Развитие тэц в современных российских условиях. Тепловая энергетика Основные направления развития современной теплоэнергетики

Современные теплоэнергетические системы промышленных предприятий состоят из трех частей, от эффективности взаимодействия которых зависят объем и эффективность потребления топливноэнергетических ресурсов. Этими частями являются:

источники энергетических ресурсов, т.е. предприятия, производящие требуемые виды энергоресурсов;

системы транспорта и распределения энергетических ресурсов между потребителями. Чаще всего это тепловые и электрические сети; потребители энергетических ресурсов.

Каждый из участников в системе производитель - потребитель энергетических ресурсов имеет собственное оборудование и характеризуется определенными показателями энергетической и термодинамической эффективности. При этом часто возникает ситуация, когда высокие показатели эффективности некоторых из участников системы нивелируются другими, так что суммарная эффективность теплоэнергетической системы оказывается невысокой. Наиболее сложной является стадия потребления энергетических ресурсов.

Уровень использования топливно-энергетических ресурсов в отечественной промышленности оставляет желать лучшего. Обследование предприятий нефтехимической отрасли показало, что фактический расход энергоресурсов превышает теоретически необходимый примерно в 1,7-2,6 раза, т.е. целевое использование энергоресурсов составляет около 43 % реальных затрат производственных технологий. Такая ситуация наблюдается на предприятиях химической, резинотехнической, пищевой и отраслей, где недостаточно или неэффективно используются тепловые вторичные ресурсы.

К числу ВЭР, не находящих применения в промышленных теплотехнологических и теплоэнергетических системах предприятия, относятся в основном тепловые потоки жидкостей (t < 90 0 С) и газов (t < 150 0 С) (см. табл. 1.8).

В настоящее время известны достаточно эффективные разработки, позволяющие использовать теплоту таких параметров непосредственно на промышленном объекте. В связи с увеличением цен на энергоресурсы интерес к ним растет, налаживается производство теплоутилизаторов и утилизационных термотрансформаторов, что позволяет надеяться на улучшение в ближайшем будущем ситуации с использованием таких ВЭР в промышленности.

Как показывают расчеты эффективности энергосберегающих мероприятий, каждая единица тепловой энергии (1 Дж, 1 ккал) дает эквивалентную экономию натурального топлива в пятикратном размере. В тех случаях, когда удавалось найти наиболее удачные решения, экономия натурального топлива достигала десятикратного размера.

Основной причиной этого является отсутствие промежуточных стадий добычи, обогащения, преобразования, транспорта топливных энергоресурсов для обеспечения количества сэкономленных энергетических ресурсов. Капитальные вложения в энергосберегающие мероприятия оказываются в 2-3 раза ниже необходимых капитальных вложений в добывающую и смежные отрасли промышленности для получения эквивалентного количества природного топлива.


В рамках традиционно сложившегося подхода теплоэнергетические системы крупных промышленных потребителей рассматриваются единственным образом - как источник энергоресурсов требуемого качества в нужном количестве в соответствии с требованиями технологического регламента. Режим работы теплоэнергетических систем подчиняется условиям, диктуемым потребителем. Такой подход обычно приводит к просчетам при подборе оборудования и принятию неэффективных решений по организации теплотехнологических и теплоэнергетических систем, т.е. к скрытому или явному перерасходу топливно-энергетических ресурсов, что, естественно, сказывается на себестоимости выпускаемой продукции.

В частности, достаточно сильное влияние на общие показатели эффективности энергопотребления промышленных предприятий оказывает сезонность. В летний период обычно отмечается избыточное поступление ВЭР теплотехнологии и одновременно ощущаются проблемы, связанные с недостаточным объемом и качеством охлаждающих теплоносителей из-за повышения температуры оборотной воды. В период низких температур наружного воздуха, напротив, возникает перерасход тепловой энергии, связанный с увеличением доли тепловых потерь через наружные ограждения, который очень трудно выявляется.

Таким образом, современные теплоэнергетические системы должны разрабатываться или модернизироваться в органичной взаимосвязи с промышленной теплотехнологией, с учетом временных графиков и режимов работы как агрегатов - потребителей ЭР, так и агрегатов, которые, в свою очередь, являются источниками ВЭР. Основными задачами промышленной теплоэнергетики при этом являются:

обеспечение баланса энергоресурсов требуемых параметров в любой отрезок времени для надежной и экономичной работы отдельных агрегатов и производственного объединения в целом; оптимальный выбор энергоносителей по теплофизическим и термодинамическим параметрам;

определение номенклатуры и режимов работы резервных и аккумулирующих источников энергоресурсов, а также альтернативных потребителей ВЭР в период их избыточного поступления; выявление резервов роста энергетической эффективности производства на текущем уровне технического развития и в отдаленном будущем.

В перспективе ТЭС ПП представляются сложным энерготехнологическим комплексом, в котором энергетические и технологические потоки тесно взаимосвязаны. При этом потребители топливно-энергетических ресурсов могут быть источниками вторичной энергии для технологических установок данного производства, внешнего потребителя или утилизационных энергетических установок, генерирующих другие виды энергетических ресурсов.

Удельный расход теплоты на выпуск продукции промышленных производств колеблется от одного до десятков гигаджоулей на тонну конечного продукта в зависимости от установленной мощности оборудования, характера технологического процесса, тепловых потерь и равномерности графика потребления. При этом наиболее привлекательными являются мероприятия, направленные на повышение энергоэкономической эффективности действующих производств и не вносящие существенного изменения в режим работы основного технологического оборудования. Наиболее привлекательной представляется организация замкнутых систем теплоснабжения на базе утилизационных установок, предприятия которых имеют высокую долю потребления водяного пара среднего и низкого давления и горячей воды.

Для большинства предприятий характерны значительные потери подведенной в систему теплоты в теплообменных аппаратах, охлаждаемых оборотной водой или воздухом - в конденсаторах, охладителях, холодильниках и т.п. В таких условиях целесообразна организация централизованных и групповых систем с промежуточным теплоносителем в целях рекуперации сбрасываемой теплоты. Это позволит связать многочисленные источники и потребителей в рамках всего предприятия или выделенного подразделения и обеспечить горячей водой требуемых параметров промышленных и санитарнотехнических потребителей.

Замкнутые системы теплоснабжения являются одним из основных элементов безотходных производственных систем. Регенерация теплоты низких параметров и ее трансформацией на необходимый температурный уровень может быть возвращена значительная часть энергетических ресурсов, которая обычно сбрасывается в атмосферу непосредственно или с использованием систем оборотного водоснабжения.

В технологических системах, использующих в качестве энергоносителей пар и горячую воду, температура и давление подводимой и сбрасываемой теплоты в процессах охлаждения оказываются одинаковыми. Количество сбрасываемой теплоты может даже превышать количество введенной в систему теплоты, так как процессы охлаждения обычно сопровождаются изменением агрегатного состояния вещества. В таких условиях возможна организация утилизационных централизованных или местных теплонасосных систем, которые позволяют регенерировать до 70 % теплоты, затраченной в теплопотребляющих установках.

Такие системы получили широкое распространение в США, Германии, Японии и других странах, но в нашей стране их созданию не уделялось достаточного внимания, хотя известны теоретические разработки, проводившиеся в 30-х годах прошлого столетия. В настоящее время ситуация меняется и теплонасосные установки начинают внедрять в системы как теплоснабжения жилищно-коммунальных хозяйств, так и промышленных объектов.

Одним из эффективных решений является организация утилизационных систем холодоснабжения на базе абсорбционных трансформаторов теплоты (АТТ). Промышленные системы холодоснабжения базируются на холодильных установках парокомпрессионного типа, причем потребление электроэнергии на производство холода достигает 15-20 % ее суммарного расхода по всему предприятию. Абсорбционные трансформаторы теплоты как альтернативные источники хладоснабжения обладают некоторыми преимуществами, в частности:

для привода АТТ может использоваться низкопотенциальная теплота технической воды, дымовых газов или отработавшего пара низкого давления;

при неизменном составе оборудования АТТ способен работать как в режиме хладоснабжения, так и в режиме теплового насоса на отпуск теплоты.

Системы воздухо- и хладоснабжения промышленного предприятия существенного влияния на поступление ВЭР не оказывают и могут рассматриваться как потребители теплоты при разработке утилизационных мероприятий.

В будущем следует ожидать появления принципиально новых безотходных промышленных технологий, созданных на базе замкнутых производственных циклов, а также значительного повышения доли электроэнергии в структуре энергопотребления.

Рост потребления электроэнергии в промышленности будет связан, прежде всего, с освоением дешевых источников энергии - реакторов на быстрых нейтронах, термоядерных реакторов и пр.

Одновременно с этим следует ожидать ухудшения экологической ситуации, связанной с глобальным перегревом планеты вследствие интенсификации «термического загрязнения» - роста тепловых выбросов в атмосферу.

Контрольные вопросы и задания к теме 1

1. Какие виды энергоносителей используются для проведения основных технологических процессов в отделении пиролиза, а также на стадии выделения и разделения продуктов реакции в производстве этилена?

2. Охарактеризуйте приходную и расходную части энергетического баланса печи пиролиза. Как повлияла на них организация подогрева питательной воды?

3. Охарактеризуйте структуру энергозатрат в производстве изопрена методом двухстадийного дегидрирования. Какую долю в ней составляют потребление холода и оборотной воды?

4. Проведите анализ структуры теплового баланса производства синтетического этилового спирта методом прямой гидратации этилена. Перечислите статьи расходной части баланса, которые относятся к потерям тепловой энергии.

5. Поясните, почему теплотехнология ТАЦ-основы классифицируется как низкотемпературная.

6. Какие характеристики позволяют оценить равномерность тепловых нагрузок в течение года?

7. Приведите примеры промышленных технологий, которые относятся к второй группе по доле расхода теплоты на собственные нужды.

8. По суточному графику расхода пара на нефтехимическом предприятии определите его максимальное и минимальное значения и проведите их сравнение. Охарактеризуйте месячный график теплопотребления нефтехимического предприятия.

9. Чем объясняется неравномерность годовых графиков тепловых нагрузок промышленных предприятий?

10. Проведите сравнение графиков годовых нагрузок машиностроительных предприятий и химических комбинатов и сформулируйте выводы.

11. Всегда ли горючие отходы производства следует считать вторичными энергоресурсами?

12. Охарактеризуйте структуру потребления теплоты в промышленности с учетом температурного уровня тепловосприятия.

13. Поясните принцип определения располагаемого количества теплоты ВЭР продуктов сгорания, направляемых в котлы-утилизаторы.

14. Какую эквивалентную экономию природного топлива дает экономия единицы теплоты на стадии потребления и почему?

15. Сравните объемы выхода ВЭР в производстве бутадиена методом двухстадийного дегидрирования н -бутана и методом контактного разложения спирта (см. табл. П.1.1).


Таблица П.l.l

Вторичные энергоресурсы производств нефтехимической промышленности





























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Презентация представляет собой дополнительный материал к урокам, посвящённым развитию энергетики. Энергетика любой страны является основой развития производительных сил, создания материально – технической базы общества. В презентации отражены проблемы и перспективы всех видов энергетики, перспективные (новые) виды энергетики, используется опыт музейной педагогики, самостоятельные поисковые работы обучающихся (работа с журналом «Япония сегодня»), творческие работы обучающихся (плакаты). Презентацию можно использовать на уроках географии в 9 и 10 классах, во внеурочной деятельности (занятиях на факультативах, элективных курсах), в проведении Недели географии «22 апреля – День Земли», на уроках экологии и биологии «Глобальные проблемы человечества. Сырьевая и энергетическая проблема».

В своей работе я использовала метод проблемного обучения, который заключался в создании перед обучающимися проблемных ситуаций и разрешении их в процессе совместной деятельности учащихся и учителя. При этом учитывалась максимальная самостоятельность обучающихся и под общим руководством учителя, направляющего деятельность обучающихся.

Проблемное обучение позволяет не только сформировать у обучающихся, необходимую систему знаний, умений и навыков, достигать высокого уровня развития школьников, но, что особенно важно, оно позволяет сформировать особый стиль умственной деятельности, исследовательскую активность и самостоятельность обучающихся. При работе с данной презентацией у обучающихся проявляется актуальное направление – исследовательская деятельность школьников.

Отрасль объединяет группу производств, занятых добычей и транспортировкой топлива, выработкой энергии и передачей её потребителю.

Природные ресурсы, которые используют для получения энергии – это топливные ресурсы, гидроресурсы, ядерная энергия, а также альтернативные виды энергии. Размещение большинства отраслей промышленности зависит от развития электроэнергии. Наша страна располагает огромными запасами топливно – энергетических ресурсов. Россия была, есть и будет одной из ведущих энергетических держав мира. И это не только потому, что в недрах страны находится 12% мировых запасов угля, 13% нефти и 36% мировых запасов природного газа, которых достаточно для полного обеспечения собственных потребностей и для экспорта в сопредельные государства. Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно – технического и кадрового потенциала ТЭК.

Сырьевая проблема

Минеральные ресурсы – первоисточник, исходная основа человеческой цивилизации практически во всех фазах ее развития:

– Топливные полезные ископаемые;
– Рудные полезные ископаемые;
– Нерудные полезные ископаемые.

Современные темпы энергопотребления растут в геометрической прогрессии. Если даже учесть, что темпы роста потребления электроэнергии несколько сократятся из-за совершенствования энергосберегающих технологий, запасов электрического сырья хватит максимум на 100 лет. Однако положение усугубляется ещё и несоответствием структуры запасов и потребления органического сырья. Так, 80% запасов органического топлива приходится на уголь и лишь 20% на нефть и газ, в то время как 8/10 современного энергопотребления приходится на нефть и газ.

Следовательно, временные рамки ещё более сужаются. Однако лишь сегодня человечество избавляется от идеологических представлений о том, что они практически бесконечны. Ресурсы минерального сырья ограничены, фактически невосполнимы.

Энергетическая проблема.

Сегодня энергетика мира базируется на источниках энергии:

– Горючих минеральных ископаемых;
– Горючих органических ископаемых;
– Энергия рек. Нетрадиционные виды энергии;
– Энергия атома.

При современных темпах подорожания топливных ресурсов Земли проблема использования возобновляемых источников энергии становится всё более актуальной и характеризует энергетическую и экономическую независимости государства.

Преимущества и недостатки ТЭС.

Преимущества ТЭС:

1. Себестоимость электроэнергии на ГЭС очень низкая;
2. Генераторы ГЭС можно достаточно быстро включать и выключать в зависимости от потребления энергии;
3. Отсутствует загрязнение воздуха.

Недостатки ТЭС:

1. Строительство ГЭС может быть более долгим и дорогим, чем других энергоисточников;
2. Водохранилища могут занимать большие территории;
3. Плотины могут наносить ущерб рыбному хозяйству, поскольку перекрывают путь к нерестилищам.

Преимущества и недостатки ГЭС.

Преимущества ГЭС:
– Строятся быстро и дешево;
– Работают в постоянном режиме;
– Размещены практически повсеместно;
– Преобладание ТЭС в энергетическом хозяйстве РФ.

Недостатки ГЭС:

– Потребляют большое количество топлива;
– Требует длительной остановки при ремонтах;
– Много тепла теряется в атмосфере, выбрасывают много твердых и вредных газов в атмосферу;
– Крупнейшие загрязнители окружающей среды.

В структуре выработки электроэнергии в мире первое место принадлежит тепловым электростанциям (ТЭС) – их доля составляет 62%.
Альтернативой органическому топливу и возобновляемым источником энергии является гидроэнергетика. Гидроэлектростанция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Гидроэнергетика – это получение электроэнергии за счет использования возобновляемых речных, приливных, геотермальных водных ресурсов. Это использование возобновляемых водных ресурсов предполагает управление паводками, укрепление русла рек, переброс водных ресурсов в районы, страдающие от засухи, сохранение подземных токовых вод.
Однако и здесь источник энергии достаточно сильно ограничен. Это связано с тем, что крупные реки, как правило сильно удалены от промышленных центов либо их мощности практически полностью использованы. Таким образом, гидроэнергетика, в настоящий момент обеспечивающего около 10% производства энергии в мире, не сможет существенно увеличить эту цифру.

Проблемы и перспективы АЭС

В России доля атомной энергии достигает 12%. Имеющиеся в России запасы добытого урана обладают электропотенциалом в 15 трлн. кВт.ч, это столько сколько смогут выработать все наши электростанции за 35 лет. На сегодня только атомная энергетика
способна резко и за короткий срок ослабить явление парникового эффекта. Актуальной проблемой является безопасность АЭС. 2000 год стал началом перехода принципиально новые подходы к нормированию и обеспечению радиационной безопасности АЭС.
За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания, основными недостатками является потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии и проблема переработки использованного ядерного топлива.

Нетрадиционная (альтернативная энергетика)

1. Солнечная энергетика . Это использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии и в перспективе может стать экологически чистой.

Преимущества солнечной энергии:

– Общедоступность и неисчерпаемость источника;
– Теоретически, полная безопасность для окружающей среды.

Недостатки солнечной энергии:

– Поток солнечной энергии на поверхности Земли сильно зависит от широты и климата;
– Солнечная электростанция не работает ночью и недостаточно эффективно работает в утренних и вечерних сумерках;
Фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д., а их производство потребляет массу других опасных веществ.

2. Ветроэнергетика . Это отрасль энергетики, специализирующаяся на использовании энергии ветра - кинетической энергии воздушных масс в атмосфере. Так как энергия ветра является следствием деятельности солнца, то её относят к возобновляемым видам энергии.

Перспективы ветроэнергетики.

Ветроэнергетика является бурно развивающейся отраслью, так в конце 2007 года общая установленная мощность всех ветрогенераторов составила 94,1 гигаватта, увеличившись впятеро с 2000 год. Ветряные электростанции всего мира в 2007 году произвели около 200 млрд кВт·ч, что составляет примерно 1,3 % мирового потребления электроэнергии. Прибрежная ферма ветроэнергетических установок Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире.

Возможности реализации ветроэнергетики в России. В России возможности ветроэнергетики до настоящего времени остаются практически не реализованными. Консервативное отношение к перспективному развитию топливно-энергетического комплекса практически тормозит эффективное внедрение ветроэнергетики, особенно в Северных районах России, а также в степной зоне Южного Федерального Округа, и в частности в Волгоградской области.

3. Термоядерная энергетика. Солнце - природный термоядерный реактор. Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза. Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

Перспективы термоядерной энергетики. Данная область энергетики имеет огромный потенциал, в настоящее время в рамках проекта "ITER", в котором участвуют Европа, Китай, Россия, США, Южная Корея и Япония во Франции идет строительство крупнейшего термоядерного реактора, целью которого является вывести УТС (Управляемый термоядерный синтез) на новый уровень. Строительство планируется завершить в 2010 году.

4. Биотопливо, биогаз. Биотопливо - это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель) и газообразное (биогаз, водород).

Виды биотоплива:

– Биометанол
– Биоэтанол
– Биобутанол
– Диметиловый эфир
– Биодизель
– Биогаз
– Водород

На данный момент самые развитые – биодизель и водород.

5. Геотермальная энергия. Под вулканическими островами Японии скрыты огромные количества геотермальной энергии, этой энергией можно воспользоваться извлекая горячую воду и пар. Преимущество: выделяет примерно в 20 раз меньше углекислого газа при производстве электричества, что снижает ее влияние на глобальную окружающую среду.

6. Энергия волн, приливов и отливов. В Японии важнейший источник энергии волновые турбины, которые преобразуют вертикальное движение океанских волн в давление воздуха вращающего турбины электрогенераторов. На побережье Японии установлено большое количество буев, использующих энергию приливов и отливов. Так используют энергию океана для обеспечения безопасности океанского транспорта.

Огромный потенциал энергии Солнца мог бы теоритически обеспечить все мировые потребности энергетики. Но КПД преобразования тепла в электроэнергию всего 10%. Это ограничивает возможности Солнечной энергетики. Принципиальные трудности возникают и при анализе возможностей создания генераторов большой мощности, использующих энергию ветра, приливы и отливы, геотермальную энергию, биогаз, растительное топливо и т.д. Всё это приводит к выводу об ограниченности возможностей рассмотренных так называемых «воспроизводимых» и относительно экологически чистых ресурсов энергетики, по крайней мере, в относительно близком будущем. Хотя эффект от их использования при решении отдельных частных проблем энергообеспечения может быть уже сейчас весьма впечатляющим.

Конечно, существует оптимизм по поводу возможностей термоядерной энергии и других эффективных способов получения энергии, интенсивно исследуемых наукой, но при современных масштабах энергопроизводства. При практическом освоении этих возможных источников потребуется несколько десятков лет из-за высокой капиталоёмкости и соответствующей инерционности в реализации проектов.

Исследовательские работы обучающихся:

1. Спецрепортаж «Зеленая энергия» для будущего: «Японии является мировым лидером по производству солнечной электроэнергии. 90% солнечной энергии, производимой в Японии, вырабатывается солнечными панелями в обычных домах. Японское правительство поставило цель в 2010 году получить примерно 4,8 млн. кВт энергии от солнечных батарей. Производство электроэнергии из биомассы в Японии. Из кухонных отходов выделяют газ метан. На этом газе работает двигатель, который генерирует электричество, также создаются благоприятные условия для защиты окружающей среды.

Электроэнергетика, как и другие отрасли промышленности, имеет свои проблемы и перспективы развития.

В настоящее время электроэнергетика России находится в кризисе. Понятие "энергетический кризис" можно определить, как напряженное состояние, сложившееся в результате несовпадения между потребностями современного общества в энергии и запасами энергоресурсов, в том числе вследствие нерациональной структуры их потребления.

В России можно на данный момент выделить 10 групп наиболее острых проблем:

  • 1). Наличие большой доли физически и морально устаревшего оборудования. Увеличение доли физически изношенных фондов приводит к росту аварийности, частым ремонтам и снижению надежности энергоснабжения, что усугубляется чрезмерной загрузкой производственных мощностей и недостаточными резервами. На сегодняшний день износ оборудования одна из важнейших проблем электроэнергетики. На российских электростанциях он очень велик. Наличие большой доли физически и морально устаревшего оборудования усложняет ситуацию с обеспечением безопасности работы электростанций. Около одной пятой производственных фондов в электроэнергетике близки или превысили проектные сроки эксплуатации и требуют реконструкции или замены. Обновление оборудования ведется недопустимо низкими темпами и в явно недостаточном объеме (таблица).
  • 2). Основной проблемой энергетики является также то, что наряду с черной и цветной металлургией энергетика оказывает мощное негативное влияние на окружающую среду. Предприятия энергетики формируют 25 % всех выбросов промышленности.

В 2000 году объемы выбросов вредных веществ в атмосферу составляли 3,9 тонн в том числе выбросы от ТЭС - 3, 5 млн тонн. На диоксид серы приходится до 40% общего объема выбросов, твердых веществ - 30%, оксидов азота - 24 %. То есть ТЭС являются главной причиной формирования кислотных остатков.

Крупнейшими загрязнителями атмосферы являются Рафтинская ГРЭС (г. Асбест, Свердловская область) - 360 тыс. тонн, Новочеркасская (г. Новочеркасск, Ростовская обл.) - 122 тыс. тонн, Троицкая (г. Троицк-5, Челябинская обл.) - 103 тыс. тонн, Верхнетагильская (Свердловская обл.) - 72 тыс. тонн.

Энергетика является и крупнейшим потребителем пресной и морской воды, расходуемой на охлаждение агрегатов и используемой в качестве носителя тепла. На долю отрасли приходится 77% общего объема свежей воды, использованной промышленностью России.

Объем сточных вод, сброшенных предприятиями отрасли в поверхностные водоёмы, в 2000 г. Составил 26,8 млрд куб. м. (на 5,3% больше чем в 1999г.). Крупнейшими источниками загрязнения водных объектов являются ТЭЦ, в то время как ГРЭС - главных источников загрязнения воздуха. Это ТЭЦ-2 (г. Владивосток) - 258 млн куб. м, Безымянская ТЭЦ (Самарская область) - 92 млн куб. м, ТЭЦ-1 (г. Ярославль) - 65 млн куб. м, ТЭЦ-10 (г. Ангарск, Иркутская обл.) - 54 млн куб. м, ТЭЦ-15 и Первомайская ТЭЦ (Санкт-Петербург) - суммарно 81 млн куб. м.

В энергетике образуется и большое количество токсичных отходов (шлаки, зола). В 2000 г. объем токсичных отходов составил 8,2 млн тонн.

Помимо загрязнения воздуха и воды, предприятия энергетики загрязняют почвы, а гидроэлектростанции оказывают сильнейшее воздействие на режим рек, речные и пойменные экосистемы.

  • 3). Жесткая тарифная политика. В электроэнергетике поставлены вопросы об экономичном использовании энергии и о тарифах на неё. Можно говорить о необходимости экономии вырабатываемой электроэнергии. Ведь в настоящее время в стране расходуется на единицу продукции в 3 раза больше энергии, чем в США. В этой области предстоит большая работа. В свою очередь тарифы на энергию растут опережающими темпами. Действующие в России тарифы и их соотношение не соответствуют мировой и европейской практике. Существующая тарифная политика привела к убыточной деятельности и низкой рентабельности ряда АО-энерго.
  • 4). Ряд районов уже испытывает трудности с обеспечением электроэнергией. Наряду с Центральным районом, дефицит электроэнергии отмечается в Центрально-Черноземном, Волго-Вятском и Северо-Западном экономических районах. Например, в Центральном экономическом районе в 1995 году было произведено огромное количество электроэнергии - 19% от общероссийских показателей (154,7 млрд. кВт), но она вся расходуется внутри региона.
  • 5). Сокращается прирост мощностей. Это объясняется некачественным топливом, изношенностью оборудования, проведением работ по повышению безопасности блоков и рядом других причин. Неполное использование мощностей ГЭС происходит из-за малой водности рек. В настоящее время 16 % мощностей электростанций России уже отработали свой ресурс. Из них на ГЭС приходится 65%, на ТЭС - 35 %. Ввод новых мощностей сократился до 0,6 - 1,5 млн кВт в год (1990-2000гг.) по сравнению с 6-7 млн кВт в год (1976-1985гг.).
  • 6). Возникшее противодействие общественности и местных органов власти размещению объектов электроэнергетики в связи с их крайне низкой экологической безопасностью. В частности после Чернобыльской катастрофы были прекращены многие изыскательные работы, строительство и расширение АЭС на 39 площадках общей проектной мощностью 109 млн кВт.
  • 7). Неплатежи, как со стороны потребителей электроэнергии, так и со стороны энергокомпаний за топливо, оборудование и др.;
  • 8). Недостаток инвестиций, связанный как с проводимой тарифной политикой, так и с финансовой "непрозрачностью" отрасли. Крупнейшие западные стратегические инвесторы готовы вкладывать средства в российскую электроэнергетику лишь при условии роста тарифов, чтобы обеспечить возвратность вложений.
  • 9). Перебои в энергоснабжении отдельных регионов, в частности Приморья;
  • 10). Невысокий коэффициент полезного использования энергоресурсов. Это значит, что 57% энергоресурсов ежегодно теряется. Большая часть потерь происходит на электростанциях, в двигателях, непосредственно использующих горючее, а также в технологических процессах, где топливо служит сырьем. При транспортировке топлива также происходят большие потери энергоресурсов.

Что же касается перспектив развития электроэнергетики в России, то, несмотря на все свои проблемы, электроэнергетика имеет достаточные перспективы.

Например, работа ТЭС требует добычи огромного объема невозобновляемых ресурсов, имеет достаточно низкий КПД, ведет к загрязнению окружающей среды. В России тепловые электростанции работают на мазуте, газе, угле. Однако на данном этапе привлекательными являются региональные энергокомпании с высоким удельным весом газа в структуре топливного баланса, как более эффективного и экологически выгодного топлива. В частности можно отметить, что электростанции, работающие на газе, выбрасывают в атмосферу на 40% меньше углекислого газа. Кроме того газовые станции имеют более высокий коэффициент использования установленной мощности по сравнению с мазутными и угольными станциями, отличаются более стабильным теплоснабжением и не несут затрат по хранению топлива. Работающие на газе станции находятся в лучшем состоянии, чем угольные и мазутные, так как они относительно недавно введены в эксплуатацию. А также цены на газ регулируются государством. Таким образом, становится более перспективным строительство тепловых электростанций, топливом для которых является газ. Также на ТЭС перспективно использование пылеочистительного оборудования с максимально возможным КПД, при этом образующуюся золу использовать в качестве сырья при производстве строительных материалов.

Строительство ГЭС в свою очередь требует затопления большого количества плодородных земель, или в результате давления воды на земную кору ГЭС может вызвать землетрясение. Кроме этого сокращаются рыбные запасы в реках. Перспективным становится строительство сравнительно небольших ГЭС, не требующих серьезных капиталовложений, работающих в автоматическом режиме преимущественно в горной местности, а также - обваловка водохранилищ для освобождения плодородных земель.

Что же касается ядерной энергетики, то строительство АЭС имеет определенный риск, из-за того, что трудно предсказать масштабы последствий при осложнении работы энергоблоков АЭС или при форс-мажорных обстоятельствах. Также не решена проблема утилизации твердых радиоактивных отходов, несовершенна и система защиты. Ядерная электроэнергетика имеет наибольшие перспективы в развитии термоядерных электростанций. Это практически вечный источник энергии, почти безвредный для окружающей среды. Развитие атомной электроэнергетики в ближайшей перспективе будет основано на безопасной эксплуатации существующих мощностей, с постепенной заменой блоков первого поколения наиболее совершенными российскими реакторами. Наибольший ожидаемый рост мощностей произойдет за счет завершения строительства уже начатых станций.

Существует 2 противоположные концепции дальнейшего существования ядерной электроэнергетики в стране.

  • 1. Официальная, которая поддерживается Президентом и Правительством. Основываясь на положительных чертах АЭС, они предлагают программу широкого развития электроэнергетики России.
  • 2. Экологическая, во главе которой стоит академик Яблоков. Сторонники этой концепции полностью отвергают возможность нового строительства атомных электростанций, как по экологическим, так и по экономическим соображениям.

Есть и промежуточные концепции. Например ряд специалистов считает, что нужно ввести мораторий на строительство атомных электростанций опираясь на недостатки АЭС. Другие же предполагают, что остановка развития ядерной электроэнергетики может привести к тому, что Россия полностью потеряет свой научно-технический и промышленный потенциал в ядерной энергетике.

Исходя из всех негативных влияний традиционной энергетики на окружающую среду, большое внимание уделяется изучению возможностей использования нетрадиционных, альтернативных источников энергии. Практическое применение уже получили энергия приливов и отливов и внутреннее тепло Земли. Ветровые энергоустановки имеются в жилых поселках Крайнего Севера. Ведутся работы по изучению возможности использования биомассы в качестве источника энергии. В будущем, возможно, огромную роль будет играть гелиоэнергетика.

Опыт развития отечественной электроэнергетики выработал следующие принципы размещения и функционирования предприятий этой отрасли промышленности:

  • 1. концентрация производства электроэнергии на крупных районных электростанциях, использующих относительно дешевое топливо и энергоресурсы;
  • 2. комбинирование производства электроэнергии и тепла для теплофикации населенных пунктов, прежде всего городов;
  • 3. широкое освоение гидроресурсов с учетом комплексного решения задач электроэнергетики, транспорта, водоснабжения;
  • 4. необходимость развития атомной энергетики, особенно в районах с напряженным топливно-энергетическим балансом, с учетом безопасности использования АЭС;
  • 5. создание энергосистем, формирующих единую высоковольтную сеть страны.

В настоящий момент России нужна новая энергетическая политика, которая была бы достаточно гибкой и предусматривала все особенности данной отрасли, в том числе и особенности размещения. В качестве основных задач развития российской энергетики можно выделить следующие:

ь Снижение энергоемкости производства.

ь Сохранение целостности и развитие Единой энергетической системы России, ее интеграция с другими энергообъединениями на Евразийском континенте;

ь Повышение коэффициента используемой мощности электростанций, повышение эффективности функционирования и обеспечение устойчивого развития электроэнергетики на базе современных технологий;

ь Полный переход к рыночным отношениям, освобождение цен на энергоносители, полный переход на мировые цены.

ь Скорейшее обновление парка электростанций.

ь Приведение экологических параметров электростанций к уровню мировых стандартов, снижение вредного воздействия на окружающую среду

Исходя из данных задач создана "Генеральная схема размещения объектов электроэнергетики до 2020 года", одобренная Правительством РФ. (диаграмма 2)

Приоритетами Генеральной схемы в рамках установленных ориентиров долгосрочной государственной политики в сфере электроэнергетики являются:

ь опережающее развитие электроэнергетической отрасли, создание в ней экономически обоснованной структуры генерирующих мощностей и электросетевых объектов для надежного обеспечения потребителей страны электрической и тепловой энергией;

ь оптимизация топливного баланса электроэнергетики за счет максимально возможного использования потенциала развития атомных, гидравлических, а также использующих уголь тепловых электростанций и уменьшения в топливном балансе отрасли использования газа;

ь создание сетевой инфраструктуры, развивающейся опережающими темпами по сравнению с развитием электростанций и обеспечивающей полноценное участие энергокомпаний и потребителей в функционировании рынка электрической энергии и мощности, усиление межсистемных связей, гарантирующих надежность взаимных поставок электрической энергии и мощности между регионами России, а также возможность экспорта электрической энергии;

ь минимизация удельных расходов топлива на производство электрической и тепловой энергии путем внедрения современного высокоэкономичного оборудования, работающего на твердом и газообразном топливе;

ь снижение техногенного воздействия электростанций на окружающую среду путем эффективного использования топливно-энергетических ресурсов, оптимизации производственной структуры отрасли, технологического перевооружения и вывода из эксплуатации устаревшего оборудования, увеличения объема природоохранных мероприятий на электростанциях, реализации программ по развитию и использованию возобновляемых источников энергии.

По результатам мониторинга в Правительство Российской Федерации ежегодно представляется доклад о ходе реализации Генеральной схемы. Через несколько лет будет видно, насколько она эффективна и насколько реализуются её положения по использованию всех перспектив развития российской энергетики.

В перспективе Россия должна отказаться от строительства новых крупных тепловых и гидравлических станций, требующих огромных инвестиций и создающих экологическую напряженность. Предполагается строительство ТЭЦ малой и средней мощности и малых АЭС в удаленных северных и восточных регионах. На Дальнем Востоке предусматривается развитие гидроэнергетики за счет строительства каскада средних и малых ГЭС. Новые ТЭЦ будут строиться на газе, и только в Канско-Ачинском бассейне предполагается строительство мощных конденсационных ГРЭС из-за дешевой, открытой добычи угля. Имеет перспективы использование геотермальной энергии. Районами, наиболее перспективными для широкого использования термальных вод являются Западная и Восточная Сибирь, а также Камчатка, Чукотка, Сахалин. В перспективе масштабы использования термальных вод будут неуклонно возрастать. Проводятся исследования по вовлечению неисчерпаемых источников энергии, таких как энергия Солнца, ветра, приливов и др., в хозяйственный оборот, что даст возможность обеспечить в стране экономию энергоресурсов, особенно минерального топлива.

Б.П. Варнавский, член редколлегии «НТ», директор по производству энергии и капитальному строительству, ОАО «ЕвроСибЭнерго», г. Москва

О значимости ТЭЦ в Советском Союзе

В системе развития энергетической системы Советского Союза теплоэлектроцентрали (ТЭЦ) играли ключевую роль. Все прекрасно понимали, что интенсивное развитие индустрии нуждалось в огромном количестве электроэнергии и, что особенно важно, в промышленной тепловой энергии. Исходя из этого, именно ТЭЦ получили принципиальное развитие, как ключевая форма энергоснабжения крупных промышленных предприятий и городов, в которых (или рядом с которыми) располагались эти индустриальные объекты.

Например, Омский нефтеперерабатывающий завод, входящий в рейтинг 100 лучших мировых НПЗ, является единственным предприятием из этого списка, которое не имеет своей блок-станции, а получает тепло- и электроэнергию от внешних ТЭЦ.

В зарубежных странах пошли по другому принципу развития схемы энергоснабжения - каждое крупное промышленное предприятие (с большими объемами потребления тепловой энергии, с высоким выходом вторичных ресурсов и необходимостью их утилизации) должно иметь свою блок-станцию, которая позволит обеспечить его потребности в электро- и тепло- энергии. В этом случае появляется возможность оптимизировать схему энергоснабжения любого такого предприятия, избегая посредников.

Говоря об отечественных ТЭЦ, количество которых стремительно увеличивалось вплоть до 1990 г., надо отметить, что в советские годы сформировался тип теплоэлектростанции, представляющей из себя (в зависимости от типа нагрузок) сбалансированный набор турбин типа ПТ, Т и Р. Появился проект, получивший название «Типовой проект ТЭЦ-300», который позже был модернизирован в «Типовой проект ТЭЦ-350», что значительно упростило проектирование теплоэлектростанций. Известно, что, имея типовые решения, гораздо проще заниматься разработкой проекта, при этом не требуется привлечения высококвалифицированных специалистов на данном этапе. Наличие такого типового проекта способствовало появлению унифицированных строительных конструкций, отдельных элементов, узлов, схемных решений (включая тепловую схему, за исключением вида топлива) и т.д. И сегодня мы работаем на этом унифицированном оборудовании практически по всей стране.

Работа ТЭЦ в постсоветский период

Сегодня можно спорить о правильности выбранного направления развития энергосистемы в

Советском Союзе, но, безусловно, сделанный много лет назад выбор серьезно сказался на экономических показателях работы ТЭЦ в постсоветское время, когда промышленная нагрузка многих из них в силу различных причин значительно снизилась, а в отдельных случаях упала до нуля. Поскольку сейчас все промышленные предприятия работают в рыночных условиях, у них колебания плана выпуска продукции достаточно большие, при этом суточная тепловая нагрузка предприятия может меняться в два и более раза (например, падать от 800 до 400 т/ч). Как показала практика работы ТЭЦ в постсоветский период, основными бедами ТЭЦ стали их недозагрузка и негибкость реагирования на изменение тепловых нагрузок. Таким образом, ТЭЦ и схемы энергоснабжения от них, созданные в советское время, оказались не готовы к работе в рыночных условиях.

Как следствие, возникли проблемы и с тепловыми нагрузками на нужды теплоснабжения других (не промышленных) городских объектов, которые также снижались вследствие отключения от ТЭЦ отдельных потребителей. Достаточно вспомнить тот бум, имевший место в 1990-2000 гг, когда в различных регионах страны началась децентрализация систем теплоснабжения за счет порой бездумного и не подкрепленного технико-экономическим обоснованием строительства пристроенных и крышных котельных, а также оснащение многоэтажных жилых домов квартирными котлами. Причем считалось, что все эти новые технические решения намного экономичнее и выгоднее по сравнению с системами централизованного теплоснабжения (ЦТ) от крупных котельных и ТЭЦ, но их эксплуатация (за исключением отдельных случаев) показала обратное. И сегодня, по-прежнему, главным элементом систем ЦТ считаются ТЭЦ.

Рассматривая систему ЦТ от ТЭЦ, нельзя забывать и о разумных радиусах теплоснабжения. Наверное, радиусы теплосети в 20-30 км сегодня нельзя считать допустимыми величинами не только с точки зрения эффективности, но и с точки зрения надежности системы. Нельзя забывать о вопросе надежности системы в целом и при наличии в городе крупной ТЭЦ, на которой «висит» 500 тыс. жителей, являющейся единственным источником для той или иной территории. При этом повышение надежности за счет резервирования на ТЭЦ стоит очень дорого. В первую очередь, как минимум, ее надо уберечь от разного рода аварийных ситуаций, чтобы иметь возможность покрывать собственные нужды и обеспечивать потребителям тепловую нагрузку. Что касается электрической нагрузки, то ее «потерять» можно (конечно, нежелательно), т.к. ее резервирование может обеспечить общая энергосистема. А вот как «не потерять» тепловую нагрузку станции и магистральную теплосеть? Надо ли резервировать магистральные теплосети от ТЭЦ (например, диаметром Ду 1200 мм) с соответствующими колоссальными финансовыми вложениями? Эти вопросы до сих пор никак не решены.

Есть еще одна очень важная деталь, на которую необходимо обратить внимание, - это функционирование системы теплоснабжения в советское время. Так, на обеспечение тепловой энергией потребителей Советский Союз тратил 50% добываемых топливных природных ресурсов; на электроэнергию - 25%. Тем не менее, нормативно-техническое стандартизированное обустройство производства электроэнергии было на два порядка выше, чем производства тепловой энергии. В сфере теплоснабжения было слишком мало нормативных актов, позволяющих создать надежные источники энергии и тепловые сети, в отличие от электроэнергетики. Если идти по критерию надежности «п-1» (количественное резервирование), принятому в электроэнергетике, то его трудно переложить на теплоэнергетику, поскольку он резко поднимает капитальные затраты. Реальных революционных путей повышения надежности систем ЦТ с крупными источниками энергии нет.

На наш взгляд, повышение надежности любой системы ЦТ, основой которой является ТЭЦ, заключается не в реализации мероприятий на базе критерия «п-1», а в повышении уровня надежности отдельных элементов системы (вспомогательного, общестанционного оборудования и оборудования тепловых сетей) до требований к основному оборудованию станции, и соответствующего отношения к нему (т.е. в этом случае будет считаться, что выход из строя элементов системы сравним с выходом из строя основного оборудования). Например, количественное резервирование магистральных тепловых сетей, когда существующий магистральный отвод тепловых сетей низкого качества дополняют третьим трубопроводом аналогичного качества, вряд ли приведет к фактическому повышению надежности системы при ее существенном удорожании. А вот если будет качественное резервирование тех же трубопроводов теплосетей, которое позволит практически забыть о них на заявленный ресурс в 25 лет и более, то это совершенно другой способ повышения надежности, который в итоге оказывается дешевле количественного резервирования.

Аналогичная ситуация и с насосным оборудованием. Может быть это революционная мысль, но если в системе будет работать сетевой насос с высоким рабочим ресурсом (например, 15 лет), который достигается за счет использования других материалов, технических решений (это задача фирмы-производителя), имеющий такую же надежность, как сам источник теплоснабжения, то их количество на ТЭЦ может быть сокращено до одной штуки. Если такой подход к уровню требований к вспомогательному и другому оборудованию по надежности возобладает, то по этим требованиям фирмы-производители будут делать соответствующее оборудование. При этом уменьшается количество всевозможной арматуры, упрощаются схемы, что позволит их сделать более надежными и понятными, несмотря на увеличение капитальных затрат. Эти схемы легче поддаются автоматизации, на них легче построить АСУ ТП, т.к. алгоритмы проще. Если данный подход использовать в развитии технического прогресса, то такого рода централизованные системы будут иметь право на дальнейшую жизнь.

Следующий серьезный вопрос заключается в том, что делать с ТЭЦ, выработавшими свой ресурс? Сегодня имеются проекты замещения большей части из них. Что касается электрической нагрузки, то здесь вопросов не возникает. А вот что делать с тепловой нагрузкой, не ясно. В среднем нормативный срок службы основного оборудования станции составляет 250 тыс. ч, причем в России большая часть оборудования ТЭЦ давно выработала этот установленный нормативный срок службы. Например, вторая очередь Автозаводской ТЭЦ (г. Нижний Новгород) отработала 400 тыс. ч, а на ней «сидит» нагрузка ГВС 500 тыс. жителей Нижнего Новгорода. Наконец-то принято решение о замещении оборудования второй очереди этой станции. Вопрос: как проводить замещение мощностей на действующих ТЭЦ? Очевидно, что это должна быть та же площадка или близкая к ней. Конечно, лучшим вариантом является полная ликвидация старой станции и строительство новой современной, но так не получается. Например, мы рассмотрели массу вариантов по Иркутску: как вести замещение старых ТЭЦ. Понятно, что надо надстроить соответствующую мощность, а потом вывести изношенные мощности, все логично, но где взять свободные площади. Как правило, почти все ТЭЦ промышленно-отопительные, они со всех сторон зажаты всевозможными комбинатами и заводами, т.е. ТЭЦ находятся в условиях абсолютной стесненности. Строительство ТЭЦ на новой площадке с переносом тепловых сетей является очень дорогим удовольствием. Таким образом, актуальность вопроса о замещении устаревших ТЭЦ возрастает с каждым днем, а наработанных принципов замещения нет, их надо создавать. Кто-то должен проявить инициативу в решении данного вопроса.

Это задача каждой энергетической компании в отдельности или это задача государства, которое должно следить за выполнением энергетической стратегии? А ведь процесс замещения - это стратегический вопрос, а не тактический. Но сегодня от государства мы вряд ли дождемся какой-либо помощи в решении этой проблемы. Раз уж мы получили в наследство от Советского Союза именно такую систему, сегодня мы должны знать, что с ней делать дальше.

Все ТЭЦ, как правило, являются участниками оптового рынка электроэнергии. На этом рынке интересы теплофикации, как бы мы их не декларировали, не учитываются. Хотя, в принципе, приоритет формально отдан: при работе ТЭЦ на рынке или для покрытия нагрузки диспетчерского графика есть очевидное принятое решение о том, что она должна работать в условиях 100%-й отдачи электроэнергии, вырабатываемой в комбинированном цикле; не допускается работа ТЭЦ в конденсационном режиме и т.д. Но в реальной жизни соблюдать эти приоритеты для ТЭЦ получается плохо, отсюда не всегда удается выдержать те экономические показатели, которые защищаются в тарифах и т.д. Поэтому в этом вопросе должны устанавливаться более жесткие рамки, и в этой позиции я поддерживаю А.Б. Богданова в том, что следует отдавать приоритеты по стоимости электроэнергии, вырабатываемой в комбинированном цикле, которая отпускается ТЭЦ городским жителям, о чем он писал в ряде публикаций на страницах журнала НТ (см. цикл статей

А.Б. Богданова «Котельнизация России - беда национального масштаба» в журнале НТ, опубликованных в период 2006-2007 гг - Прим. ред.). Таким образом, экономические механизмы работы ТЭЦ недоработаны, в результате их текущее положение по всей стране весьма неустойчиво.

Нами проведен анализ по приросту тепловой нагрузки на ТЭЦ в различных городах России, получилось, что эти показатели в основном стоят на месте, т.к. новое присоединение к ТЭЦ выглядит дороже, чем строительство собственной котельной. Пока мы не изменим положение вещей в этом вопросе, мы будем топтаться на месте. Приведем пример по Усть-Илимской ТЭЦ, которая в свое время строилась для энергообеспечения целлюлозно-бумажного комбината, находящегося в непосредственной близости к этой энергостанции. За последние годы комбинат изменил номенклатуру и снизил объемы выпуска продукции, что, естественно, сказалось на величине тепловой нагрузки и на работе ТЭЦ и вытекающих отсюда проблемах, которые рассматривались выше. Целлюлозно-бумажный комбинат начал заниматься вопросами энергосбережения, в первую очередь стали утилизироваться отходы предприятия (кора, опилки и др.), накопленные годами, сжигание которых позволяет полностью покрывать собственные нужды комбината в тепловой энергии. Таким образом, сегодня это предприятие уже не нуждается в прежних объемах тепловой нагрузки. Руководство Усть-Илимской ТЭЦ, понимая, как данная ситуация может сказаться на экономических показателях энергостанции, всячески шло навстречу целлюлозно-бумажному комбинату, но вести торги по стоимости отпускаемой гига- каллории тепловой энергии можно только до определенной величины - до ее себестоимости, ниже которой энергоснабжающая компания опуститься никак не может. Таким образом, даже наше предложение в поставке тепловой энергии от ТЭЦ по себестоимости проигрывало стоимости тепловой энергии, вырабатываемой комбинатом из своих вторичных ресурсов. В результате ТЭЦ потеряла большую часть промышленных отборов и, соответственно, на станции серьезно упали технико-экономические показатели. Мы привели только один пример, но он не единственный, эта пагубная для существующих ТЭЦ тенденция продолжается. При такой нежелательной тенденции мы должны понимать, как можно сегодня модернизировать существующий парк машин, чтобы использовать турбины типа Р, которые оказываются по сути не нужными при потере паровой нагрузки. Здесь могут быть реализованы различные схемы, которые бы позволили нам использовать машины типа Р на нужды теплоснабжения не промышленных потребителей. Все хорошо, кроме одного, - нужно расширять рынок ЦТ от ТЭЦ.

Например, в Иркутске расширение этого рынка происходит за счет покупки коммунальных котельных и тепловых сетей, на что тратятся огромные средства. Затем, как правило, котельные закрываются, самые крупные из них переводятся в пиковый режим. Принятые на баланс генерирующей компании тепловые сети в обязательном порядке модернизируются - их состояние доводят до приемлемого уровня, для чего в них приходится вкладывать в 3-4 раза больше денежных средств, чем в существующие (магистральные) тепловые сети генерирующей компании. В этом случае появляется возможность дополнительной загрузки ТЭЦ только после «переброса» тепловой нагрузки котельных на нее. Загрузка ТЭЦ таким способом позволяет частично возмещать затраты, возникшие ранее при потере промышленной нагрузки. Но подобные и другие программы (по энергосбережению, повышению надежности) нуждаются в государственном стимулировании, хотя бы аналогично тому, которое имеется в электроэнергетике, т.к. для частных компаний, пришедших сегодня в «большую» энергетику, такие программы требуют колоссальных денежных вливаний. При этом не всегда местные органы власти идут на такие решения, как в Иркутске.

В качестве другого решения приведем пример Санкт-Петербурга, где работает достаточно много эффективных котельных, находящихся на балансе ГУП «ТЭК СПб». Такие котельные оказываются вполне конкурентоспособными с ТЭЦ не по сути, а по общим экономическим показателям.

Мы привели несколько примеров, из которых видно, что в каждом отдельном случае необходимо искать механизмы, позволяющие в дальнейшем развивать комбинированную выработку тепло- и электроэнергии с учетом внедрения новых циклов, например парогазового цикла.

При внедрении ПГУ в России в первую очередь возник вопрос ее экономичной загрузки. Как только на ПГУ «вешаешь» теплофикационную нагрузку, летом все равно приходится работать в неэффективных режимах в связи со снижением тепловой нагрузки, т.к. присутствует только нагрузка на ГВС. Например, при реконструкции Автозаводской ТЭЦ по замещению второй очереди станции, мы в первую очередь уровняли параметры по острому пару, по отборному пару, по теплофикационным отборам для того, чтобы новый замещающий блок мог бы работать параллельно с другими очередями. Это резко сужает выбор газовых турбин, поскольку турбины должны на выхлопе обеспечивать такие параметры, чтобы на котле-утилизаторе ПГУ получать пар с параметрами 140 атм, 540 О С. Но зато в будущем данное решение позволит загрузить этот новый блок на базе ПГУ на полную мощность, а демпфером станет менее экономичное оборудование (несмотря на то, что оно имеет высокие параметры по пару). Таким образом при модернизации и реконструкции ТЭЦ, особенно при внедрении ПГУ, необходимо использовать соответствующие прогрессивные схемы, которые зависят от ряда факторов. Основным критерием, конечно, является существующая и перспективная нагрузка ТЭЦ.

Россия останется страной, в которой себестоимость производимой продукции, при всех прочих равных условиях, будет всегда выше из- за разницы среднегодовых температур отопления по сравнению с зарубежными аналогами. Соответственно объем топливно-энергетических ресурсов (ТЭР), требуемый на выпуск любой единицы продукции в России, всегда будет объективно выше по сравнению с аналогичной продукцией, выпускаемой за рубежом. Мы обречены вечно быть неконкурентоспособными в силу объективных причин или нет? Выход только один: России на полкорпуса надо быть впереди других стран в части использования и генерации различных видов энергии. Для России облегчает ситуацию только то, что ТЭР в нашей стране свои, а не импортируемые, как во многих зарубежных странах, соответственно они нам достаются дешевле. Необходимо постоянно снижать величину топливной составляющей при производстве любого вида продукции, включая тепло- и электроэнергию. Для этого нужна не разрозненная работа всех российских генерирующих компаний, а координация всех наших усилий в части проведения соответствующих НИР, НИОКР, направленных на совершенствование существующих систем энергоснабжения и др.

Здесь необходимо также отметить еще один момент, который косвенно касается затронутого выше вопроса. Сегодня любой проект строительства какого-либо объекта проходит государственную экспертизу на соответствие предъявляемым критериям (например, по прочности конструкции и др.). В связи с этим, пока проект не пройдет эту экспертизу, разрешение на строительство получено не будет. Все хорошо, но существующая экспертиза не включает в себя критерии по энергетической составляющей. По нашему мнению, на уровне государственной экспертизы проекта параметры энергоэффективности объекта (в первую очередь, крупного) должны быть приравнены к его параметрам надежности (прочности, безопасности конструкции и т.д.). Да, это административный ресурс, но он необходим в существующих российских условиях. Таким образом, на стадии проекта должно быть принято решение о целесообразности строительства того или иного объекта с учетом обозначенных выше параметров (критериев).

Когда мы ведем разговор о проектировании глобальных объектов, то необходимо учитывать мировой опыт, и на крупных предприятиях, которые расположены в черте города, надо поступать таким образом, чтобы «большая» энергетика не оказывалась в положении Усть-Илимской ТЭЦ. Замещение на градообразующих ТЭЦ в сегодняшних условиях должно базироваться на гарантированной нагрузке теплоснабжения населения, а не на промышленной нагрузке, которая должна быть заботой самих промышленных предприятий!

В заключение надо отметить, что «большая» энергетика не должна забывать и о новых технологиях, например, такой технологии как тепловые насосы. Например, в г Байкальск (Иркутской обл.) перед нами возникла дилемма при внедрении теплового насоса при наличии дешевой электроэнергии, вырабатываемой на ГЭС. В итоге нами было принято решение о монтаже теплового насоса с тем, чтобы изучить особенности его работы, которые целесообразно учитывать при дальнейшем внедрении данной технологии. Может быть, в чем- то эта позиция ущербна, но сегодня все сводить к голой прибыли, особенно в энергетике, нельзя, должны существовать и так называемые альтруистические (не приносящие прибыли) программы.

Для оценки перспектив ТЭС прежде всего необходимо осознать их преимущества и недостатки в сравнении с другими источниками электроэнергии.

К числу преимуществ можно отнести следующие.

  • 1. В отличие от ГЭС тепловые электростанции можно размещать относительно свободно с учетом используемого топлива. Газомазутные ТЭС могут быть построены в любом месте, так как транспорт газа и мазута относительно дешев (по сравнению с углем). Пылеугольные ТЭС желательно размещать вблизи источников добычи угля. К настоящему времени «угольная» теплоэнергетика сложилась и имеет выраженный региональный характер.
  • 2. Удельная стоимость установленной мощности (стоимость 1 кВт установленной мощности) и срок строительства ТЭС значительно меньше, чем АЭС и ГЭС.
  • 3. Производство электроэнергии на ТЭС в отличие от ГЭС не зависит от сезона и определяется только доставкой топлива.
  • 4. Площади отчуждения хозяйственных земель для ТЭС существенно меньше, чем для АЭС, и, конечно, не идут ни в какое сравнение с ГЭС, влияние которых на экологию может иметь далеко не региональный характер. Примерами могут служить каскады ГЭС на р. Волге и Днепре.
  • 5. На ТЭС можно сжигать практически любое топливо, в том числе самые низкосортные угли, забалластированные золой, водой, породой.
  • 6. В отличие от АЭС нет никаких проблем с утилизацией ТЭС по завершении срока службы. Как правило, инфраструктура ТЭС существенно «переживает» основное оборудование (котлы и турбины), установленное на ней, а здания, машзал, системы водоснабжения и топливоснабжения и т.д., которые составляют основную часть фондов, еще долго служат. Большинство ТЭС, построенных более 80 лег по плану ГОЭЛРО, до сих пор работают и будут работать дальше после установки на них новых, более совершенных турбин и котлов.

Наряду с этими достоинствами, ТЭС имеет и ряд недостатков.

  • 1. ТЭС - самые экологически «грязные» источники электроэнергии, особенно те, которые работают на высокозольном сернистом топливе. Правда, сказать, что АЭС, не имеющие постоянных выбросов в атмосферу, но создающие постоянную угрозу радиоактивного загрязнения и имеющие проблемы хранения и переработки отработавшего ядерного топлива, а также утилизации самой АЭС после окончания срока службы, или ГЭС, затопляющие огромные площади хозяйственных земель и изменяющие региональный климат, являются экологически более «чистыми» можно лишь со значительной долей условности.
  • 2. Традиционные ТЭС имеют сравнительно низкую экономичность (лучшую, чем у АЭС, но значительно худшую, чем у ПГУ).
  • 3. В отличие от ГЭС, ТЭС с трудом участвуют в покрытии переменной части суточного графика электрической нагрузки.
  • 4. ТЭС существенно зависят от поставки топлива, часто привозного.

Несмотря на все эти недостатки, ТЭС являются основными производителями электроэнергии в большинстве стран мира и останутся таковыми, по крайней мере на ближайшие 50 лет.

Перспективы строительства мощных конденсационных ТЭС тесно связаны с видом используемого органического топлива. Несмотря на большие преимущества жидкого топлива (нефти, мазута) как энергоносителя (высокая калорийность, легкость транспортировки), его использование на ТЭС будет все более и более сокращаться не только в связи с ограниченностью запасов, но и в связи с его большой ценностью как сырья для нефтехимической промышленности. Для России немалое значение имеет и экспортная ценность жидкого топлива (нефти). Поэтому жидкое топливо (мазут) на ТЭС будет использоваться либо как резервное топливо на газомазутных ТЭС, либо как вспомогательное топливо на пылеугольных ТЭС, обеспечивающее устойчивое горение угольной пыли в котле при некоторых режимах.

Использование природного газа на конденсационных паротурбинных ТЭС нерационально: для этого следует использовать парогазовые установки утилизационного типа, основой которых являются высокотемпературные ГТУ.

Таким образом, далекая перспектива использования классических паротурбинных ТЭС и в России, и за рубежом прежде всего связана с использованием углей, особенно низкосортных. Это, конечно, не означает прекращения эксплуатации газомазутных ТЭС, которые будут постепенно заменяться ПТУ.