Учебная книга по химии. Энергия гиббса и константа равновесия Чему равна константа равновесия

Большинство химических реакций обратимы, т.е. протекают одновременно в противоположных направлениях. В тех случаях, когда прямая и обратная реакции идут с одинаковой скоростью, наступает химическое равновесие. Например, в обратимой гомогенной реакции: H 2 (г) + I 2 (г) ↔ 2HI(г) соотношение скоростей прямой и обратной реакций согласно закону действующих масс зависит от соотношения концентраций реагирующих веществ, а именно: скорость прямой реакции: υ 1 = k 1 [Н 2 ]. Скорость обратной реакции: υ 2 = k 2 2 .

Если H 2 и I 2 – исходные вещества, то в первый момент скорость прямой реакции определяется их начальными концентрациями, а скорость обратной реакции равна нулю. По мере израсходования H 2 и I 2 и образования HI скорость прямой реакции уменьшается, а скорость обратной реакции возрастает. Спустя некоторое время обе скорости уравниваются, и в системе устанавливается химическое равновесие, т.е. число образующихся и расходуемых молекул HI в единицу времени становится одинаковым.

Так как при химическом равновесии скорости прямой и обратной реакций равны V 1 = V 2 , то k 1 = k 2 2 .

Поскольку k 1 и k 2 при данной температуре постоянны, то их отношение будет постоянным. Обозначая его через K, получим:

К – называется константой химического равновесия, а приведенное уравнение – законом действующих масс (Гульдберга - Ваале).

В общем случае для реакции вида аА+bB+…↔dD+eE+… константа равновесия равна . Для взаимодействия между газообразными веществами часто пользуются выражением , в котором реагенты представлены равновесными парциальными давлениями p. Для упомянутой реакции .

Состояние равновесия характеризует тот предел, до которого в данных условиях реакция протекает самопроизвольно (∆G<0). Если в системе наступило химическое равновесие, то дальнейшее изменение изобарного потенциала происходить не будет, т.е. ∆G=0.

Соотношение между равновесными концентрациями не зависит от того, какие вещества берутся в качестве исходных (например, H 2 и I 2 или HI), т.е. к состоянию равновесия можно подойти с обеих сторон.

Константа химического равновесия зависит от природы реагентов и от температуры; от давления (если оно слишком высокое) и от концентрации реагентов константа равновесия не зависит.

Влияние на константу равновесия температуры, энтальпийного и энтропийного факторов . Константа равновесия связана с изменением стандартного изобарно-изотермического потенциала химической реакции ∆G o простым уравнением ∆G o =-RT ln K.

Из него видно, что большим отрицательным значениям ∆G o (∆G o <<0) отвечают большие значения К, т.е. в равновесной смеси преобладают продукты взаимодействия. Если же ∆G o характеризуется большими положительными значениями (∆G o >>0), то в равновесной смеси преобладают исходные вещества. Указанное уравнение позволяет по величине ∆G o вычислить К, а затем и равновесные концентрации (парциальные давления) реагентов. Если учесть, что ∆G o =∆Н o -Т∆S o , то после некоторого преобразования получим . Из этого уравнения видно, что константа равновесия очень чувствительна к изменению температуры. Влияние на константу равновесия природы реагентов определяет ее зависимость от энтальпийного и энтропийного факторов.

Принцип Ле Шателье

Состояние химического равновесия сохраняется при данных неизменных условиях любое время. При изменении же условий состояние равновесия нарушается, так как при этом скорости противоположных процессов изменяются в разной степени. Однако спустя некоторое время система снова приходит в состояние равновесия, но уже отвечающее новым изменившимся условиям.

Смещение равновесия в зависимости от изменения условий в общем виде определяется принципом Ле-Шателье (или принципом подвижного равновесия): если на систему, находящуюся в равновесии, оказывать воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении того процесса, протекание которого ослабляет эффект произведенного воздействия.

Так, повышение температуры вызывает смещение равновесия в направлении того из процессов, течение которого сопровождается поглощением тепла, а понижение температуры действует в противоположном направлении. Подобно этому повышение давления смещает равновесие в направлении процесса, сопровождающегося уменьшением объема, а понижение давления действует в противоположную сторону. Например, в равновесной системе 3Н 2 +N 2 2H 3 N, ∆H o = -46,2 кДж повышение температуры усиливает разложение H 3 N на водород и азот, так как этот процесс эндотермический. Повышение давления смещает равновесие в сторону образования H 3 N, ибо при этом уменьшается объем.

Если в систему, находящуюся в состоянии равновесия, добавить некоторое количество какого-либо из веществ, участвующих в реакции (или наоборот, удалить из системы), то скорости прямой и обратной реакций изменяются, но постепенно снова уравниваются. Иными словами, система снова приходит к состоянию химического равновесия. В этом новом состоянии равновесные концентрации всех веществ, присутствующих в системе, будут отличаться от первоначальных равновесных концентраций, но соотношение между ними останется прежним. Таким образом, в системе, находящейся в состоянии равновесия, нельзя изменить концентрацию одного из веществ, не вызвав изменения концентраций всех остальных.

В соответствии с принципом Ле Шателье введение в равновесную систему дополнительных количеств какого-либо реагента вызывает сдвиг равновесия в том направлении, при котором концентрация этого вещества уменьшается и соответственно увеличивается концентрация продуктов его взаимодействия.

Изучение химического равновесия имеет большое значение как для теоретических исследований, так и для решения практических задач. Определяя положение равновесия для различных температур и давлений, можно выбрать наиболее благоприятные условия проведения химического процесса. При окончательном выборе условий проведения процесса учитывают также их влияние на скорость процесса.

Пример 1. Вычисление константы равновесия реакции по равновесным концентрациям реагирующих веществ.

Вычислите константу равновесия реакции А+В 2С, если равновесные концентрации [А]=0,3моль∙л -1 ; [В]=1,1моль∙л -1 ; [С]=2,1моль∙л -1 .

Решение. Выражение константы равновесия для данной реакции имеет вид: . Подставим сюда указанные в условии задачи равновесные концентрации: =5,79.

Пример 2 . Вычисление равновесных концентраций реагирующих веществ. Реакция протекает по уравнению А+2В С.

Определите равновесные концентрации реагирующих веществ, если исходные концентрации веществ А и В соответственно равны 0,5 и 0,7 моль∙л -1 , а константа равновесия реакции К р =50.

Решение. На каждый моль веществ А и В образуется 2 моль вещества С. Если понижение концентрации веществ А и В обозначить через Х моль, то увеличение концентрации вещества будет равно 2Х моль. Равновесные концентрации реагирующих веществ будут:

С А =(о,5-х)моль∙л -1 ; С В =(0,7-х)моль∙л -1 ; С С =2х моль∙л -1

х 1 =0,86; х 2 =0,44

По условию задачи справедливо значение х 2 . Отсюда равновесные концентрации реагирующих веществ равны:

С А =0,5-0,44=0,06моль∙л -1 ; С В =0,7-0,44=0,26моль∙л -1 ; С С =0,44∙2=0,88моль∙л -1 .

Пример 3. Определение изменения энергии Гиббса ∆G o реакции по значению константы равновесия К р. Рассчитайте энергию Гиббса и определите возможность протекания реакции СО+Cl 2 =COCl 2 при 700К, если константа равновесия равна Кр=1,0685∙10 -4 . Парциальное давление всех реагирующих веществ одинаково и равно 101325Па.

Решение. ∆G 700 =2,303∙RT .

Для данного процесса:

Так как ∆Gо<0, то реакция СО+Cl 2 COCl 2 при 700К возможна.

Пример 4 . Смещение химического равновесия. В каком направлении сместится равновесие в системе N 2 +3H 2 2NH 3 -22ккал:

а) при увеличении концентрации N 2 ;

б) при увеличении концентрации Н 2 ;

в) при повышении температуры;

г)при уменьшении давления?

Решение. Увеличение концентрации веществ, стоящих в левой части уравнения реакции, по правилу Ле-Шателье должно вызвать процесс, стремящийся ослабить оказанное воздействие, привести к уменьшению концентраций, т.е. равновесие сместится вправо (случаи а и б).

Реакция синтеза аммиака – экзотермическая. Повышение температуры вызывает смещение равновесия влево – в сторону эндотермической реакции, ослабляющей оказанное воздействие (случай в).

Уменьшение давления (случай г) будет благоприятствовать реакции, ведущей к увеличению объема системы, т.е. в сторону образования N 2 и Н 2 .

Пример 5. Во сколько раз изменится скорость прямой и обратной реакции в системе 2SO 2 (г) + О 2 (г) 2SO 3 (r) если объем газовой смеси уменьшится в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: =а, =b, =с. Согласно закону действующих масс, скорости прямой и обратной реакций до изменения объема равны

v пр = Ка 2 b, v обр = К 1 с 2

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: = 3а, [О 2 ] = 3b; = 3с. При новых концентрациях скорости v" np прямой и обратной реакций:

v" np = K(3a) 2 (3b) = 27 Ka 2 b; v o 6 p = K 1 (3c) 2 = 9K 1 c 2 .

;

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной - только в девять раз. Равновесие системы сместилось в сторону образования SO 3 .

Пример 6. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70 0 С, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле

Следовательно, скорость реакции при 70°С большескорости реакции при 30° С в 16 раз.

Пример 7. Константа равновесия гомогенной системы

СО(г) + Н 2 О(г) СО 2 (г) + Н 2 (г) при 850°С равна 1. Вычислите концентрации всех веществ при равновесии, если исходные концентрации: [СО] ИСХ = 3 моль/л, [Н 2 О] ИСХ = 2 моль/л.

Решение. При равновесии скорости прямой и обратной реакций равны, а отношение констант этих скоростей постоянно и называется константой равновесия данной системы:

V np = К 1 [СО][Н 2 О]; V o б p = К 2 [СО 2 ][Н 2 ];

В условии задачи даны исходные концентрации, тогда как в выражение К р входят только равновесные концентрации всех веществ системы. Предположим, что к моменту равновесия концентрация [СО 2 ] Р = х моль/л. Согласно уравнению системы число молей образовавшегося водорода при этом будет также х моль/л. По столько же молей моль/л) СО и Н 2 О расходуется для образования по х молей СО 2 и Н 2 . Следовательно, равновесные концентрации всех четырех веществ (моль/л):

[СО 2 ] Р = [Н 2 ] р = х; [СО] Р = (3 –х); P =(2-х).

Зная константу равновесия, находим значение х, а затем исходные концентрации всех веществ:

; х 2 =6-2х-3х + х 2 ; 5х = 6, л = 1,2 моль/л.

Большинство химических реакций обратимы, т.е. протекают одновременно в противоположных направлениях. В тех случаях, когда прямая и обратная реакции идут с одинаковой скоростью, наступает химическое равновесие. Например, в обратимой гомогенной реакции: H 2 (г) + I 2 (г) ↔ 2HI(г) соотношение скоростей прямой и обратной реакций согласно закону действующих масс зависит от соотношения концентраций реагирующих веществ, а именно: скорость прямой реакции: υ 1 = k 1 [Н 2 ]. Скорость обратной реакции: υ 2 = k 2 2 .

Если H 2 и I 2 – исходные вещества, то в первый момент скорость прямой реакции определяется их начальными концентрациями, а скорость обратной реакции равна нулю. По мере израсходования H 2 и I 2 и образования HI скорость прямой реакции уменьшается, а скорость обратной реакции возрастает. Спустя некоторое время обе скорости уравниваются, и в системе устанавливается химическое равновесие, т.е. число образующихся и расходуемых молекул HI в единицу времени становится одинаковым.

Так как при химическом равновесии скорости прямой и обратной реакций равны V 1 = V 2 , то k 1 = k 2 2 .

Поскольку k 1 и k 2 при данной температуре постоянны, то их отношение будет постоянным. Обозначая его через K, получим:

К – называется константой химического равновесия, а приведенное уравнение – законом действующих масс (Гульдберга - Ваале).

В общем случае для реакции вида аА+bB+…↔dD+eE+… константа равновесия равна . Для взаимодействия между газообразными веществами часто пользуются выражением , в котором реагенты представлены равновесными парциальными давлениями p. Для упомянутой реакции .

Состояние равновесия характеризует тот предел, до которого в данных условиях реакция протекает самопроизвольно (∆G<0). Если в системе наступило химическое равновесие, то дальнейшее изменение изобарного потенциала происходить не будет, т.е. ∆G=0.

Соотношение между равновесными концентрациями не зависит от того, какие вещества берутся в качестве исходных (например, H 2 и I 2 или HI), т.е. к состоянию равновесия можно подойти с обеих сторон.

Константа химического равновесия зависит от природы реагентов и от температуры; от давления (если оно слишком высокое) и от концентрации реагентов константа равновесия не зависит.

Влияние на константу равновесия температуры, энтальпийного и энтропийного факторов . Константа равновесия связана с изменением стандартного изобарно-изотермического потенциала химической реакции ∆G o простым уравнением ∆G o =-RT ln K.

Из него видно, что большим отрицательным значениям ∆G o (∆G o <<0) отвечают большие значения К, т.е. в равновесной смеси преобладают продукты взаимодействия. Если же ∆G o характеризуется большими положительными значениями (∆G o >>0), то в равновесной смеси преобладают исходные вещества. Указанное уравнение позволяет по величине ∆G o вычислить К, а затем и равновесные концентрации (парциальные давления) реагентов. Если учесть, что ∆G o =∆Н o -Т∆S o , то после некоторого преобразования получим . Из этого уравнения видно, что константа равновесия очень чувствительна к изменению температуры. Влияние на константу равновесия природы реагентов определяет ее зависимость от энтальпийного и энтропийного факторов.

Учебные вопросы

  1. Состояние равновесия

  2. Константа равновесия

    Расчет равновесных концентраций

    Смещение химического равновесия. Принцип Ле Шателье

  1. Состояние равновесия

Реакции, протекающие при одних и тех же условиях одновременно в противоположных направлениях, называются обратимыми .

Рассмотрим обратимую реакцию, которая протекает в закрытой системе

Скорость прямой реакции описывается уравнением:

пр = k пр [A] [B],

где пр – скорость прямой реакции;

k пр – константа скорости прямой реакции.

С течением времени концентрации реагентов А и В уменьшаются, скорость реакции падает (рис.1, кривая пр).

Реакция между А и В приводит к образованию веществ C и D , молекулы которых при столкновениях могут вновь дать вещества А и В .

Скорость обратной реакции описывается уравнением:

обр = k обр [С] [D],

где обр – скорость обратной реакции;

k обр – константа скорости обратной реакции.

По мере того как концентрации веществ C и D возрастают, скорость обратной реакции растет (рис.1, кривая обр).

Рис.1. Изменение скоростей прямой и обратной реакций во времени

Через некоторое время скорости прямой и обратной реакций становятся равными:

пр = обр

Такое состояние системы называется состоянием равновесия .

В состоянии равновесия концентрации всех его участников перестают меняться во времени . Такие концентрации называютсяравновесными .

Химическое равновесиеэто динамическое равновесие. Неизменность концентраций веществ, присутствующих в закрытой системе, есть следствие непрерывно идущих химических процессов. Скорости прямой и обратной реакции не равны нулю, а нулю равна наблюдаемая скорость процесса.

Равенство скоростей прямой и обратной реакций – это кинетическое условие химического равновесия.

2. Константа равновесия

При равенстве скоростей прямой и обратной реакции

пр = обр

справедливо равенство

k пр [A] [B] = k обр [С] [D],

где [A ], [B ], [С ], [D ] – равновесные концентрации веществ.

Поскольку константы скоростей не зависят от концентраций, равенство можно записать иначе:

Отношение констант скоростей прямой и обратной реакций ( k пр / k обр ) называют константой химического равновесия:

Истинное химическое равновесие может устанавливаться только в том случае, если равновесны все элементарные стадии механизма реакции. Сколь бы сложны ни были механизмы прямой и обратной реакций, но в состоянии равновесия они должны обеспечить стехиометрический переход исходных веществ в продукты реакции и обратно. Это значит, что алгебраическая сумма всех стадий процесса равна стехиометрическому уравнению реакции, т.е. стехиометрические коэффициенты представляют собой сумму молекулярностей всех стадий механизма.

Для сложной реакции

aA + bB  cC + dD

К с =

Для одной и той же температуры отношение произведения равновесных концентраций продуктов реакции в степенях, равных стехиометрическим коэффициентам, к произведению равновесных концентраций исходных веществ в степенях, равных стехиометрическим коэффициентам, представляет постоянную величину .

Это вторая формулировка закона действующих масс.

В выражение константы равновесия гетерогенной реакции входят только концентрации веществ, находящихся в жидкой или газообразной фазе, так как концентрации твердых веществ остаются, как правило, постоянными.

Например, выражение для константы равновесия следующей реакции

СО 2 (г) + С(тв)  2СО(г)

записывается так:

К с =
.

Уравнение константы равновесия показывает, что в условиях равновесия концентрации всех веществ, участвующих в реакции, связаны между собой. Численное значение константы равновесия определяет, каким должно быть соотношение концентраций всех реагирующих веществ при равновесии.

Изменение концентрации любого из этих веществ влечет за собой изменения концентраций всех остальных веществ. В итоге устанавливаются новые концентрации, но соотношение между ними вновь отвечает константе равновесия.

Величина константы равновесия зависит от природы реагирующих веществ и температуры.

Константа равновесия, выраженная через молярные концентрации реагирующих веществ (К с ) и константа равновесия, выраженная через равновесные парциальные давления (К р ) (см. «Основы химической термодинамики»), связаны между собой соотношениями:

К р = К с RT  , K c = К р / (RT )  ,

где  - изменение числа газообразных молей в реакции.

Стандартное изменение энергии Гиббса равно

G Т = - RT ln K p ,

G Т =  H  – T S .

После приравнивания правых частей уравнений:

- RT ln K p =  H  – T S

ln K р = -  H  / (RT ) +  S /R .

Уравнение не только устанавливает вид зависимости константы от температуры, но и показывает, что константа определяется природой реагирующих веществ.

Константа равновесия не зависит от концентраций (как и константа скорости реакции), механизма реакции, энергии активации, от присутствия катализаторов . Смена механизма, например, при введении катализатора, не влияет на численное значение константы равновесия, но, конечно, меняет скорость достижения равновесного состояния.

Если слить растворы кислоты и щелочи, образуется соль и вода, например,

HCl + NaOH = NaCl + H 2 O, и если вещества были взяты в нужных пропорциях, раствор имеет нейтральную реакцию и в нем не остается даже следов соляной кислоты и гидроксида натрия. Если попытаться провести реакцию в растворе между образовавшимися веществами – хлоридом натрия и водой, то никаких изменений не обнаружится. В подобных случаях говорят, что реакция кислоты со щелочью необратима, т.е. обратная реакция не идет. Практически необратимы при комнатной температуре очень многие реакции, например,

H 2 + Cl 2 = 2HCl, 2H 2 + O 2 = 2H 2 O и др.

Многие реакции обратимы уже в обычных условиях, это означает, что в заметной степени протекает обратная реакция. Например, если попытаться нейтрализовать щелочью водный раствор очень слабой хлорноватистой кислоты, то окажется, что реакция нейтрализации до конца не идет и раствор имеет сильнощелочную среду. Это означает, что реакция HClO + NaOH NaClO + H 2 O обратима, т.е. продукты этой реакции, реагируя друг с другом, частично переходят в исходные соединения. В результате раствор имеет щелочную реакцию. Обратима реакция образования сложных эфиров (обратная реакция называется омылением): RCOOH + R"OH RCOOR" + H 2 O, многие другие процессы.

Как и многие другие понятия в химии, понятие обратимости во многом условно. Обычно необратимой считают реакцию, после завершения которой концентрации исходных веществ настолько малы, что их не удается обнаружить (конечно, это зависит от чувствительности методов анализа). При изменении внешних условий (прежде всего температуры и давления) необратимая реакция может стать обратимой и наоборот. Так, при атмосферном давлении и температурах ниже 1000° С реакцию 2Н 2 + О 2 = 2Н 2 О еще можно считать необратимой, тогда как при температуре 2500° С и выше вода диссоциирует на водород и кислород примерно на 4%, а при температуре 3000° С – уже на 20%.

В конце 19 в. немецкий физикохимик Макс Боденштейн (1871–1942) детально изучил процессы образования и термической диссоциации иодоводорода: H 2 + I 2 2HI. Изменяя температуру, он мог добиться преимущественного протекания только прямой или только обратной реакции, но в общем случае обе реакции шли одновременно в противоположных направлениях. Подобных примеров множество. Один из самых известных – реакция синтеза аммиака 3H 2 + N 2 2NH 3 ; обратимы и многие другие реакции, например, окисление диоксида серы 2SO 2 + O 2 2SO 3 , реакции органических кислот со спиртами и т.д.

Скорость реакции и равновесие.

Пусть есть обратимая реакция A + B C + D. Если предположить, что прямая и обратная реакция проходят в одну стадию, то скорости этих реакций будут прямо пропорциональны концентрациям реагентов: скорость прямой реакции v 1 = k 1 [A][B], скорость обратной реакции v 2 = k 2 [C][D] (квадратными скобками обозначены молярные концентрации реагентов). Видно, что по мере протекания прямой реакции концентрации исходных веществ А и В снижаются, соответственно, уменьшается и скорость прямой реакции. Скорость же обратной реакции, которая в начальный момент равна нулю (нет продуктов C и D), постепенно увеличивается. Рано или поздно наступит момент, когда скорости прямой и обратной реакций сравняются. После этого концентрации всех веществ – А, В, С и D не изменяются со временем. Это значит, что реакция достигла положения равновесия, а неизменяющиеся со временем концентрации веществ называются равновесными. Но, в отличие от механического равновесия, при котором всякое движение прекращается, при химическом равновесии обе реакции – и прямая, и обратная – продолжают идти, однако их скорости равны и поэтому кажется, что никаких изменений в системе не происходит.

Доказать протекание прямой и обратной реакций после достижения равновесия можно множеством способов. Например, если в смесь водорода, азота и аммиака, находящуюся в положении равновесия, ввести немного изотопа водорода – дейтерия D 2 , то чувствительный анализ сразу обнаружит присутствие атомов дейтерия в молекулах аммиака. И наоборот, если ввести в систему немного дейтерированного аммиака NH 2 D, то дейтерий тут же появится в исходных веществах в виде молекул HD и D 2 . Другой эффектный опыт был проведен на химическом факультете МГУ. Серебряную пластинку поместили в раствор нитрата серебра, при этом никаких изменений не наблюдалось. Затем в раствор ввели ничтожное количество ионов радиоактивного серебра, после чего серебряная пластинка стала радиоактивной. Эту радиоактивность не могло «смыть» ни споласкивание пластинки водой, ни промывание ее соляной кислотой. Только травление азотной кислотой или механическая обработка поверхности мелкой наждачной бумагой сделало ее неактивной. Объяснить этот эксперимент можно единственным образом: между металлом и раствором непрерывно происходит обмен атомами серебра, т.е. в системе идет обратимая реакция Ag(тв) – е – = Ag + . Поэтому добавление радиоактивных ионов Ag + к раствору приводило к их «внедрению» в пластинку в виде электронейтральных, но по-прежнему радиоактивных атомов.

Таким образом, равновесными бывают не только химические реакции между газами или растворами, но и процессы растворения металлов, осадков. Например, твердое вещество быстрее всего растворяется, если его поместить в чистый растворитель, когда система далека от равновесия, в данном случае – от насыщенного раствора. Постепенно скорость растворения снижается, и одновременно увеличивается скорость обратного процесса – перехода вещества из раствора в кристаллический осадок. Когда раствор становится насыщенным, система достигает состояния равновесия, при этом скорости растворения и кристаллизации равны, а масса осадка со временем не меняется.

Константа равновесия.

Важнейший параметр, характеризующий обратимую химическую реакцию – константа равновесия К . Если записать для рассмотренной обратимой реакции A + D C + D условие равенства скоростей прямой и обратной реакции в состоянии равновесия – k 1 [A] равн [B] равн = k 2 [C] равн [D] равн, откуда [C] равн [D] равн /[A] равн [B] равн = k 1 /k 2 = К , то величина К называется константой равновесия химической реакции.

Итак, при равновесии отношение концентрации продуктов реакции к произведению концентрации реагентов постоянно, если постоянна температура (константы скорости k 1 и k 2 и, следовательно, константа равновесия К зависят от температуры, но не зависят от концентрации реагентов). Если в реакции участвуют несколько молекул исходных веществ и образуется несколько молекул продукта (или продуктов), концентрации веществ в выражении для константы равновесия возводятся в степени, соответствующие их стехиометрическим коэффициентам. Так для реакции 3H 2 + N 2 2NH 3 выражение для константы равновесия записывается в виде K = 2 равн / 3 равн равн. Описанный способ вывода константы равновесия, основанный на скоростях прямой и обратной реакций, в общем случае использовать нельзя, так как для сложных реакций зависимость скорости от концентрации обычно не выражается простым уравнением или вообще неизвестна. Тем не менее, в термодинамике доказывается, что конечная формула для константы равновесия оказывается верной.

Для газообразных соединений вместо концентраций при записи константы равновесия можно использовать давление; очевидно, численное значение константы при этом может измениться, если число газообразных молекул в правой и левой частях уравнения не одинаковы.

Графики, показывающие, как система приближается к равновесию (такие графики называются кинетическими кривыми), приведены на рисунках.

1. Пусть реакция необратима. Тогда k 2 = 0. Примером может служить реакция водорода с бромом при 300° С. Кинетические кривые показывают изменение концентрации веществ А, B, C, D (в данном случае H 2 , Br 2 и HBr) в зависимости от времени. Для простоты предполагается равенство исходных концентраций реагентов H 2 и Br 2 . Видно, что концентрации исходных веществ в результате необратимой реакции снижаются до нуля, тогда как сумма концентраций продуктов достигает суммы концентраций реагентов. Видно также, что скорость реакции (крутизна кинетических кривых) максимальна в начале реакции, а после завершения реакции кинетические кривые выходят на горизонтальный участок (скорость реакции равна нулю). Для необратимых реакций константу равновесия не вводят, поскольку она не определена (К ® Ґ).

2. Пусть k 2 = 0, причем k 2 k 1 и К > 1 (реакция водорода с иодом при 300° С). Вначале кинетические кривые почти не отличаются от предыдущего случая, так как скорость обратной реакции мала (мала концентрация продуктов). По мере накопления HI скорость обратной реакции возрастает, а прямой – уменьшается. В какой-то момент они сравняются, после чего концентрации всех веществ уже не изменяются со временем – скорость реакции стала нулевой, хотя реакция не прошла до конца. В данном случае (K > 1) до достижения равновесия (заштрихованная часть) прямая реакция успевает пройди на значительную глубину, поэтому в равновесной смеси больше продуктов (C и D), чем исходных веществ А и В – равновесие сдвинуто вправо.

3. Для реакции этерификации уксусной кислоты (А) этанолом (В) при 50° С константа скорости прямой реакции меньше, чем обратной: k 1 k 2 , поэтому K

4. В сравнительно редком случае, когда константы скорости прямой и обратной реакций равны (k 1 = k 2 , K = 1), для реакции A + B = C + D при [A] 0 = [B] 0 в равновесной смеси концентрации исходных веществ и продуктов будут одинаковыми и кинетические кривые сольются. Иногда такие условия можно создать соответствующим подбором температуры. Например, для обратимой реакции СО + Н 2 О = Н 2 + СО 2 К = 1 при температуре около 900° С. При более высоких температурах константа равновесия для этой реакции меньше 1 (например, при 1000° С К = 0,61) и равновесие сдвинуто в сторону СО и Н 2 О. При более низких температурах K > 1 (например, при 700° С К = 1,64) и равновесие сдвинуто в сторону СО 2 и Н 2 .

Значение K может служить характеристикой необратимости реакции в данных условиях. Так, если K очень велика, это значит, что концентрации продуктов реакции намного превышают концентрации исходных веществ при равновесии, т.е. реакция прошла почти до конца. Например, для реакции NiO + H 2 Ni + H 2 O при 523 К (250° С) К = [Н 2 О] равн /[Н 2 ] равн = 800 (концентрации твердых веществ постоянны и в выражение для К не входят). Следовательно, в замкнутом объеме после достижения равновесия концентрация паров воды будет в 800 раз больше, чем водорода (здесь концентрации можно заменить пропорциональными им давлениями). Итак, эта реакция при указанной температуре проходит почти до конца. А вот для реакции WO 2 + 2H 2 W + 2H 2 O при той же температуре К = ([Н 2 ] равн /[Н 2 О] равн) 2 = 10 –27 , следовательно, диоксид вольфрама практически не восстанавливается водородом при 500 К.

Значения К для некоторых реакций приведены в таблице.

Константа химического равновесия - характеристика химической реакции, по значению которой можно судить о направлении процесса при исходном соотношении концентраций реагирующих веществ, о максимально возможном выходе продукта реакции при тех или иных условиях.

Константа химического равновесия определяется по закону действующих масс . Ее значения находят расчетно или на основании экспериментальных данных. Константа химического равновесия зависит от природы реагентов и от температуры.

Константа равновесия и энергия Гиббса

Константа равновесия ~K связана со свободной энергией Гиббса ~\Delta G следующим образом:

~\Delta G=-RT\cdot\ln K.

Приведенное уравнение позволяет по величине ΔG° вычислить К, а затем и равновесные концентрации (парциальные давления) реагентов.

Из этого уравнения видно, что константа равновесия очень чувствительна к изменению температуры (если выразить отсюда константу, то температура будет в показателе степени). Для эндотермических процессов повышение температуры отвечает увеличению константы равновесия, для экзотермических - ее уменьшению. От давления константа равновесия не зависит, кроме случаев очень большого давления (от 100 Па).

Зависимость константы равновесия от энтальпийного и энтропийного факторов свидетельствует о влиянии на нее природы реагентов.

Константа равновесия и скорость реакции

Можно выразить константу равновесия через скорость реакции. При этом константа равновесия определяется как

~K=\frac{k_1}{k_{-1}},

где ~k_1 - константа скорости прямой реакции, ~k_{-1} - константа скорости обратной реакции.