низкопотенциальную теплоту, находящуюся в водоемах, грунтах, сточных водах и тому подобное. В зависимости от принципа работы тепловые насосы подразделяются на компрессионные и абсорбционные. Компрессионные тепловые насосы всегда приводятся в действие с помощью электромотора, в то время как абсорбционные тепловые насосы могут также использовать тепло в качестве источника энергии. Для компрессора нужен также источник низкопотенциального тепла.

В процессе работы компрессор потребляет электроэнергию. Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности теплового насоса. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.

По виду теплоносителя во входном и выходном контурах насосы делят на шесть типов: «грунт-вода», «вода-вода», «воздух-вода», «грунт-воздух», «вода-воздух», «воздух-воздух».

При использовании в качестве источника тепла энергии грунта трубопровод, в котором циркулирует жидкость, зарывают в землю на 30-50 см ниже уровня промерзания грунта в данном регионе (рисунок 8). Для установки теплового насоса производительностью 10 кВт необходим земляной контур длиной 350-450 м, для укладки которого потребуется участок земли площадью около 400 м² (20х20 м).

Рисунок 7 – Схема работы теплового насоса

Рисунок 8 - Использование в качестве источника тепла энергии грунта

К достоинствам тепловых насосов в первую очередь следует отнести экономичность: для передачи в систему отопления 1 кВт·ч тепловой энергии установке ТНУ необходимо затратить 0,2-0,35 кВт·ч электроэнергии.. Все системы функционируют с использованием замкнутых контуров и практически не требуют эксплуатационных затрат, кроме стоимости электроэнергии, необходимой для работы оборудования, которая может быть получена от ветровых и солнечных энергетических установок. Срок окупаемости тепловых насосов составляет 4-9 лет, при сроке службы по 15-20 лет до капитального ремонта.

Реальные значения эффективности современных тепловых насосов составляют порядка СОР =2.0 при температуре источника −20 °C, и порядка СОР = 4.0 при температуре источника +7 °C.

ГЕОТЕРМАЛЬНАЯ ЭНЕРГЕТИКА

Скотарев Иван Николаевич

студент 2 курса, кафедра физики СтГАУ, г. Ставрополь

Хащенко Андрей Александрович

научный руководитель, кан. физ.-мат. наук, доцент СтГАУ, г. Ставрополь

Сейчас человечество не сильно задумывается, что оно оставит будущим поколениям. Люди бездумно выкачивают и выкапывают полезные ископаемые. С каждым годом растёт население планеты, а следовательно увеличивается и потребность в ещё в большем количестве энергоносителей таких как газ, нефть и уголь. Продолжаться это долго не может. Поэтому сейчас помимо развития атомной промышленности становится актуальным использование альтернативных источников энергии. Одним из перспективных направлений в этой области является геотермальная энергетика.

Большая часть поверхности нашей планеты обладает значительными запасами геотермальной энергии вследствие значительной геологической деятельности: активной вулканической деятельности в начальные периоды развития нашей планеты а также и по сей день, радиоактивного распада, тектонических сдвигов и наличия участков магмы в земной коре. В некоторых местах нашей планеты скапливается особенно много геотермальной энергии. Это, например, различные долины гейзеров, вулканы, подземные скопления магмы, которые в свою очередь нагревают верхние породы.

Говоря простым языком геотермальная энергия - это энергия внутренних областей Земли. Например извержение вулканов наглядно свидетельствует об огромной температуре внутри планеты. Эта температура постепенно снижается от горячего внутреннего ядра до поверхности Земли (рисунок 1 ).

Рисунок 1. Температура в различных слоях земли

Геотермальная энергия всегда привлекала людей возможностями своего полезного применения. Ведь человек в процессе своего развития придумывал множество полезных технологий и во всём искал выгоду и прибыль. Так и произошло с углём, нефтью, газом, торфом и т. д.

Например, в некоторых географических районах использование геотермальных источников может существенно увеличить выработку энергии, так как геотермальные электростанции (ГеоТЭС) являются одним из наиболее дешевых альтернативных источников энергии, потому что в верхнем трехкилометровом слое Земли содержится свыше 1020 Дж теплоты, пригодной для выработки электроэнергии . Сама природа дает человеку в руки уникальный источник энергетики, необходимо только его использовать.

Всего сейчас насчитывается 5 типов источников геотермальной энергии:

1. Месторождения геотермального сухого пара.

2. Источники влажного пара. (смеси горячей воды и пара).

3. Месторождения геотермальной воды (содержат горячую воду или пар и воду).

4. Сухие горячие скальные породы, разогретые магмой.

5. Магма (расплавленные горные породы нагретые до 1300 °С).

Магма передает свое тепло горным породам, причем с ростом глубины их температура повышается. По имеющимся данным, температура горных пород повышается в среднем на 1 °С на каждые 33 м глубины (геотермическая ступень). В мире имеется большое разнообразие температурных условий геотермальных источников энергии, которые будут определять технические средства для ее использования .

Геотермальная энергия может быть использована двумя основными способами - для выработки электроэнергии и для обогрева различных объектов. Геотермальное тепло можно преобразовывать в электричество, если температура теплоносителя достигает более 150 °С. Как раз использование внутренних областей Земли для отопления является наиболее выгодным и эффективным а так же очень доступным. Прямое геотермальное тепло в зависимости от температуры может использоваться для отопления зданий, теплиц, бассейнов, сушки сельскохозяйственных и рыбопродуктов, выпаривания растворов, выращивания рыбы, грибов и т. д. .

Все существующие на сегодняшний день геотермальные установки делятся на три типа:

1. станции, основой для работы которых являются месторождения сухого пара - это прямая схема.

Электростанции на сухом пару появились раньше всех. Для того чтобы получить требующуюся энергию пар пропускается через турбину или генератор (рисунок 2 ).

Рисунок 2. Геотермальная электростанция прямой схемы

2. станции с сепаратором, использующие месторождения горячей воды под давлением. Иногда для этого используется насос, который обеспечивает нужный объём поступающего энергоносителя - непрямая схема.

Это наиболее распространенный тип геотермальных станций в мире. Здесь воды закачиваются под высоким давлением в генераторные установки. Происходит накачивание гидротермального раствора в испаритель для снижения давления, в результате идёт испарение части раствора. Далее образовывается пар, который и заставляет работать турбину. Оставшаяся жидкость также может приносить пользу. Обычно её пропускают ещё через один испаритель и получить дополнительную мощность (рисунок 3 ).


Рисунок 3. Геотермальная электростанция непрямой схемы

Они характеризуются отсутствием взаимодействия генератора или турбины с паром или водой. Принцип их действия основан на разумном применении подземной воды умеренной температуры.

Обычно температура должна быть ниже двухсот градусов. Сам бинарный цикл заключается в использовании двух типов вод - горячей и умеренной. Оба потока пропускаются через теплообменник. Более горячая жидкость выпаривает более холодную, и образуемые вследствие этого процесса пары приводят в действие турбины , , .

Рисунок 4. Схема геотермальной электростанци с бинарным циклом

Что касается нашей страны геотермальная энергия занимает первое место по потенциальным возможностям ее использования из-за уникального ландшафта и природных условий. Найденные запасы геотермальных вод с температурой от 40 до 200 °С и глубиной залегания до 3500 м на её территории могут обеспечить получение примерно 14 млн. м3 горячей воды в сутки. Большие запасы подземных термальных вод находятся в Дагестане, Северной Осетии, Чечено-Ингушетии, Кабардино-Балкарии, Закавказье, Ставропольском и Краснодарском краях, Казахстане, на Камчатке и в ряде других районов России. Например, в Дагестане уже длительное время термальные воды используются для теплоснабжения.

Первая геотермальная электростанция была построена в 1966 году на Паужетском месторождении на полуострове Камчатка с целью электроснабжения окрестных поселков и рыбоперерабатывающих предприятий, что способствовало местному развитию. Местная геотермальная система может обеспечить энергией электростанции мощностью до 250-350 МВт. Но данный потенциал используется только на четверть .

Территория Курильских островов обладает уникальными и одновременно сложным ландшафтом. Электроснабжение находящихся там городов обходится большими сложностями: необходимость доставки на острова средств существования морским или воздушным путём, что достаточно затратно и занимает много времени. Геотермальные ресурсы островов на данный момент позволяют получать 230 МВт электроэнергии, что может обеспечить все потребности региона в энергетике, тепле, горячем водоснабжении.

На острове Итуруп найдены ресурсы двухфазного геотермального теплоносителя, мощности которого достаточно для удовлетворения энергопотребностей всего острова. На южном острове Кунашире действует ГеоЭс 2,6 МВт, которая используются для получения электроэнергии и теплоснабжения г. Южно-Курильска. Планируются строительство еще нескольких ГеоЭс суммарной мощностью 12-17 МВт .

Наиболее перспективными регионами для применения геотермальных источников в России являются юг России и Дальний Восток. Огромный потенциал геотермальной энергетики имеют Кавказ, Ставрополье, Краснодарский край.

Использование геотермальных вод в Центральной части России требует больших затрат из-за глубокого залегания термальных вод.

В Калининградской области в планах осуществление опытного проекта геотермального тепло- и электроснабжения города Светлый на базе бинарной ГеоЭс мощностью 4 МВт.

Геотермальная энергетика России ориентирована как на строительство крупных объектов, так и на использование геотермальной энергии для отдельных домов, школ, больниц, частных магазинов и других объектов с использованием геотермальных циркуляционных систем.

В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.

В 1999 г. была пущена в эксплуатацию Верхне-Мутновская ГеоЭС (рисунок 5 ).


Рисунок 5. Верхне-Мутновская ГеоЭС

Она обладает мощностью 12 МВт (3х4 МВт) и является опытно-промышленной очередью Мутновской ГеоЭС проектной мощностью 200 МВт, создаваемой для электроснабжения промышленного района Петропавловск-Камчатска.

Но несмотря на большие плюсы в этом направлении присутствует и недостатки:

1. Главный из них заключается в необходимости закачки отработанной воды обратно в подземный водоносный горизонт. В термальных водах содержится большое количество солей различных токсичных металлов (бора, свинца, цинка, кадмия, мышьяка) и химических соединений (аммиака, фенолов), что делает невозможным сброс этих вод в природные водные системы, расположенные на поверхности.

2. Иногда действующая геотермальная электростанция может приостановиться в результате естественных изменений в земной коре.

3. Найти подходящее место для строительства геотермальной электростанции и получить разрешение местных властей и согласие жителей на ее возведение может быть проблематичным.

4. Строительство ГеоЭС может отрицательно повлиять на землю стабильности в окружающем регионе.

Большинство этих недостатков незначительны и в полнее решаемы .

Сегодня в мире люди не задумываются об последствиях своих решений. Ведь что они будут делать если закончатся нефть, газ и угол? Люди ведь привыкли жить в комфорте. Топить дома дровами они долго не смогут, потому что большому населению потребуется огромнейшее количество древесины, что само собой приведёт масштабной вырубке лесов и оставит мир без кислорода. Поэтому для того чтобы этого не произошло необходимо использовать доступные нам ресурсы экономно, но с максимальной эффективностью. Как раз одним из способов решения этой проблемы является развитие геотермальной энергетики. Конечно она имеет свои плюсы и минусы, но её развитие очень облегчит дальнейшее существование человечества и сыграет большую роль в дальнейшем его развитии.

Сейчас это направление не сильно популярно, потому что в мире господствует нефтяная и газовая промышленность и крупные компании не спешат вкладывать средства в развитие столь необходимой отрасли промышленности. Поэтому для дальнейшего прогрессирования геотермальной энергетики необходимы инвестиции и поддержка государства, без которой осуществить что либо в масштаб всей страны просто невозможно. Введение геотермальной энергетики в энергобаланс страны позволит:

1. повысить энергетическую безопасность, с другой - снизить вредное воздействие на экологическую обстановку по сравнению с традиционными источниками.

2. развить экономику, потому что высвободившиеся денежные средства можно будет вкладывать в другие отрасли промышленности, социальное развитие государства и т. д.

В последнее десятилетие использование нетрадиционных возобновляемых источников энергии переживает в мире настоящий бум. Масштаб применения этих источников возрос в несколько раз. Она способна радикально и на наиболее экономической основе решить проблему энергоснабжения указанных районов, которые пользуются дорогим привозным топливом и находятся на грани энергетического кризиса, улучшить социальное положение населения этих районов и т. д. Как раз это мы и наблюдаем в странах Западной Европы (Германия, Франция, Великобритания), Северной Европы (Норвегия, Швеция, Финляндия, Исландия, Дания). Это объясняется тем что они обладают высоким экономическим развитием и очень сильно зависят от ископаемых ресурсов и поэтому главы этих государств вместе с бизнесом стараются минимизировать эту зависимость. В частности, странам Северной Европы развитию геотермальной энергетики благоприятствует наличие большого количества гейзеров и вулканов. Ведь не зря Исландию называют страной вулканов и гейзеров.

Сейчас человечество начинает понимать всю важность это отрасли и старается по мере возможностей её развивать. Применение большого ряда самых разнообразных технологий даёт возможность снизить потребление энергии на 40-60 % и одновременно обеспечить реальное экономическое развитие. А оставшиеся потребности в электроэнергии и тепле можно закрыть за счёт более эффективного её производства, за счёт восстановления, за счёт объединения выработки тепловой и электрической энергий, а так же за счёт использования возобновляемых ресурсов, что даёт возможность отказаться от некоторых видов электростанций и снижает эмиссию углекислого газа на примерно на 80 %.

Список литературы:

1.Баева А.Г., Москвичёва В.Н. Геотермальная энергия: проблемы, ресурсы, использование: изд. М.: СО АН СССР, Институт теплофизики, 1979. - 350 с.

2.Берман Э., Маврицкий Б.Ф. Геотермальная энергия: изд. М.: Мир, 1978 - 416 стр.

3.Геотермальная энергия. [Электронный ресурс] - Режим доступа - URL: http://ustoj.com/Energy_5.htm (дата обращения 29.08.2013).

4.Геотермальная энергетика России. [Электронный ресурс] - Режим доступа - URL: http://www.gisee.ru/articles/geothermic-energy/24511/ (дата обращения 07.09.2013).

5.Дворов И.М. Глубинное тепло Земли: изд. М.: Наука, 1972. - 208 с.

6.Энергетика. Материал из Википедии - свободной энциклопедии. [Электронный ресурс] - Режим доступа - URL: http://ru.wikipedia.org/wiki/Геотермальная_энергетика (дата обращения 07.09.2013).