Микросхема MC34063 схема включения. MC34063 Один из самых распространенных ШИМ (ЧИМ) контроллеров и небольшой экскурс в принципы работы DC-DC конвертеров Mc34063 стабилизатор напряжения

Эта схема является универсальным преобразователем напряжения, который идеально подходит например для изготовления . Преобразователь работает на базе популярной и недорогой и для работы требует лишь несколько внешних компонентов. В схеме применен усиливающий ключ - высоковольтный полевой транзистор MOSFET STP6NK60Z. Устройство предназначено для входного питания напряжением 12 В. Выходное напряжения порядка 150 В с максимальным током нагрузки 3 мА.

Схема проекта

Основой преобразователя является многим уже хорошо известная микросхема MC34063, которая представляет собой чип-контроллер, содержащий основные компоненты, необходимые для изготовления преобразователей DC-DC. Система компенсируется термически, имеет источник опорного напряжения, компаратор и генератор с регулировкой.

Конденсатор C3 (1nF) определяет частоту внутреннего генератора. При такой емкости частота колебаний будет порядка 40 кГц. Конденсатор C1 (470uF/25V) фильтрует напряжение питания, а C2 (1nF) фильтрует напряжение, отвечающее требованиям внутреннего компаратора с делителя R1 (10k) к R3 (1М) + PR1 (1М). На ножке 5 микросхемы U1 при стабильной работе держится напряжение 1.25 В. И теперь считаем теоретический диапазон выходных напряжений: 125 В (потенциометр к 0) до 250 В (потенциометр на максимальное значение).

Резистор R2 (2,2 Ома) небольшого сопротивления работает как датчик тока, ограничивая амплитуду тока на входе, а, следовательно, энергоэффективность системы. Преобразователь работает в двух циклах:

  1. В первом, когда транзистор T2 (STP6NK60Z) замкнут, энергия накапливается в дросселе L1 (470uH).
  2. Во втором цикле ключ будет отключен и высокое индуцированное напряжение в катушке, заряжает конденсатор C4 (MKPX2 100nF/275VAC) через диод D2 (UF4007). Светодиод препятствует разрядке конденсатора.

Печатная плата не имеет перемычек, а ее монтаж очень простой. Порядок пайки элементов, в принципе, любой, однако стоит начать с самых маленьких. Следует обратить особое внимание на качество сборки, особенно это касается делителя обратной связи. Без него выходное напряжение может вырасти до больших значений, повредив конденсатор и даже ключевой транзистор. Выходную мощность преобразователя можно увеличить, применив резистор R2 меньшего значения. При величине этого резистора на уровне 1 Ом, сила выходного тока вырастет примерно до 8 мА.

Когда перед разработчиком какого либо устройства, встает вопрос «Как получить нужное напряжение?», то обычно ответ прост — линейный стабилизатор. Их несомненный плюс это маленькая стоимость и минимальная обвязка. Но кроме этих достоинств, у них есть недостаток — сильный нагрев. Очень много драгоценной энергии, линейные стабилизаторы превращают в тепло. Поэтому использование таких стабилизаторов, в устройствах с батарейным питанием не желательно. Более экономичными являются DC-DC преобразователи . О них то и пойдёт речь.

Вид сзади:

О принципах работы уже всё сказано до меня, так что я не буду на этом останавливаться. Скажу лишь что такие преобразователи бывают Step-UP (повышающие) и Step-Down (понижающие). Меня конечно же заинтересовали последние. Что получилось вы можете видеть на рисунке выше. Схемы преобразователей были мной заботливо перерисованы из даташита:-) Начнем с Step-Down преобразователя:

Как видите ничего хитрого. Резисторы R3 и R2 образуют делитель с которого снимается напряжение и поступает на ногу обратной связи микросхемы MC34063. Соответственно изменяя номиналы этих резисторов можно менять напряжение на выходе преобразователя. Резистор R1 служит для того чтоб защитить микросхему от выхода из строя в случае короткого замыкания. Если впаять вместо него перемычку то защита будет отключена и схема может испустить волшебный дымок на котором работает вся электроника. :-) Чем больше сопротивление этого резистора, тем меньший ток сможет отдать преобразователь. При его сопротивлении 0.3 ома, ток не превысит пол ампера. Кстати все эти резисторы может рассчитать моя . Дроссель я брал готовый но ни кто не запрещает его намотать самому. Главное чтоб он был на нужный ток. Диод так же любой Шотки и так же на нужный ток. В крайнем случае можно запараллелить два маломощных диода. Напряжения конденсаторов не указаны на схеме, их нужно выбирать исходя из входного и выходного напряжения. Лучше брать с двойным запасом.
Step-UP преобразователь имеет в своей схеме незначительные отличия:

Требования к деталям, те же что и для Step-Down. Что касается качества получаемого напряжения на выходе,то оно достаточно стабильно и пульсации как говорят — небольшие. (сам на счёт пульсаций не могу сказать так как нет у меня осциллографа пока). Вопросы, предложения в комментарии.

Этот калькулятор позволяет вычислить параметры импульсного DC-DC преобразователя на MC34063A. Калькулятор умеет рассчитывать повышающие, понижающие и инвертирующие преобразователи на широкодоступной микросхеме mc33063 (она-же mc34063). На экран выводятся данные частотозадающего конденсатора, максимальный ток, индуктивность катушки, сопротивление резисторов. Резисторы выбираются из ближайших стандартных значений так, чтобы выходное напряжение наиболее близко соотвествовало требуемому значению.


Ct - емкость частотнозадающего конденсатора преобразователя.
Ipk - пиковый ток через индуктивность. На этот ток должна быть расчитанна индуктивность.
Rsc - резистор который отключит микросхему при превышении тока.
Lmin - минимальная индуктивность катушки. Меньше этого номинала брать нельзя.
Co - конденсатор фильтра. Чем он больше тем меньше пульсаций, должен быть LOW ESR типа.
R1, R2 - делитель напряжения который задает выходное напряжение.

Диод должен быть сверхбыстрым (ultrafast) или диодом шоттки с допустимым обратным напряжение не менее чем в 2 раза превышающим выходное.

Напряжение питания микросхемы 3 - 40 вольт , а ток Ipk не должен превышать 1.5А

Опубліковано 16.09.2011

Мне потребовалось из более высокого напряжения получить 5В (а впоследствии 3.3В). При этом требовалось обеспечить экономичность, поскольку источником питания был аккумулятор и его заряд не бесконечный. Возможности организовать теплоотвод так же не будет, схема будет герметизирована. Линейные стабилизаторы напряжения, такие как LM7805 и им подобные, здесь не помогут. Нужен импульсный преобразователь (DC-DC Converter), т.е. понижающий Step-Down преобразователь напряжения. Преимущества импульсного преобразователя очевидны – высокая эффективность, не требует теплоотвода (по крайней мере, если и греются, то не так сильно как линейные преобразователи).
Существует масса специализированных микросхем, например LM2574 , LM2594 , LM267х , LT1073 , L4971 , ST1S03 , AS1333 , ST1S03 , ST1S06 , ST1S09 , ST1S10 , ST1S12 (ST1Sxx – очень достойная серия). Они существуют в разных корпусах для разных выходных напряжений и токов. Стоимость таких микросхем около 3 евро, однако мне требуется надежное и не дорогое решение. Микросхема MC34063 – это то, что нам сейчас надо. MC34063 очень распространена, купить можно без проблем. Стоимость всего от 0,2 евро! Работает с напряжением от 3 до 40 вольт, Максимальный ток 1.5А, частота преобразования 100KHz. Кстати, на ее базе можно собрать и повышающий преобразователь (см. так же “ ”), но сейчас мы займемся понижающим.

Схема взята из документации. У меня не было ограничивающего резистора 0,33 Ом (Rsc), я его убрал на свой страх и риск. Диод Шотки поставил тот который был. Номиналы входного и выходного конденсаторов также отличаются. Для первого тестового варианта сойдет, но лучше на этом не экономить. Получилась вот такая платка:

На фото импульсный понижающий преобразователь с выходным напряжением 3.3 В. Номиналы резисторов R1=5,1КОм, R2=10КОм.
Согласно документации MC34063 максимальный коммутируем ток 1.5А. Мне не приходилось нагружать более 0,2А, поэтому “практический потолок” сообщить не могу.
Но при такой нагрузке при входном напряжении 12В все элементы схемы остаются холодными.
Здесь можно воспользоваться формой для расчета параметров схемы: http://www.nomad.ee/micros/mc34063a/index.shtml

Смотри так же:

Мне на просторах интернета попалась схемка автора Ahtoxa с заменой микросхемы КРЕН5 на маленькую платку с МС34063, собранную с небольшими изменениями по даташиту по току до 0,5 А. Дело в том, что иногда бывает необходимость поставить стабилизатор без громоздкого радиатора при большом входном напряжении. И потому такой вариант вполне мог бы быть применим. Известно, что микросхема LM7805 является линейным стабилизатором напряжения,то есть всё лишнее напряжение она высаживает на себе. И при входном напряжении 12 В, она вынуждена обеспечивать на себе падение напряжения в 7 вольт. Умножьте это на ток хотя бы в 100 мА, и получите уже 0.7 Вт лишней рассеиваемой мощности. При чуть больших токах или разнице между входным и выходным напряжениями без большого теплоотвода уже не обойтись.

Простая и регулируемая схемы МС34063

Автор не стал делиться печатной платой, поэтому разработал свой похожий вариант. Скачать его вместе с докуметацией и другими нужными для сборки файлами можно в общем архиве .

Стабилизатор отлично работает. Собирал неоднократно. Правда отличия от даташита не в лучшую сторону. Ограничительный резистор ставить настоятельно рекомендуется. Иначе при наличии на выходе больших емкостей, может вызвать пробой внутри микросхемы. Включение паралельно двух диодов не оправдано. Лучше ставить один по мощнее. Хотя для тока 500 мА и такого с гловой хватит. Для больших токов, желательно ставить внешний транзистор. Хотя микросхема по даташиту и рассчитана на 1,5 А, но рабочий ток больше 500 мА не рекомендуется.