Шариковая пара. Восстановление винтовых пар. Функциональное предназначение и устройство

Роликовинтовые пары (передачи, приводы) SKF

Ролико винтовые передачи - новый этап развития приводной техники.

Грузоподъемность передач винт-гайка качения практически всецело зависит от характеристик поверхностей в месте контакта элементов качения и винта: диаметра, числа точек контакта, твердости, обработки поверхности для обеспечения точности и следовательно равномерности распределения нагрузок между телами качения.

В шариковинтовых передачах нагрузка передается с гайки на винт через шарики, расположенные в канавках резбы. В ШВП с однозаходной резьбой размер шарика ограничен приблизительно 70% шага резьбы. В связи с этим, общая площадь контакта относительно мала в связи с ограниченностью числа полных витков шариков в гайке. Показать схему.

В роликовинтовых передачах нагрузка передается через рифленую поверхность всех цилиндрических роликов, что приводит к значительному увеличению числа точек контакта и общей площади контакта относительно ШВП. Показать схему.

Ролико винтовые передачи характеризуются:

Очень высокой грузоподъемностью (статическая нагрузка до 1500 тонн, динамическая нагрузка до 370 тонн)
- Очень высокой допустимой скоростью вращения (для РВП диаметром 48 мм - 3300 об/мин)
- Очень высокими допустимыми ускорениями (12000 рад/сек кв.)
- Долгим сроком службы даже при постоянной работе
- Высочайшей надежностью
- Хорошей сопротивляемостью агрессивным средам (пыль, песок, лёд)
- Хорошей сопротивляемостью ударным нагрузкам и вибрациям
- Прекрасной повторяемостью позиционирования (мин. шаг 0,6 мм)

Различают два типа ролико-винтовых передач.


(серии SR/BR/PR/HR) (показать устройство) выдерживают тяжелейшие нагрузки в агрессивных условиях тысячи часов, что делает их пригодными для использования в задачах с очень высокими требованиями к грузоподъемности и надежности. Очень прочная гайка способна выдерживать ударные нагрузки, а механизм синхронизации движения роликов сохраняет надежность даже при высоких скоростях. Большой шаг резьбы и симметричная конструкция гайки позволяют осуществлять линейные перемещения с высокими скоростями.

Планетарные роликовинтовые приводы применяются в протяжных станках, прессах, станках, сталелитейном производстве, производстве шин, для автоматизации погрузочно-разгрузочных операций, военной авиации, танках, пусковых установках и пр.


(серии SV/BV/PV) (показать устройство) позволяют получить высочайшую точность позиционирования благодаря использованию резьбы с малым шагом. Преимущества такой конструкции - минимизация входного момента и увеличение разрешения. Также отличаются высокой жесткостью.

Рециркуляционные ролико-винтовые приводы применяются в лабораторном и медицинском оборудовании, производстве бумаги, топографском оборудовании, телескопах, спутниках и пр.

ПРОИЗВОДСТВЕННАЯ ПРОГРАММА РОЛИКО-ВИНТОВЫХ ПЕРЕДАЧ SKF

Серия планетарных ролико-винтовых пар SRC:
увеличить

Цилиндрические гайки с осевым люфтом
- Шаг резьбы от 4 до 42 мм


увеличить

Фланцевые гайки с осевым люфтом
- Диаметры винтов от 8 до 210 мм
- Шаг резьбы от 4 до 42 мм


увеличить

BRC - цилиндрические гайки с устраненным осевым люфтом
- PRU - цилиндрические гайки с преднатягом
- Шаг резьбы от 2 до 42 мм


увеличить

BRF - фланцевые гайки с устраненным осевым люфтом
- PRK - фланцевые гайки с преднатягом
- Диаметры винтов от 8 до 64 мм
- Шаг резьбы от 4 до 36 мм

HRC – цилиндрические гайки с осевым люфтом
- HRF, HRP – фланцевые гайки с осевым люфтом
- Диаметры винтов от 60 до 210 мм
- Шаг резьбы от 15 до 40 мм

ISR – гайки с осевым люфтом
- IBR – гайки с устраненным осевым люфтом
- Диаметры винтов от 12 до 120 мм
- Шаг резьбы от 1 до 18 мм

SRR – фланцевые гайки с осевым люфтом
- BRR – фланцевые гайки с устраненным осевым люфтом
- Диаметры винтов от 25 до 60 мм
- Шаг резьбы от 5 до 30 мм


увеличить

SVC - цилиндрические гайки с осевым люфтом
- PVU – цилиндрические гайки с преднатягом

- Шаг резьбы от 0,6 до 5 мм

SVF - фланцевые гайки с осевым люфтом
- PVK - фланцевые гайки с преднатягом
- Диаметры винтов от 8 до 125 мм
- Шаг резьбы от 0,6 до 5 мм

Для создания станков с программным числовым управлением необходимо использовать шарико-винтовые пары. Они отличаются не только внешним видом, но и конструкцией. Для выбора определенной модели следует заранее ознакомиться со строением и комплектующими ШВП.

Назначение шарико-винтовых пар

Все виды ШВП для станков с ЧПУ предназначены для преобразования вращательного движения в поступательное. Конструктивно состоят из корпуса и ходового винта. Отличаются друг от друга размерами и техническими характеристиками.

Основным требованием является минимизация трения во время работы. Для этого поверхность комплектующих проходит процесс тщательной шлифовки. В результате этого во время движения ходового винта не происходит резких скачков его положения относительно корпуса с подшипниками.

Дополнительно для достижения плавного хода применяется не трение скольжение относительно штифта и корпуса, а качение. Для получения этого эффекта применяется принцип шариковых подшипников. Подобная схема увеличивает перегрузочные характеристики ШВП для станков с ЧПУ, значительно повышает КПД.

Основные компоненты шарико-винтовой передачи:

  • ходовой винт. Предназначен для преобразования вращательного движения в поступательное. На его поверхности формируется резьба, основная характеристика — ее шаг;
  • корпус. Во время движения ходового винта происходит смещение. На корпус могут устанавливаться различные компоненты станка: фрезы, сверла и т.д.;
  • шарики и вкладыши. Необходимы для плавного хода корпуса относительно оси ходового винта.

Несмотря на все преимущества подобной конструкции шарико-винтовые передачи для ЧПУ применяются только для средних и малых станков. Это связано с возможностью прогиба винта при расположении корпуса в его средней части. В настоящее время максимально допустимая длина составляет 1,5 м.

Аналогичными свойствами обладает передача винт-гайка. Однако это схема характеризуется быстрым износом комплектующих из-за их постоянного трения между собой.

Области применения ШВП

Относительная простота конструкции и возможность изготовления шарико-винтовой передачи с различными характеристиками расширяет область его применения. В стоящее время шарико-винтовые пары являются неотъемлемыми компонентами самодельных фрезерных станков с числовым программным управлением. Ну на этом область применения не ограничивается.

Благодаря своей универсальности ШВП могут устанавливаться не только в станках с ЧПУ. Плавный ход и практические нулевое трение делают их незаменимыми компонентами в точных измерительных приборах, установок медицинского назначения, в машиностроении. Нередко для комплектации самодельного оборудования берут запчасти от этих приборов.

Это стало возможным благодаря следующим свойствам:

  • минимизация потерь на трение;
  • высокий коэффициент нагрузочной способности при небольших габаритах конструкции;
  • низкая инертность. Движение корпуса происходит одновременно с вращением винта;
  • отсутствие шума и плавный ход.

Однако следует учитывать и недостатки ШВП для оборудования ЧПУ. Прежде всего к ним относятся сложная конструкция корпуса. Даже при незначительном повреждении одного из компонентов шарико-винтовая передача не сможет выполнять свои функции. Также накладываются ограничения на скорость вращения винта. Превышение этого параметра может привести к появлению вибрации.

Для уменьшения осевого зазора сборка выполняется с натягом. Для этого могут устанавливаться шарики увеличенного диаметра или две гайки с осевым смещением.

Характеристики ШВП для оборудования с ЧПУ

Для выбора оптимальной модели шарико-винтовой передачи для станков с числовым программным управлением следует ознакомиться с техническими характеристиками. В дальнейшем они повлияют на эксплуатационные качества оборудования и время его безремонтной эксплуатации.

Основным параметром ШВП для станков с ЧПУ является класс точности. Он определяет степень погрешности положения подвижной системы согласно расчетным характеристикам. Класс точности может быть от С0 до С10. Погрешность перемещения должна даваться производителем, указывается в техническом паспорте изделия.

Класс точности С0 С1 С2 С3 С5 С7 С10
Погрешность на 300 мкм 3,5 5 7 8 18 50 120
Погрешность на один оборот винта 2,5 4 5 6 8

Кроме этого при выборе нужно учитывать следующие параметры:

  • отношение максимальной и необходимой скорости мотора;
  • общая длина резьбы ходового винта;
  • средние показатели нагрузки на всю конструкцию;
  • значение осевой нагрузки — преднатяг;
  • геометрические размеры — диаметр винта и гайки;
  • параметры электродвигателя — крутящий момент, мощность и другие характеристики.

Эти данные должны быть предварительно рассчитаны. Следует помнить, что фактические характеристики ШВП для оборудования с ЧПУ не могут отличаться от расчетных. В противном случае это приведет к неправильной работе станка.

Количество оборотов шариков за один круг определит степень передачи крутящего момента от вала корпусу. Этот параметр зависит от диаметра шариков, их количества и сечения вала.

Установка ШВП на станок с ЧПУ

После выбора оптимальной модели необходимо продумать схему установки ШВП на станок с ЧПУ. Для этого предварительно составляется чертеж конструкции, закупаются или изготавливаются другие компоненты.

Во время выполнения работы следует учитывать не только технические характеристики шарико-винтовой передачи. Основное ее предназначение — движение элементов станка по определенной оси. Поэтому следует заранее продумать крепление блока обработки к корпусу ШВП для станков с ЧПУ. Необходимо сверить размеры посадочных отверстий, их расположение на корпусе. Следует помнить, что любая механическая обработка шарико-винтовой передачи может повлечь за собой негативные изменения ее характеристик.

Порядок установки в корпус станка с ЧПУ.

  1. Определение оптимальных технических характеристик.
  2. Измерение длины вала.
  3. Создание схемы сопряжения монтажной части вала с ротором двигателя.
  4. Установка передачи на корпус станка.
  5. Проверка работоспособность узла.
  6. Подключение всех основных компонентов.

После этого можно выполнить первый пробный запуск оборудования. В процессе работы не должно возникать колебания и вибрации. В случае их появления выполнять дополнительную калибровку компонентов.

При поломке ШВП во время эксплуатации станка с ЧПУ ремонт передача можно сделать самостоятельно. Для этого можно заказать специальный комплект. С особенностями проведения восстановительных работ можно знакомиться в видеоматериале:

Шарико-винтовые пары

Шарико-винтовая передача (ШВП) – это линейный механический привод, преобразующий вращение в линейное перемещение и наоборот. Конструктивно она представляет собой длинный винт, по которому движется шариковая гайка. Внутри гайки между ее внутренней резьбой и резьбой винта по спиралевидной траектории катятся шарики, затем попадая в возвратные каналы – внутренние или внешние.

Концы винта обычно закрепляются на подшипниковых опорах, а гайка соединена с перемещаемым узлом. Когда винт вращается, гайка линейно перемещается по винту вместе с полезной нагрузкой. Но существуют и шарико-винтовые пары с вращающейся гайкой – в такой конструкции винт линейно перемещается относительно гайки.

Обыкновенная винтовая передача состоит из винта и гайки, которые имеют трапецеидальную резьбу. В такой передаче при движении возникает трение скольжения, и около 70% энергии рассеивается в виде тепла.

В отличие от передачи винт-гайка, шарико-винтовой привод содержит элементы качения (шарики), которые передают механическую энергию между гайкой и винтом. Это обеспечивает ШВП значительные преимущества:

  • КПД может превышать 80%

  • требуемые мощность и крутящий момент приводных двигателей намного меньше

  • интенсивность износа минимизирована

  • срок службы намного больше, чем у винтовых передач скольжения, и может быть определен вычислением усталости при качении

  • меньший нагрев способствует непрерывной работе
Однако из-за малого коэффициента трения ШВП подвержены скатыванию, особенно при большом шаге резьбы. Поэтому в некоторых случаях требуется использование тормозного устройства для предотвращения самопроизвольного движения механизма.

Диапазон основных характеристик шарико-винтовых передач:


  • Номинальный диаметр винта – от 6 до 150 мм

  • Динамическая грузоподъемность – от 1,9 до 375 кН

  • Статическая грузоподъемность – от 2, 2 до 1250 кН

  • Линейная скорость – до 110 м/мин.
Существуют два типа шарико-винтовых передач, различающихся технологией изготовления резьбового винта: катаные (накатка резьбы) и шлифованные (нарезка резьбы с последующей шлифовкой поверхности). Катаные винты проще в производстве, поэтому более доступны. Шлифованные дороже, но имеют значительно лучшую точность изготовления резьбы, а, следовательно, точность и повторяемость позиционирования.

Важным параметром также является шаг резьбы. Чем он больше, тем выше максимальная линейная скорость, но ниже точность позиционирования и осевое усилие.

Мы предлагаем обширный ассортимент прецизионных ШВП с катаными и шлифованными винтами. Доступны и соответствующие аксессуары – фланцевые гайки и подшипниковые опоры.

Катаные шарико-винтовые передачи

Шарико-винтовые передачи SKF – это высокопроизводительное решение для широкого круга областей применения, в которых особенно важны точность, надежность и соотношение цена/качество.

Использование высокотехнологичного оборудования при производстве катаных винтов позволило добиться почти таких же характеристик и точности, как и у шлифованных, но с меньшими затратами. Стандартным является класс точности G9, согласно ISO 286-2:1988. Начиная с номинального диаметра 20 мм, катаные винты производства SKF соответствуют точности G7. По запросу доступны винты с точностью G5 по ISO 3408-3:2006, соответствующей точности G5 шлифованных винтов, предназначенные для позиционирования.

Из широкого ассортимента прецизионных катаных шариковинтовых пар SKF вы сможете выбрать именно то, что нужно в конкретном случае:

  • Миниатюрные шарико-винтовые пары (с номинальным диаметром от 6 мм, внешней или внутренней рециркуляцией шариков) – компактная, эффективная система привода.

  • Большая часть миниатюрных ШВП доступна в исполнении из нержавеющей стали.

  • Катаные шарико-винтовые передачи большего номинального диаметра (от 16 до 63 мм) доступны с различными видами гаек, с осевым зазором или без, с преднатягом – как для обычного использования в приводе, так и в точном позиционировании.

  • Для этих винтов предлагается множество дополнительных аксессуаров, например, опциональные фланцы для гаек и подшипниковые опоры, обеспечивающие упрощение сборки готовой системы.

  • Катаные шарико-винтовые пары с большим шагом обеспечивают высочайшие линейные скорости для специфических областей применения.

  • SKF также предлагает ШВП с вращающимися гайками, обеспечивающими снижение инерции системы. Вы можете обратиться к нам для получения более подробной информации.
Прецизионные шлифованные шарико-винтовые пары

SKF предлагает обширный ассортимент шлифованных шарико-винтовых передач для случаев, когда требуются высокая точность и жесткость. Так как поверхности качения обрабатываются специальным высокоточным оборудованием, шлифованные ШВП легко приспособить практически под любые требования. Стандартная точность резьбы – G5, по заказу доступны G3 и G1.

Как сделать правильный выбор?

В широком ассортименте шлифованных шарико-винтовых передач SKF вы наверняка найдете именно то, что нужно в конкретном случае:

  • Метрические и дюймовые

  • Гайка DIN или цилиндрическая фланцевая

  • Внутренние или наружные возвратные каналы

  • Фланец посередине гайки или с одного из торцов

  • Гайка с осевым зазором, без зазора, с преднатягом

  • Одинарная или двойная гайка

  • Стандартная обработка концов винта или по требованиям заказчика

  • Возможно изготовление гайки под заказ

  • Опционально – вал с заплечиками, вырезанными из металлической пластины
Все аксессуары, в том числе, подшипниковые опоры, могут поставляться уже установленными на шариковинтовую пару в сборе.

Каталоги SKF по шарико-винтовым передачам

Шариково-винтовая передача - разновидность линейного привода, трансформирующего вращательное движение в поступательное, которая обладает отличительной особенностью - крайне малым трением.

Вал (обычно стальной - из высокоуглеродистых видов стали) со специфической формы беговыми дорожками на поверхности выполняет роль высокоточного приводного винта, взаимодействующего с гайкой, но не напрямую, через трение скольжения, как в обычных передачах винт-гайка, а посредством шариков , через трение качения. Это обуславливает это высокие перегрузочные характеристики шарико-винтовой передачи и очень высокий КПД. Винт и гайка производятся в паре, подогнанными, с очень жесткими допусками, и могут быть использованы в оборудовании, где требуется очень высокая точность. Шариковая гайка обычно чуть более крупная, чем гайка скольжения - из-за расположенных в ней каналов рециркуляции шариков. Однако, это практически единственный момент, в котором ШВП уступает винтовым передачам трения скольжения.

Сфера применения шарико-винтовых пар

ШВП часто применяется в авиастроении и ракетостроении для перемещения рулевых поверхностей, а также в автомобилях, чтобы приводить в движение рулевую рейку от электромотора рулевого управления. Широчайший спектр приложений ШВП существует в прецизионном машиностроении, таком, как станки с ЧПУ, роботы, сборочные линии, установщики компонентов, а также - в механических прессах, термопластавтоматах и др.

История ШВП

Исторически, первый точный шариковый винт был произведен из достаточно малой точности обычного винта, на который была установлена конструкция из нескольких гаек, натянутых пружиной, а затем притерта по всей длине винта. Путем перераспределения гаек и смены направления натяга, погрешности шага винта и гайки могли быть усреднены. Затем, полученный шаг пары, определенный с высокой повторяемостью замерялся и фиксировался в качестве паспортного. Схожий процесс и в настоящее время периодически используется для производства .

Применение ШВП

Для того, чтобы шариковая пара отслужила весь свой расчетный срок с сохранением всех, в т.ч. точностных, параметров, необходимо уделить большое внимание чистоте и защите рабочего пространства, избегать попадания на пару пыли, стружки и прочих абразивных частиц. Обычно это решается путем установки гофрозащиты на пару, полимерной, резиновой или кожаной, что исключает попадание посторонних частиц в рабочую область. Другой метод состоит в использовании компрессора - подачи фильтрованного воздуха под давлением на винт, установленный открыто. Шарико-винтовые передачи благодаря использованию трения качения могут иметь определенный преднатяг, который убирает люфт передачи - определенный "зазор" между вращательным и поступательным движением, который имеет место при смене направления вращения. Устранить люфт особенно важно в системах с программным управлением, поэтому ШВП с преднатягом используются в станках с ЧПУ особенно часто.

Недостатки шарико-винтовых передач

В зависимости от угла подъема беговых дорожек, ШВП могут быть подвержены обратной передаче - малое трение приводит к тому, что гайка не блокируется, а передает линейное усилие в крутящий момент. ШВП обычно нежелательно использовать на ручных подачах. Высокая стоимость ШВП также фактор, который зачастую склоняет выбор машиностроителей в пользу более бюджетных передач.

Преимущества шарико-винтовых передач

Низкий коэффициент трения ШВП обуславливает низкую диссипацию и высокий КПД передачи - намного выше, чем у любых других аналогов. КПД самых распространенных шариковых пар может превышать 90% по сравнению с максимальными 50% для метрических и трапецеидальных ходовых винтов. Практические отсутствующее скольжение значительно увеличивает срок службы ШВП, что снижает простой оборудования при ремонте, замене и смазке частей. Все это в сочетании с некоторыми другими преимуществами, такими как более высокой достигаемой скоростью, сниженными требованиями к мощности электропривода винта, может быть существенным аргументом в пользу ШВП в противовес его высокой стоимости.

Производство винтов ШВП

Самые точные винты ШВП могут быть произведены только шлифовкой. Также винт можно получить накаткой - такой винт будет отличаться значительно меньшей стоимостью, но точность его будет ограничена погрешностью порядка 50 микрон на 300 мм хода.

Точность ШВП

Высокоточные винты обычно дают погрешность порядка 1-3 микрон на 300 мм хода, и даже точнее. Заготовки под такие винты получают грубой механоообработкой, затем заготовки закаливаются и шлифуются до кондиции. Три шага строго обязательны, т.к. температурная обработка сильно меняет поверхность ШВП.

Hard-whirling это сравнительно новая технология металлообработки, которая минимизирует нагрев заготовки в процессе, и может произвести точные винты из закаленной заготовки. Инструментальные винты ШВП обычно достигают точности 250 нм на сантиметр. Они изготавливаются фрезеровкой и шлифовкой на сверхточном оборудовании с контролем специализированным оборудованием субмикронной точности. Аналогичным оборудованием оснащены линии по производству линз и зеркал. Такие винты обычно изготавливаются из Инвара или других инварных сплавов, чтобы минимизировать погрешность, вносимую тепловым расширением винта.

Системы рециркуляции шариков

Подшипниковые шарики циркулируют в каналах резьбы гайки и беговых дорожек винта. Если не направлять шарик после окончания его путешествия, шарики просто вываливались бы из гайки наружу после достижения конца дорожки, поэтому в ШВП применяются несколько систем возврата шариков к началу дороже - систем рециркуляции.

Внешняя система используется металлическую трубку, которая соединяет вход и выход из канала гайки. Выходящие шарики попадают в трубку, и проталкиваемые последующими, следуют ко входу. Внутренняя система подразумевает нарезку аналогичного канала внутри гайки, шарики, выходящие из гайки, направляются специальной накладкой в просверленный канал, на выходе из канала аналогичная накладка переправляет шарики на вход беговой дорожки. Очень также распространен вариант, когда шарики циркулируют по нескольким закольцованным каналам, где возврат обеспечивается специальной заглушкой.

Винтовая пара представляет собой две детали (винт и гайку), соединенные по винтовой поверхности. Винтовую пару используют для преобразования вращательного движения в поступательное, или наоборот.

Винтовые пары бывают с треугольным, прямоугольным и круглым профилем винтовой поверхности.

В технике винтовую поверхность часто называют резьбой. Резьбы с треугольным профилем подразделяют на метрические, дюймовые, трапецеидальные и упорные.

Основные геометрические параметры метрической резьбы по ГОСТ 9150–81 (рис. 5.3):

Н – высота исходного профиля (равносторонний треугольник);

d , d 2 , d 1 – диаметры наружный, средний и внутренний;

Рис. 5.5. Винтовые пары с прямоугольной и треугольной резьбой:

в – винт, г – гайка, Р и d 2 – шаг и средний диаметр резьбы

шаг Р – расстояние между ближайшими сходственными точками контура по линии, параллельной оси резьбы;

угол профиля  = 60;

угол подъема винтовой линии резьбы  (рис. 5.4).

П

Рис. 5.6. Винтовая пара:

v t и v a – окружная и осе­ваяскорости гайки;d г – наружный диаметр гайки;– угол подъема винтовой линии

ередаточное отношениеi винтовой пары равно отношению окружной v t и осевой v a скоростей гайки (винта) (рис. 5.6).

или

Здесь t – период вращательного движения.

Период вращательного движения гайки


где  и n угловая скорость и частота вращения гайки.

Скорость поступательного перемещения гайки

Трение в винтовой паре

Рассмотрим винтовую пару с прямоугольным профилем резьбы (рис. 5.7). Полагаем, что осевая нагрузка F а на винт сосредоточена на одном витке и что реакция гайки приложена по средней линии резьбы, т. е. по d 2 .

Рис. 5.7. К определению сил трения в винто­вой паре с прямоугольным профилем резьбы

Перемещение гайки по винту можно рассматривать как движение ползуна по наклонной плоскости с углом наклона  (рис. 5.8).

При равномерном движение ползуна справедливым является следующее уравнение равновесия:

где F t = М /r 2 – горизонтальная сила, действующая на ползун (гайку), М – крутящий момент пары сил, приложенных к гайке на расстоянии r 2 от оси винта в плоскости, пер­пендикулярной оси (в горизонтальной плоскости).

Из плана сил (рис. 5.9) видно, что движущая сила F t , необходимая для равномерного движения ползуна вверх по наклонной плоскости, связана с величиной осевой силы F а соотношением

F t = F а tg ( + ),

а крутящий момент М пары, приложенный к гайке, будет

М = F t r 2 = F а tg ( + ) r 2 .

Из закона Кулона–Амонтона следует

F т = f N = N tg .

Из плана сил определим силу трения, действующую в винтовой паре:

Разделив числитель и знаменатель этого выражения на cos  и учитывая, что f = tg , получим

В винтовой паре с треугольной резьбой нормальная сила N > F а (рис. 5.10), поэтому сила трения F т больше, чем в рассмотренной выше винтовой паре с прямоугольным профилем резьбы. Соответственно

Рис. 5.10 . Соотношения между нормаль­нойи осевой силами в винтовых парах с треугольным и прямоугольным профилями резьбы

угол трения  и коэффициент трения f у винтовой пары с треугольной резьбой будут больше, чем в винтовой паре с прямоугольным профилем резьбы.

В винтовой паре с треугольной резьбой коэффи­циент и угол трения будут

и
.

Полученные для винтовой пары с треугольным профилем резьбы коэффи­циент f и угол  трения называются приведенными коэффи­циентом и углом трения.