Основные доли коры больших полушарий головного мозга. Кора головного мозга: функции и особенности строения. Ассоциативные области коры

Кора большого мозга (плащ) является наиболее высокодифференцированным отделом нервной системы, она неоднородна, состоит из огромного количества нервных клеток. Общая площадь коры составляет около 1200 квадратных сантиметров, 2/3 которой залегает в глубине борозд. В соответствии с филогенезом различают древнюю, старую, среднюю и новую кору (рис. 26).

ДРЕВНЯЯ КОРА (paleocortecx) включает в себя неструктурированную кору вокруг переднего продырявленного вещества: околоконечную извилину, подмозолистое поле (расположено на внутренней стороне полушарий под коленом и клювом мозолистого тела).

СТАРАЯ КОРА (archicortex), двух- трехслойна, расположена в гиппокампе и зубчатой извилине.

СРЕДНЯЯ КОРА (mesocortex) занимает нижний отдел островковой доли, парагиппокампальную извилину и нижнюю лимбическую область, ее кора дифференцирована не полностью.

НОВАЯ КОРА (neocortex) составляет 96% от всей поверхности полушарий. По морфологическим особенностям в ней выделяют 6 основных слоев, однако в различных областях коры количество слоев варьирует.

Слои коры (рис. 26):

1 - МОЛЕКУЛЯРНЫЙ. Клеток мало, состоит в основном из горизонтальных волокон восходящих аксонов, в том числе неспецифические афференты от таламуса, а также в этом слое заканчиваются ветви апикальных (верхушечных) дендритов 4 слоя коры.

2 - НАРУЖНЫЙ ЗЕРНИСТЫЙ. Состоит из звездчатых и мелких пирамидальных клеток, аксоны которых заканчиваются в 3, 5 и 6 слоях, т.е. участвует в соединении различных слоев коры.

3 - НАРУЖНЫХ ПИРАМИД. Этот слои имеет два подслоя. Внешний- состоит из более мелких клеток, которые осуществляют связь с соседними участками коры, особенно хорошо развит в зрительной коре. Внутренний подслой содержит более крупные клетки, которые участвуют в образовании коммиссу-ральных связей (связи между двумя полушариями).

4 - ВНУТРЕННИЙ ЗЕРНИСТЫЙ. Включает клетки зернистые, звездчатые и мелких пирамид. Их апикальные дендриты поднимаются в 1 слой коры, а базальные (от основания клетки) в 6 слой коры, т.о. участвуют в осуществлении межкорковой связи.

5 - ГАНГЛИОЗНЫЙ. Его основу составляют гигантские пирамиды (клетки Беца). Их апикальный дендрит простирается до 1 слоя, базальные дендриты идут параллельно поверхности коры, а аксоны образуют проекционные пути к базальным ядрам, стволу и спинному мозгу.

6 - ПОЛИМОРФНЫЙ. В нем присутствуют клетки различной формы, но преимущественно веретенообразные. Их аксоны идут вверх, но в большей мере вниз и образуют ассоциативные и проекционные пути, переходящие в белое вещество головного мозга.

Клетки различных слоев коры объединены в "модули"- структурно-функциональные единицы. Это группы нейронов из 10- 1000 клеток, которые выполняют определенные функции, "обрабатывают" тот или иной вид инфор-мации. Клетки этой группы преимущественно расположены перпендикулярно поверхности коры и часто именуются "колонковые модули".

Рис. 26. Строение коры большого мозга

I. молекулярный
II. наружный зернистый
III. наружный пирамидный
IV. внутренний зернистый
V. ганглиозный (гигантских пирамид)
VI. полиморфный

Рис. 27 Левый гиппокамп

7. мозолистое тело
8. валик
9. птичья шпора
10. гиппокамп
11. бахромка
12. Ножка

Кора головного мозга присутствует в строении организма многих существ, но у человека она достигла своего совершенства. Ученые утверждают, что это стало возможным благодаря вековой трудовой деятельности, которая сопровождает нас постоянно. В отличие от зверей, птиц или рыб, человек постоянно развивает свои возможности и это улучшает его мозговую деятельность, в том числе и функции коры мозга.

Но, давайте подойдем к этому постепенно, вначале рассмотрев строение коры, что, несомненно, очень увлекательно.

Внутреннее устройство коры головного мозга

Кора головного мозга насчитывает более 15 миллиардов нервных клеток и волокон. Каждая из них имеет разную форму, и образуют несколько уникальных слоев, отвечающих за определенные функции. К примеру, функциональность клеток второго и третьего слоя заключается в трансформации возбуждения и правильное перенаправление в определенные отделы головного мозга. А, например, центробежные импульсы представляют собой работоспособность пятого слоя. Рассмотрим каждый слой более тщательно.

Нумерация слоев головного мозга начинается от поверхности и идет глубже:

  1. Молекулярный слой имеет принципиальное отличие своим низких уровнем клеток. Их очень ограниченное количество, состоящее из нервных волокон тесно взаимосвязаны с друг другом.
  2. Зернистый слой иначе называется наружный. Это обусловлено наличием внутреннего слоя.
  3. Пирамидный уровень назван в честь своего строения, потому что имеет пирамидную структуру нейронов, различных по величине.
  4. Зернистый слой №2 получил название внутренний.
  5. Пирамидальный уровень №2 аналогичен третьему уровню. Его состав – это нейроны пирамидного образа имеющий средний и большой размер. Они проникают до молекулярного уровня, поскольку в нем содержаться апикальные дендриты.
  6. Шестой слой, это фузиформные клетки, имеющие второе название «веретеновидные», которые планомерно переходят в белое вещество головного мозга.

Если рассматривать эти уровни более углубленно, то получается, что кора головного мозга принимает на себя проекции каждых уровней возбуждения, которые протекают в разных отделах ЦНС и называются «нижележащие». Они, в свою очередь, транспортируются до мозга по нервным путям человеческого организма.

Презентация: "Локализация высших психических функций в коре головного мозга"

Таким образом, кора головного мозга - орган высшей нервной деятельности человека, и регулирует абсолютно все нервные процессы, происходящие в организме.

И это происходит благодаря особенностям ее строения, а она разделена на три зоны: ассоциативную, моторную и сенсорную.

Современное представление о строении коры головного мозга

Стоит отметить, что существует и несколько отличное представление о ее строении. Согласно нему, существует три зоны, которые отличает друг от друга не только строение, но и ее функциональным предназначением.

  • Первичная зона (моторная), в которой находятся ее специализированные и высокодифференцированные нервные клетки, получают импульсы от слуховые, зрительных и других рецепторов. Это очень важная зона, поражение которой может привести к серьезным расстройствам двигательной и чувствительной функции.
  • Вторичная (сенсорная) зона отвечает за функции обработки информации. К тому же, ее строение состоит из периферических отделов ядер анализаторов, которые устанавливают корректные связи между раздражителями. Ее поражение грозит человеку серьезным расстройством восприятия.
  • Ассоциативная, или третичная зона, ее строение позволяет, возбуждаться от импульсов, идущих от рецепторов кожи, слуха и др. Она формирует условные рефлексы человека, помогая познавать окружающую действительность.

Презентация: "Кора головного мозга"

Основные функции

Чем же отличается кора головного мозга человека и животного? Тем, что ее предназначение обобщать все отделы и контролировать работы. Данные функции обеспечивают миллиарды нейронов, имеющих разнообразное строение. К ним относятся такие виды, как вставочные, афферентные и эфферентные. Поэтому актуально будет рассмотреть каждые из этих видов более подробно.

Вставочный вид нейронов имеют на первый взгляд взаимоисключающие функции, а именно – тормоз и возбуждение.

Афферентный вид нейронов несет ответственность за импульсы, а точнее за их передачу. Эфферентные, в свою очередь, обеспечивают конкретную область деятельности человека и относят к периферии.

Безусловно, это медицинская терминология и стоит отвлечься от нее, конкретизировав функциональность коры головного мозга человека на простом народном языке. Итак, кора головного мозга отвечает за следующие функции:

  • Способность корректно устанавливать связь между внутренними органами и тканями. И даже более того, делает ее идеальной. Такая возможность базируется на условных и безусловных рефлексах человеческого тела.
  • Организация взаимоотношений человеческого организма и окружающей среды. Помимо этого, она контролирует функциональность органов, корректирует их работу и несет ответственность за обмен веществ в человеческом организме.
  • На 100% отвечает за то, чтобы процессы мышления были корректны.
  • И заключительная, но не менее важная функция – высочайший уровень нервной деятельности.

Ознакомившись с данными функциями, мы приходим к понимаю, что , позволило каждому человеку и всему роду в целом, научится осуществлять контроль за теми процессами, которые происходят в организме.

Презентация: "Структурно-функциональная характеристика сенсорной коры"

Академик Павлов в своих множественных исследованиях не единожды указывал, что именно кора является и распорядителем, и распределителем деятельности человека и животных.

Но, стоит также отметить, что кора головного мозга обладает неоднозначными функциями. Главным образом, это проявляется в работе центральной извилины и лобных долей, которые отвечают за сокращение мышц на совершенно противоположной этому раздражению стороне.

К тому же, разные ее части отвечают за разные функции. Например, затылочные доли за зрительные, а височные – за слуховые функции:

  • Если быть более конкретным, то затылочная доля коры фактически является проекцией сетчатой оболочки глаза, которая отвечает за ее зрительные функции. Если в ней происходит какое-либо нарушений, человек может лишиться , ориентации в незнакомой обстановки и даже к полной, необратимой слепоте.
  • Височная доля – это область слуховой рецепции, которая получает импульсы от улитки внутреннего уха, то есть, отвечает за ее слуховые функции. Повреждения этой части коры грозят человеку полной или частичной глухотой, которая сопровождается полным непониманием слов.
  • Нижняя доля центральной извилины отвечает за мозговые анализаторы или, другими словами, вкусовую рецепцию. Она получает импульсы от слизистой полости рта и ее поражение угрожает потерей всех вкусовых ощущений.
  • И наконец, передняя часть коры головного мозга, в которой расположена грушевидная доля отвечает за обонятельную рецепцию, то есть – функции носа. Импульсы в нее поступают от слизистой оболочки носа, если она будет поражена, то человек потеряет обоняние.

Не стоит лишний раз напоминать, что человек находится на высшей ступени развития.

Это подтверждает строение особенно развитой лобной области, которая в ответе за трудовую деятельность и речь. Также она важна в процессе формирования поведенческих реакций человека и его приспособительных функций.

Существует множество исследований, в том числе работы известного академика Павлова, который работал с собаками, изучая строение и работу коры головного мозга. Все они доказывают преимущества человека над животными, именно благодаря особенному ее строению.

Правда, не стоит забывать, что все части находятся в тесном контакте друг с другом и зависят от работы каждой из его составляющих, так что, совершенство человека, залог работы головного мозга в целом.

Из данной статьи читатель уже понял, что головной мозг человека является сложным и до сих пор малоизучен. Тем не менее, он идеальное устройство. Кстати, мало кто знает, что мощность обработки процессов в мозге настолько высока, что рядом с ней бессилен самый мощный в мире компьютер.

Вот еще несколько интересных фактов, которые опубликовали ученные после ряда испытаний и исследований:

  • 2017 года ознаменовался проведением эксперимента, в ходе которого гипер-мощный ПК попытался имитировать лишь 1 секунду активности головного мозга. Тест занял порядка 40 минут. Результат эксперимента – компьютер не справился с заданием.
  • Объем памяти человеческого мозга вмещает n-число bt, которое выражается 8432 нулями. Приблизительно это 1 000 Тb. Если на примере, то в национальном Британском архиве хранится историческая информация за последние 9 веков и объем ее всего лишь 70 Тb. Ощутите насколько весомая разница между этими цифрами.
  • Человеческий мозг заключает в себе 100 тысяч километров сосудов, 100 миллиардов нейронов (цифра равная числу звезд во всей нашей галактике). Помимо этого в мозгу находятся сто триллионов нейронных связей, которые отвечают за формирование воспоминаний. Таким образом, когда вы познаете что-то новое, структура головного мозга изменяется.
  • Во время пробуждения головной мозг аккумулирует электрополе мощность в 23 Вт – этого достаточно зажечь лампу Ильича.
  • По весу мозг состоит из 2% от общей массы, однако задействует он примерно 16% энергии в теле и более 17% кислорода, содержащегося в крови.
  • Ещё один интересный факт, что головной мозг состоит из воды на 75%, а по структуре чем-то сход с сыром «Тофу». А 60% мозга – жир. Ввиду этого для корректной деятельности мозга необходимо здоровое и правильное питание. Употребляйте каждый день в пищу рыбу, оливковое масло, семечки или орехи – и Ваш мозг будет работать долго и ясно.
  • Некоторые ученые, проведя ряд исследований, заметили, что при диете мозг начинает «кушать» сам себя. А низкий уровень кислорода в течение пяти минут способен привести к необратимым последствиям.
  • Удивительно, но человеческое существо не способно щекотать самого себя, т.к. мозг настраивается на внешние раздражители и чтобы не пропустить эти сигналы, немного игнорируется действия самого человека.
  • Забывчивость является естественным процессом. То есть, ликвидация ненужных данных позволяет ЦНС быть гибкой. А влияние алкогольных напитков на память объясняется тем, что спирт затормаживает процессы.
  • Реакция мозга на спиртосодержащие напитки составляет шесть минут.

Активизация интеллекта позволяет производить дополнительную мозговую ткань, которая компенсирует те, что заболели. Ввиду этого рекомендуется заниматься развитием, что в дальнейшем избавит Вас от слабого ума и различных расстройств психики.

Занимайтесь новыми занятиями – это лучше всего способствует развитию мозга. К примеру, общение с людьми, превосходящими Вас в той или иной интеллектуальной области является сильным средством по развитию Вашего интеллекта.

Кора больших полушарий головного мозга представляет собой наиболее молодое образование центральной нервной системы.Деятельность коры больших полушарий основана на принципе условного рефлекса, поэтому ее называют условно-рефлекторной. Она осуществляет быструю связь с внешней средой и приспособление организма к изменяющимся условиям внешней среды.

Глубокие борозды делят каждое полушарие большого мозга на лобную, височную, теменную, затылочную доли и островок . Островок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.

Кора большого мозга делится на древнюю (архиокортекс ), старую (палеокортекс ) и новую (неокортекс). Древняя кора, наряду с другими функциями, имеет отношение к обонянию и обеспечению взаимодействия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, дифференциации функций отмечается у человека. Толщина новой коры 3-4 мм. Общая площадь коры взрослого человека 1700-2000 см 2 , а число нейронов — 14 млрд (если их расположить в ряд, то образуется цепь протяженностью 1000 км) — постепенно истощается и к старости составляет 10 млрд (более 700 км). В составе коры имеются пирамидные, звездчатые и веретенообразные нейроны.

Пирамидные нейроны имеют разную величину, их дендриты несут большое количество шипиков: аксон пирамидного нейрона идет через белое вещество в другие зоны коры или структуры ЦНС.

Звездчатые нейроны имеют короткие, хорошо ветвящиеся дендриты и короткий аксон, обеспечивающий связи нейронов в пределах самой коры большого мозга.

Веретенообразные нейроны обеспечивают вертикальные или горизонтальные взаимосвязи нейронов разных слоев коры.

Строение коры больших полушарий

В коре содержится большое количество глиальных клеток, выполняющих опорную, обменную, секреторную, трофическую функции.

Наружная поверхность коры разделена на четыре доли: лобную, теменную, затылочную и височную. Каждая доля имеет свои проекционные и ассоциативные области.

Кора большого мозга имеет шестислойное строение (рис. 1-1):

  • молекулярный слой (1) светлый, состоит из нервных волокон и имеет небольшое количество нервных клеток;
  • наружный зернистый слой (2) состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре головного мозга, т.е. имеющих отношение к памяти;
  • слой пирамидных меток (3) формируется из пирамидных клеток малой величины и вместе со слоем 2 обеспечивает корко-корко- вые связи различных извилин мозга;
  • внутренний зернистый слой (4) состоит из звездчатых клеток, здесь заканчиваются специфические таламокортикальные пути, т.е. пути, начинающиеся от рецепторов-анализаторов.
  • внутренний пирамидный слой (5) состоит из гигантских пирамидных клеток, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг;
  • слой полиморфных клеток (6) состоит из неоднородных по величине клеток треугольной и веретенообразной формы, которые образуют кортикоталамические пути.

I — афферентные пути из таламуса: СТА — специфические таламические афференты; НТА — неспецифические таламические афференты; ЭМВ — эфферентные моторные волокна. Цифрами обозначены слои коры; II — пирамидный нейрон и распределение окончаний на нем: А — неспецифические афферентные волокна из ретикулярной формации и ; Б — возвратные коллатерали от аксонов пирамидных нейронов; В — комиссуральные волокна из зеркальных клеток противоположного полушария; Г — специфические афферентные волокна из сенсорных ядер таламуса

Рис. 1-1. Связи коры больших полушарий.

Клеточный состав коры по разнообразию морфологии, функций, формам связи не имеет себе равных в других отделах ЦНС. Нейронный состав, распределение по слоям в разных областях коры различны. Это позволило выделить в мозге человека 53 цитоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере совершенствования ее функции в филогенезе.

Функциональной единицей коры является вертикальная колонка диаметром около 500 мкм. Колонка - зона распределения разветвлений одного восходящего (афферентного) таламокортикального волокна. Каждая колонка содержит до 1000 нейронных ансамблей. Возбуждение одной колонки тормозит соседние колонки.

Восходящий путь проходит через все корковые слои (специфический путь). Неспецифический путь также проходит через все корковые слои. Белое вещество полушарий расположено между корой и базальными ганглиями. Оно состоит из большого количества волокон, идущих в разных направлениях. Это проводящие пути конечного мозга. Различают три вида путей.

  • проекционный — связывает кору с промежуточным мозгом и другими отделами ЦНС. Это восходящие и нисходящие пути;
  • комиссуральный - его волокна входят в состав мозговых комиссур, которые соединяют соответствующие участки левого и правого полушарий. Входят в состав мозолистого тела;
  • ассоциативный - связывает участки коры одного и того же полушария.

Зоны коры больших полушарий

По особенностям клеточного состава поверхность коры подразделяют на структурные единицы следующего порядка: зоны, области, подобласти, поля.

Зоны коры головного мозга разделяются на первичные, вторичные и третичные проекционные зоны. В них расположены специализированные нервные клетки, к которым поступают импульсы от определенных рецепторов (слуховых, зрительных и т.д.). Вторичные зоны представляют собой периферические отделы ядер анализаторов. Третичные зоны получают обработанную информацию от первичных и вторичных зон коры больших полушарий и играют важную роль в регуляции условных рефлексов.

В сером веществе коры больших полушарий различают сенсорные, моторные и ассоциативные зоны:

  • сенсорные зоны коры больших полушарий - участки коры, в которых располагаются центральные отделы анализаторов:
    зрительная зона — затылочная доля коры больших полушарий;
    слуховая зона — височная доля коры больших полушарий;
    зона вкусовых ощущений — теменная доля коры больших полушарий;
    зона обонятельных ощущений — гиппокамп и височная доля коры больших полушарий.

Соматосенсорная зона находится в задней центральной извилине, сюда приходят нервные импульсы от проприорецепторов мышц, сухожилий, суставов и импульсы от температурных, тактильных и других рецепторов кожи;

  • моторные зоны коры больших полушарии - участки коры, при раздражении которых появляются двигательные реакции. Располагаются в передней центральной извилине. При ее поражении наблюдаются значительные нарушения движения. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэтому при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела;
  • ассоциативные зоны - отделы коры, находящиеся рядом с сенсорными зонами. Нервные импульсы, поступающие в сенсорные зоны, приводят к возбуждению ассоциативных зон. Особенностью их является то, что возбуждение может возникать при поступлении импульсов от различных рецепторов. Разрушение ассоциативных зон приводит к серьезным нарушениям обучения и памяти.

Речевая функция связана с сенсорными и двигательными зонами. Двигательный центр речи (центр Брока) находится в нижней части левой лобной доли, при его разрушении нарушается речевая артикуляция; при этом больной понимает речь, но сам говорить не может.

Слуховой центр речи (центр Вернике) расположен в левой височной доле коры больших полушарий, при его разрушении наступает словесная глухота: больной может говорить, излагать устно свои мысли, но не понимает чужой речи; слух сохранен, но больной не узнает слов, нарушается письменная речь.

Речевые функции, связанные с письменной речью — чтение, письмо, — регулируются зрительным центром речи, расположенным на границе теменной, височной и затылочной долей коры головного мозга. Его поражение приводит к невозможности чтения и письма.

В височной доле находится центр, отвечающий за запоминание слое. Больной с поражением этого участка не помнит названия предметов, ему необходимо подсказывать нужные слова. Забыв название предмета, больной помнит его назначение, свойства, поэтому долго описывает их качества, рассказывает, что делают с этим предметом, но назвать его не может. Например, вместо слова «галстук» больной говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Функции лобной доли:

  • управление врожденными поведенческими реакциями при помощи накопленного опыта;
  • согласование внешних и внутренних мотиваций поведения;
  • разработка стратегии поведения и программы действия;
  • мыслительные особенности личности.

Состав коры больших полушарий

Кора больших полушарий головного мозга является высшей структурой ЦНС и состоит из нервных клеток, их отростков и нейроглии. В составе коры имеются звездчатые, веретенообразные и пирамидные нейроны. Благодаря наличию складок кора имеет большую поверхность. Выделяют древнюю кору (архикортекс) и новую кору (неокортекс). Кора состоит из шести слоев (рис. 2).

Рис. 2. Кора больших полушарий головного мозга

Верхний молекулярный слой образован в основном дендритами пирамидных клеток нижележащих слоев и аксонами неспецифических ядер таламуса. На этих дендритах формируют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

Наружный гранулярный слой образован мелкими звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, формируя кортикокортикальные связи.

Слой пирамидных клеток малой величины.

Внутренний гранулярный слой, образованный звездчатыми клетками. В нем заканчиваются афферентные таламокортикальные волокна, начинающиеся от рецепторов анализаторов.

Внутренний пирамидный слой состоит из крупных пирамидных клеток, участвующих в регуляции сложных форм движения.

Мультиформный слой состоит из верстеновидных клеток, образующих кортикоталамические пути.

По функциональной значимости нейроны коры подразделяют на сенсорные , воспринимающие афферентные импульсы от ядер таламуса и рецепторов сенсорных систем; моторные , посылающие импульсы к подкорковым ядрам, промежуточному, среднему, продолговатому мозгу, мозжечку, ретикулярной формации и спинному мозгу; и промежуточные , осуществляющие связь между нейронами коры больших полушарий. Нейроны коры больших полушарий находятся в состоянии постоянного возбуждения, не исчезающего и во время сна.

В кору больших полушарий, к сенсорным нейронам поступают импульсы от всех рецепторов организма через ядра таламуса. И каждый орган имеет свою проекцию или корковое представительство, расположенное в определенных областях больших полушарий.

В коре больших полушарий имеется четыре чувствительные и четыре двигательные области.

Нейроны двигательной коры получают афферентную импульсацию через таламус от мышечных, суставных и кожных рецепторов. Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути.

У животных наиболее развита лобная область коры и ее нейроны участвуют в обеспечении целенаправленного поведения. Если удалить эту долю коры, животное становится вялым, сонливым. В височной области локализуется участок слуховой рецепции, и сюда поступают нервные импульсы от рецепторов улитки внутреннего уха. Область зрительной рецепции находится в затылочных долях коры головного мозга.

Теменная область, внеядерная зона, играет важную роль в организации сложных форм высшей нервной деятельности. Здесь расположены рассеянные элементы зрительного и кожного анализаторов, осуществляется межанализаторный синтез.

Рядом с проекционными зонами располагаются ассоциативные зоны, которые осуществляют связь между сенсорной и двигательной зонами. Ассоциативная кора принимает участие в конвергенции различных сенсорных возбуждений, позволяющей осуществлять сложную обработку информации о внешней и внутренней среде.

Кора большого мозга представлена равномерным слоем серого вещества толщиною 1,3-4,5 мм, состоящим более чем из 14 млрд. нервных клеток. Благодаря складчатости коры ее поверхность достигает больших размеров - около 2200 см 2 .

Толща коры состоит из шести слоев клеток, которые различают при специальной окраске и исследовании под микроскопом. Клетки слоев различны по форме и размерам. От них в глубь мозга отходят отростки.

Было установлено, что разные участки - поля коры полушарий различаются по строению и функциям. Таких полей (называемых еще зонами, или центрами) выделяют от 50 до 200. Строгих границ между зонами коры большого мозга не существует. Они составляют аппарат, обеспечивающий прием, переработку приходящих сигналов и ответную реакцию на поступившие сигналы.

В задней центральной извилине, позади от центральной борозды, располагается зона кожной и суставно-мышечной чувствительности . Здесь воспринимаются и анализируются сигналы, возникающие при касании к нашему телу, при воздействии на него холода или тепла, болевых воздействиях.


В противоположность этой зоне - в передней центральной извилине, спереди от центральной борозды, расположена двигательная зона . В ней выявлены участки, которые обеспечивают движения нижних конечностей, мышц туловища, рук, головы. При раздражении этой зоны электротоком возникают сокращения соответствующих групп мышц. Ранения или другие повреждения коры двигательной зоны влекут за собой паралич мышц тела.

В височной доле находится слуховая зона . Сюда поступают и здесь анализируются импульсы, возникающие в рецепторах улитки внутреннего уха. Раздражения участков слуховой зоны вызывают ощущения звуков, а при поражении их болезнью утрачивается слух.

Зрительная зона расположена в коре затылочных долей полушарий. При ее раздражении электрическим током во время операций на мозге человек испытывает ощущения вспышек света и темноты. При поражении ее какой-либо болезнью ухудшается и теряется зрение.

Вблизи боковой борозды расположена вкусовая зона , где анализируются и формируются ощущения вкуса на основании сигналов, возникающих в рецепторах языка. Обонятельная зона расположена в так называемом обонятельном мозге, у основания полушарий. При раздражении этих зон во время хирургических операций или при воспалении люди ощущают запах или вкус каких-либо веществ.

Чисто речевой зоны не существует. Она представлена в коре височной доли, нижней лобной извилине слева, участках теменной доли. Их поражения болезнями сопровождаются расстройствами речи.

Первая и вторая сигнальные системы

Неоценима роль коры большого мозга в совершенствовании первой сигнальной системы и развитии второй. Эти понятия разработаны И.П.Павловым. Под сигнальной системой в целом понимают всю совокупность процессов нервной системы, осуществляющих восприятие, переработку информации и ответную реакцию организма. Она связывает организм с внешним миром.

Первая сигнальная система

Первая сигнальная система обусловливает восприятие посредством органов чувств чувственно-конкретных образов. Она является основой для образования условных рефлексов. Эта система существует как у животных, так и у человека.

В высшей нервной деятельности человека развилась надстройка в виде второй сигнальной системы. Она свойственна только человеку и проявляется словесным общением, речью, понятиями. С появлением этой сигнальной системы стали возможными отвлеченное мышление, обобщение бесчисленных сигналов первой сигнальной системы. По И.П.Павлову, слова превратились в «сигналы сигналов».

Вторая сигнальная система

Возникновение второй сигнальной системы стало возможным благодаря сложным трудовым взаимоотношениям между людьми, так как эта система является средством общения, коллективного труда. Словесное общение не развивается вне общества. Вторая сигнальная система породила отвлеченное (абстрактное) мышление, письмо, чтение, счет.

Слова воспринимаются и животными, но совершенно отлично от людей. Они воспринимают их как звуки, а не их смысловое значение, как люди. Следовательно, у животных нет второй сигнальной системы. Обе сигнальные системы человека взаимосвязаны. Они организуют поведение человека в широком смысле слова. Причем вторая изменила первую сигнальную систему, так как реакции первой стали в значительной мере зависеть от социальной среды. Человек стал в состоянии управлять своими безусловными рефлексами, инстинктами, т.е. первой сигнальной системой.

Функции коры мозга

Знакомство с наиболее важными физиологическими функциями коры большого мозга свидетельствует о необычайном ее значении в жизнедеятельности. Кора вместе с ближайшими к ней подкорковыми образованиями является отделом центральной нервной системы животных и человека.

Функции коры головного мозга - осуществление сложных рефлекторных реакций, составляющих основу высшей нервной деятельности (поведения) человека. Не случайно у него она получила наибольшее развитие. Исключительным свойством коры являются сознание (мышление, память), вторая сигнальная система (речь), высокая организация труда и жизни в целом.

Кора больших полушарий представляет собой тонкий слой серого вещества на поверхности полушарий. В процессе эволюции поверхность коры увеличилась по размеру за счет появления борозд и извилин. Общая площадь поверхности коры у взрослого человека достигает 2 200-2 600 см 2 . Кора занимает у человека 96%. Толщина коры в различных частях полушария колеблется от 1,3 до 4,5 мм. Наибольшая толщина отмечается в верхних участках предцентральной и постцентральной извилин. В коре насчитывается от 12 до 18 млрд нервных клеток. Отростки этих клеток образуют огромное количество связей, что создает условия для обработки и хранения информации.

Как показал В. А. Бец, не только вид нервных клеток, но и их взаиморасположение неодинаково в различных участках коры. Распределение нервных клеток в коре обозначается термином«цитоархитектоника» , что означает клеточное строение. Особенности распределения волокон в коре головного мозга определяется термином «миелоархитектоника», то есть волокнистое строение коры.

Волокнистое строение коры в основном соответствует клеточному ее составу. Типичным для новой коры больших полушарий взрослого человека является расположение нервных клеток в виде шести слоев (Атл., рис. 28, с. 136), каждый из которых состоит из пирамидных и звездчатых клеток. Главная особенность пирамидных клеток заключается в том, что их аксоны идут из коры и оканчиваются в других корковых или иных структурах. Название звездчатых клеток также обусловлено их формой; их аксоны оканчиваются в коре. На медиальной и нижней поверхностях полушарий большого мозга сохранились участки старой и древней коры, имеющей двухслойное и трехслойное строение.

Слои коры

Слой 1 - молекулярный - содержит немногочисленные, очень мелкие горизонтальные клетки, их аксоны расположены параллельно поверхности мозга. Эти клетки осуществляют местную регуляцию активности эфферентных нейронов. Слой является общим для новой, старой и древней коры.

Слой II- наружный зернистый - содержит преимущественно мелкие нейроны неправильной формы (округлой, звездчатой, пирамидной). Дендриты, а также аксоны некоторых нейронов поднимаются в молекулярный слой, где контактируют с горизонтальными нейронами. Большая часть аксонов уходит в белое вещество. Слой беден миелиновыми волокнами.

Слой III - пирамидный - состоит из клеток пирамидной формы, размеры которых увеличиваются от 10 до 40 мкм по направлению вглубь. Обычно они располагаются колонками, между которых проходят проекционные волокна. От вершины пирамидного нейрона отходит главный дендрит, который достигает молекулярного слоя. Остальные дендриты, начинающиеся на боковых поверхностях тела нейрона и его основании, образуют синапсы с соседними клетками слоя. Аксон всегда отходит от основания тела клетки. Аксоны мелких нейронов остаются в пределах коры, а крупных - формируют ассоциативные и комиссуральные волокна белого вещества. Наряду с пирамидными, в этом слое встречаются и звездчатые клетки.

Слой IV - внутренний зернистый - образован часто расположенными звездчатыми и корзинчатыми клетками и густым скоплением горизонтально направленных миелиновых волокон. На нейронах этого слоя оканчивается большинство проекционных афферентных волокон, приходящих в кору, а их аксоны проникают в ниже- и вышележащие слои, таким образом происходит переключение афферентных импульсов на эфферентные нейроны III и IV слоев. В различных зонах коры он имеет неодинаковую толщину: в предцентральной извилине он почти не выражен, а в зрительной коре развит достаточно хорошо.

Слой V - ганглиозный - заключает в себе пирамидные клетки, среди которых встречаются очень крупные - клетки Беца. Их высота достигает 120 мкм, а ширина - 80 мкм. Аксоны этих нейронов формируют пирамидные тракты. От аксонов, образующих тракт, отходит большое количество коллатералей, по которым проходят тормозные импульсы к соседним нейронам. После выхода из коры коллатерали этих волокон доходят до полосатого тела, красного ядра, ретикулярной формации, ядер моста и нижних олив. Два последних передают сигналы в мозжечок. Кроме того, существуют нейроны, посылающие свои аксоны непосредственно к хвостатому ядру, красному ядру и ядрам ретикулярной формации ствола мозга. Пирамидные нейроны получают также большое количество афферентных входов из различных отделов нервной системы. На дендритах этихклеток образуются синаптические контакты, преимущественно на шипиках - выростах на поверхности дендрита. Количество шипиков увеличивается в процессе созревания коры и образования новых связей.

Слой VI - полиморфный - с большим количеством веретенообразных клеток; отличается изменчивостью в распределении и густоте клеток и волокон. Во внешней части слоя клетки крупнее, а в глубоких его частях размеры нейронов уменьшаются, а расстояние между ними увеличивается. Аксоны веретеновидных нейронов образуют эфферентные пути, а дендриты уходят в молекулярный слой или заканчиваются синапсами на нейронах V - VI слоев.

По мере удаления от поверхности коры слой VI переходит в белое вещество, в нем значительно возрастает количество волокон, и снижается доля клеток. Иногда эту переходную зону выделяют в VII слой коры.

По строению среди клеток коры выделяют длинноаксонные и короткоаксонные нейроны. Они выполняют различные функции. Так, например, пирамидные клетки V слоя собирают импульсы со всех слоев коры. Длинный нисходящий аксон имеет многочисленные коллатерали на всем своем пути и, выходя из коры, продолжается в белое вещество как нисходящее проекционное волокно. Последнее оканчивается в подкорковых ганглиях, двигательных ядрах ствола или на мотонейронах спинного мозга. Восходящий дендрит пирамидных клеток поднимается до первого слоя коры и образует здесь густое конечное ветвление. На своем пути он отдает, как и другие дендриты пирамидных нейронов, веточки к нейронам всех слоев, через которые проходит.

В верхних слоях длинные аксоны имеют пирамидные клетки III слоя. Аксоны этих клеток входят в состав белого вещества преимущественно в качестве ассоциативных волокон, по которым осуществляется связь между различными участками коры, а также в виде комиссуральных волокон, связывающих кору двух полушарий.

Клетки с коротким аксоном не выходят за пределы коры. К ним относятся клетки звездчатой и корзинчатой формы, которые встречаются во всех слоях коры. В IV слое это главные элементы. Их функция заключается в восприятии афферентных импульсов и распределении их на пирамидные клетки III и V слоев.

Звездчатыми клетками осуществляется, кроме того, круговая циркуляция импульсов в коре. Передавая импульс от одной звездчатой клетки к другой, эти нейроны объединяются в нейронные сети. Воспринимая нервный импульс, они могут длительно пребывать в состоянии скрытой, не проявляющейся во внешних реакциях активности даже после того, как прекратилось действие раздражителя. Данная особенность является одной из форм памяти, анатомо-функциональной предпосылкой для динамической фиксации следов возбуждения, удержания и эффективного использования информации, запасаемой человеком на протяжении всей его жизни.

Согласно современным представлениям, кора головного мозга построена из взаимодействующих функциональных блоков - модулей или локальных сетей. Они представлены пластинами или колонками, которые являются функциональными единицами коры, организованными в вертикальном направлении. Это доказано следующим опытом: если микроэлектрод погружать перпендикулярно в кору, то на своем пути он встречает нейроны, реагирующие на один вид раздражения; если же микроэлектрод вводить горизонтально в кору, то он встречает нейроны, реагирующие на разные виды раздражителей. Наиболее четко такая организация выражена в сенсорных областях коры (зрительной, слуховой, соматосенсорной). Колонки представляют собой вертикальные модули диаметром примерно 300-500 мкм. Основой для организации данного модуля служит входящее в кору волокно. Такие волокна могут быть отростками нейронов таламуса, латерального коленчатого тела и т. д. Волокна оканчиваются синаптически на звездчатых нейронах IV слоя и на базальных дендритах пирамидных нейронов. Отсюда информация распространяется на выше- и нижележащие нейроны. Таким образом, информация от небольшой группы подкорковых нейронов поступает в локальный участок коры. Этим достигается точность обработки сенсорной информации. Кортико-кортикальные волокна образуют контакты с нейронами всех слоев и могут выходить за пределы данного модуля. За счет этого происходит более сложная обработка информации, поступившей от различных рецепторов.

Слои коры делятся на верхний и нижний этажи. Нижний этаж, представлен V-VI слоями и несет проекционную функцию, отдавая нисходящие волокна к двигательным ядрам головного и спинного мозга. Верхний этаж состоит из II-IV слоев, распространяет по коре импульсы, которые поступают по восходящим волокнам от подкорковых структур, и посылает ассоциативные и комиссуральные волокна ко всем областям коры, то есть имеет отношение к более сложным функциям.

Нейронный состав, распределение нейронов по слоям в разных областях коры различны, что позволило выделить в мозге человека 53 цитоархитектонических поля. Так, например, вторичные поля 6,8 и 10 функционально обеспечивают высокую координацию, точность движений; вокруг зрительного поля 17 - вторичные зрительные поля 18 и 19, участвующие в анализе значения зрительного раздражителя (организация зрительного внимания, управление движением глаза). Первичные слуховое, соматосенсорное, кожное и другие поля также имеют рядом расположенные вторичные и третичные поля, обеспечивающие ассоциацию функций данного анализатора с функциями других анализаторов.

Локализация функций в коре больших полушарий. Согласно учению И. П. Павлова о динамической локализации функций, кора больших полушарий имеет «ядро» анализатора (корковый конец) и «рассеянные» по всей коре нейроны. Современная концепция о локализации базируется на принципе многофункциональности (но неравномерности) корковых полей, что предполагает и разное их функциональное предназначение (Атл., рис. 29, с. 136). В коре больших полушарий имеется множественное представительство функций, которые расположены в сенсорных, моторных и ассоциативных областях.

Сенсорные зоны коры. Корковые концы анализаторов имеют свою топографию, и на них проецируются определенные афференты проводящих систем. Корковые концы анализаторов разных сенсорных систем перекрываются, особенно на таламическом и корковом уровнях. Помимо этого, в каждой сенсорной системе имеются полисенсорные нейроны, которые реагируют не только на «свой» адекватный раздражитель, но и на сигналы из других сенсорных систем. Сенсорные зоны коры расположены преимущественно в теменной, височной и затылочной долях.

Корковое ядро кожного анализатора (осязательная, болевая и температурная чувствительность) находится в постцентральной извилине (поля 1, 2, 3) и в коре верхней теменной области (поля 5 и 7). Здесь имеется строгое соматотопическое деление. При этом тело спроецировано в постцентральной извилине вверх ногами: в верхней ее части расположена проекция рецепторов нижних конечностей, а в нижней - проекция рецепторов головы (Атл., рис. 30, с. 137). Болевая и температурная чувствительность в основном проецируется в поля 5 и 7, причем частный вид кожной чувствительности - узнавание предметов на ощупь - стереогнозия , связаны с полем 7. При поражении поверхностных слоев поля 7 утрачивается способность узнавать предметы на ощупь при закрытых глазах.

Корковая зона зрительной сенсорной системы находится в затылочной области (поля 17, 18, 19). Центральный зрительный путь заканчивается в поле 17. Здесь находится топическое представительство рецепторов сетчатки. Каждой точке сетчатки соответствует свой участок зрительной коры. В полях 18 и 19 анализируются цвет, форма, размеры, качества предметов. Поражение поля 19 коры больших полушарий приводит к тому, что больной видит, но не узнает предмет (зрительная агнозия), при этом утрачивается также цветовая память.

Корковая зона слуховой сенсорной системы располагается в височной области (поля 41,42) верхней височной извилины, где оканчивается большинство волокон слуховой лучистости. К проекционной коре височной доли относится также центр вестибулярного анализатора (поля 20 и 21), лежащий в области средней и нижней височных извилин.

Корковая зона обонятельной сенсорной системы помещается в филогенетически наиболее древней части коры, в пределах основания обонятельного мозга, отчасти гиппокампа (поле 11), обеспечивая проекционную функцию, хранение, а также распознавание обонятельных образов.

Корковая зона вкусового анализатора располагается в ближайшем соседстве с центром обонятельного анализатора (поле 43). Центр обеспечивает проекционную функцию, хранение и распознавание вкусовых образов.

Моторные зоны коры находятся в основном в предцентральной извилине и воспринимают раздражение проприорецепторов суставов, скелетных мышц, сухожилий. В поле 4 от гигантских пирамидных клеток V слоя начинается большинство волокон нисходящих путей коры - кортикоспинального и кортикоядерного. Оканчиваются волокна этих путей на мотонейронах передних рогов спинного мозга и нейронах двигательных ядер черепных нервов.

В передней центральной извилинерасположены зоны, раздражение которых вызывает движение по соматотопическому типу, но вверх ногами: в верхних отделах извилины - нижние конечности, в нижних - верхние (Атл., рис. 31, с. 137). При поражении этой корковой зоны утрачивается способность к тонким координированным движениям конечностями и особенно пальцами рук.

Спереди от передней центральной извилины лежат поля 6 и 8. Они организуют не изолированные, а комплексные координированные, стереотипные движения. Так, например, при раздражении коры поля 6 возникают сложные координированные движения: поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения сгибателей или разгибателей на противоположной стороне. Эти поля также обеспечивают регуляцию тонуса гладкой мускулатуры, пластический тонус мышц через подкорковые структуры.

В реализации моторных функций принимают участие также вторая лобная извилина, затылочная, верхнетеменная области.

Двигательная область коры имеет большое количество связей с другими анализаторами, что обусловлено наличием в ней значительного числа полисенсорных нейронов.

Ассоциативные зоны (межанализаторные) принимают импульсы от многих систем. Ассоциативная кора является филогенетически наиболее молодой частью новой коры, получившей наибольшее развитие у приматов и человека. У человека она составляет около 50% всей коры. Каждая ассоциативная область коры имеет связи с несколькими проекционными областями. Нейроны ассоциативной коры являются полисенсорными (полимодальными): отвечают, как правило, не на один, а на несколько раздражителей. Полисенсорность нейронов ассоциативной области коры обеспечивает их участие в интеграции сенсорной информации, взаимодействие сенсорных и моторных зон коры. Эти механизмы являются физиологической основой высших психических функций.

Ассоциативные зоны мозга человека наиболее выражены в лобной, теменной и височных долях. В теменной ассоциативной области коры формируются субъективные представления об окружающем пространстве, о нашем теле. Лобные ассоциативные поля (9-14) имеют двусторонние связи с лимбической системой мозга и участвуют в организации программ действия при реализации сложных двигательных поведенческих актов. Так, например, поражение лобных долей вызывает у больных тенденцию к повторению двигательных актов без видимого соответствия с внешними обстоятельствами.

Первой и наиболее характерной чертой ассоциативных зон коры является мультисенсорность их нейронов, причем сюда поступает не первичная, а достаточно обработанная информация с выделением биологической значимости сигнала. Это позволяет формировать программу целенаправленного поведенческого акта. Примером может быть поле 40 нижнетеменной области, поражение которого ведет к утрате способности выполнять сложные координированные акты.

Вторая особенность ассоциативной области заключается в способности к пластическим перестройкам в зависимости от значимости поступающей сенсорной информации.

Третья особенность ассоциативной области проявляется в длительном хранении следов сенсорных воздействий. Разрушение ассоциативной области коры приводит к грубым нарушениям обучения, памяти.

Локализация речевых функций. Речевая функция связана как с сенсорной, так и двигательной зонами. Корковый двигательный центр речи (поле 44) занимает нижнюю часть лобной извилины чаще левого полушария (центр Брока). В нем происходит анализ раздражений, приходящих от мускулатуры, участвующей в создании устной речи. Впереди поля 44 расположено поле 45, имеющее отношение к речи и пению. В заднем отделе средней лобной извилины, вблизи зоны предцентральной извилины, часть поля 6 связана с письменной речью. Деятельность этого центра связана с органом зрения, и поэтому недалеко от зрительного анализатора расположен зрительный анализатор письменной речи (поле 39).

При поражении поля 39 утрачивается способность складывать из букв слова и фразы. В поле 22, расположенном в задней части верхней височной извилины, при участии полей 41 и 42 (ядерная зона слухового анализатора) происходит слуховое восприятие речи. При нарушении этого участка поля 22теряется способность понимать слова.

В височной области расположено поле 37, которое отвечает за запоминание слов. Поражение этого центра приводит к забывчивости названия предмета, но сохранена у больного способность помнить его назначение, свойства.

Все речевые анализаторы закладываются в обоих полушариях, но развиваются только с одной стороны (у правшей - слева, у левшей - справа) и функционально оказываются асимметричными.

В настоящее время доказано, что и второе полушарие небезразлично к речевым функциям (воспринимает интонации голоса и придает речи интонационное окрашивание). Специализация полушарий проявляется, кроме того, в характере организации памяти и в регуляции эмоциональных состояний.

Наличие у человека полей, разрушение которых ведет к выпадению речевых функций, не означает, что последние связаны только с определенными участками коры. Речь наиболее сложно локализована и осуществляется при участии всей коры. В соответствии с выработкой нового опыта речевые функции могут перемещаться и в другие области коры (чтение слепых, письмо ногой у безруких и т. д.).

Морфофункциональная асимметрия мозга. Наличие двигательного центра речи, находящегося в левом полушарии в полях 44 и 45 (центр Брока) нижней лобной извилины, и сенсорного центра речи расположенного в поле 22 (центр Вернике) верхней височной извилины, больше по площади, чем в правом. Поэтому это полушарие рассматривается как доминирующее в отношении речевой функции и мышления. Кроме того, морфологическая асимметрия мозга выражена в строении борозд и извилин, а также степенью отдельных слоев и размерами клеток (например, в области речедвигательного, речеслухового, речезрительного центров и центра письменной речи)

Выделяют несколько видов функциональных асимметрий. Моторная асимметрия проявляется в неодинаковой активности рук, ног, лица, половин тела, управляемых каждым полушарием мозга. Сенсорная асимметрия заключается в неравнозначности восприятия каждым из полушарий объектов, расположенных слева и справа от средней плоскости.

Психическая асимметрия рассматривается с точки зрения специализации полушарий мозга в отношении различных форм психической деятельности.

Люди с доминированием левого полушария отличаются рациональным аналитическим мышлением, развитой речью, способностью к точным наукам и прогнозированию событий, в музыкальном восприятии они легче усваивают ритм, чем мелодию, им присуща двигательная активность, целеустремленность.

Люди с доминированием правого полушария тяготеют к конкретным видам деятельности, более медлительны и неразговорчивы, обладают образным мышлением и художественным складом ума, отличаются музыкальностью, более эмоциональны, склонны к воспоминаниям.