Какая скорость называется второй космической. IV. Расчёт второй космической скорости (для Земли)

Втора́я косми́ческая ско́рость (параболи́ческая ско́рость, ско́рость освобожде́ния, ско́рость убега́ния) - наименьшая скорость , которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала по сравнению с массой небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела и покидания замкнутой орбиты вокруг него. Предполагается, что после приобретения телом этой скорости оно более не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с .

Параболической вторая космическая скорость называется потому, что тела, имеющие при старте скорость, в точности равную второй космической, движутся по параболе относительно небесного тела. Однако, если энергии телу придано чуть больше, его траектория перестает быть параболой и становится гиперболой. Если чуть меньше, то она превращается в эллипс . В общем случае все они являются коническими сечениями .

Если тело запущено вертикально вверх со второй космической и более высокой скоростью, оно никогда не остановится и не начнёт падать обратно.

Эту же скорость приобретает у поверхности небесного тела любое космическое тело, которое на бесконечно большом расстоянии покоилось, а затем стало падать.

Вторая космическая скорость впервые была достигнута коcмическим аппаратом СССР 2 января 1959 года (Луна-1).

Вычисление

Для получения формулы второй космической скорости удобно обратить задачу - спросить, какую скорость получит тело на поверхности планеты , если будет падать на неё из бесконечности . Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.

m v 2 2 2 − G m M R = 0 , {\displaystyle {\frac {mv_{2}^{2}}{2}}-G{\frac {mM}{R}}=0,} R = h + r {\displaystyle R=h+r}

где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния - энергия равна нулю). Здесь m - масса пробного тела, M - масса планеты, r - радиус планеты, h - длина от основания тела до его центра масс (высота над поверхностью планеты), G - гравитационная постоянная , v 2 - вторая космическая скорость.

Решая это уравнение относительно v 2 , получим

v 2 = 2 G M R . {\displaystyle v_{2}={\sqrt {2G{\frac {M}{R}}}}.}

Между первой и второй космическими скоростями существует простое соотношение:

v 2 = 2 v 1 . {\displaystyle v_{2}={\sqrt {2}}v_{1}.}

Квадрат скорости убегания равен удвоенному ньютоновскому потенциалу в данной точке (например, на поверхности небесного тела):

v 2 2 = − 2 Φ = 2 G M R . {\displaystyle v_{2}^{2}=-2\Phi =2{\frac {GM}{R}}.}

Любой предмет, будучи подброшенным вверх, рано или поздно оказывается на земной поверхности, будь то камень, лист бумаги или простое перышко. В то же время, спутник, запущенный в космос полвека назад, космическая станция или Луна продолжают вращаться по своим орбитам, словно на них вовсе не действует нашей планеты. Почему так происходит? Почему Луне не грозит упасть на Землю, а Земля не движется навстречу к Солнцу? Неужели на них не действует всемирное тяготение?

Из школьного курса физики мы знает, что всемирное тяготение воздействует на любое материальное тело. Тогда логично будет предположить, что есть некая сила, нейтрализующая действие гравитации. Эту силу принято называть центробежной. Ее действие легко ощутить привязав на один конец нитки небольшой груз и раскрутив его по окружности. При этом чем больше скорость вращения тем сильнее натяжение нити, а чем медленнее вращаем мы груз тем больше вероятность, что он упадет вниз.

Таким образом мы вплотную приблизились к понятию «космическая скорость». В двух словах ее можно описать как скорость, позволяющую любому объекту преодолеть тяготение небесного тела. В качестве может выступать планета, ее или другая система. Космическая скорость есть у каждого объекта, который движется по орбите. К слову сказать, размер и форма орбиты зависят от величины и направления скорости, которую данный объект получил на момент выключения двигателей, и высоты, на которой произошло данное событие.

Космическая скорость бывает четырех видов. Самая меньшая из них - это первая. Это наименьшая скорость, которая должна быть у чтобы он вышел на круговую орбиту. Ее значение можно определить по такой формуле:

V1=√µ/r, где

µ - геоцентрическая гравитационная постоянная (µ = 398603 * 10(9) м3/с2);

r — расстояние от точки запуска до центра Земли.

Из-за того, что форма нашей планеты не является идеальным шаром (на полюсах она как бы немного приплюснута), то расстояние от центра до поверхности больше всего на экваторе - 6378,1 . 10(3) м, а меньше всего на полюсах - 6356,8 . 10(3) м. Если взять среднюю величину - 6371 . 10(3) м, то получим V1 равной 7,91 км/с.

Чем больше космическая скорость будет превышать данную величину, тем более вытянутую форму будет приобретать орбита, удаляясь от Земли на все большее расстояние. В какой-то момент эта орбита разорвется, примет форму параболы, и космический аппарат отправится бороздить космические просторы. Для того чтобы покинуть планету, у корабля должна быть вторая космическая скорость. Ее можно рассчитать по формуле V2=√2µ/r. Для нашей планеты эта величина равна 11,2 км/с.

Астрономы давно уже определили, чему равна космическая скорость, как первая, так и вторая, для каждой планеты нашей родной системы. Их несложно рассчитать по вышеприведенным формулам, если заменить константу µ на произведение fM, в котором M - масса интересующего небесного тела, а f - постоянная тяготения (f= 6,673 х 10(-11) м3/(кг х с2).

Третья космическая скорость позволит любому преодолеть тяготение Солнца и покинуть родную Солнечную систему. Если рассчитывать ее относительно Солнца, то получится значение 42,1 км/с. А для того чтобы с Земли выйти на околосолнечную орбиту, понадобится разогнаться до 16,6 км/с.

Ну и, наконец, четвертая по счету космическая скорость. С ее помощью можно преодолеть притяжение непосредственно самой галактики. Ее величина варьируется в зависимости от координат галактики. Для нашего эта величина составляет примерно 550 км/с (если рассчитывать относительно Солнца).

Первая космическая скорость - это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Рассмотрим движение тела в неинерциальной системе отсчета - относительно Земли.

В этом случае объект на орбите будет находиться в состоянии покоя, так как на него будут действовать уже две силы: центробежная сила и сила тяготения.

где m - масса объекта, M - масса планеты, G - гравитационная постоянная (6,67259·10 −11 м?·кг −1 ·с −2),

Первая космическая скорость, R - радиус планеты. Подставляя численные значения (для Земли 7,9 км/с

Первую космическую скорость можно определить через ускорение свободного падения - так как g = GM/R?, то

Втора?я косми?ческая ско?рость - наименьшая скорость, которую необходимо придать объекту, масса которого пренебрежимо мала по сравнению с массой небесного тела, для преодоления гравитационного притяжения этого небесного тела и покидания круговой орбиты вокруг него.

Запишем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты. Здесь m - масса пробного тела, M - масса планеты, R - радиус планеты, G -гравитационная постоянная, v 2 - вторая космическая скорость.

Между первой и второй космическими скоростями существует простое соотношение:

Квадрат скорости убегания равен удвоенному ньютоновскому потенциалу в данной точке:

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме 15. Вывод формул для 1-й и 2-й космических скоростей.:

  1. Распределение Максвелла по скоростям. Наиболее вероятная среднеквадратичная скорость движения молекулы.
  2. 14. Вывод третьего закона Кеплера для кругового движения
  3. 1. Скорость элиминации. Константа скорости элиминации. Время полуэлиминации
  4. 7.7. Формула Релея-Джинса. Гипотеза Планка. Формула Планка
  5. 13. Космическая и авиационная геодезия. Особенности зондирования в водной среде. Системы машинного зрения ближнего радиуса действия.
  6. 18. Этический аспект культуры речи. Речевой этикет и культура общения. Формулы речевого этикета. Этикетные формулы знакомства, представления, приветствия и прощания. «Ты» и «Вы» как формы обращения в русском речевом этикете. Национальные особенности речевого этикета.

Вторая “земная” космическая скорость – это скорость, которую необходимо сообщить телу относительно Земли, чтобы оно преодолело поле земного тяготения, т.е. оказалось способным удалиться от Земли на бесконечно большое расстояние.

Пренебрегая действием на тело Солнца, Луны, планет, звёзд и т.д. и полагая, что в системе Земля - тело отсутствуют неконсервативные силы (а таковые в действительности имеются - это силы сопротивления атмосферы), мы можем считать эту систему замкнутой и консервативной. В такой системе полная механическая энергия есть величина постоянная.

Если нулевой уровень потенциальной энергии выбрать в бесконечности, то полная механическая энергия тела в любой точке траектории будет равна нулю (по мере удаления тела от Земли кинетическая энергия, сообщенная ему на старте, будет превращаться в потенциальную. В бесконечности, где потенциальная энергия тела равна нулю,

обратится в нуль и кинетическая энергия E к =0. Следовательно, полная энергия E = E п + E к . = 0.)

Приравняв полную энергию тела на старте (на поверхности Земли) и в бесконечности, мы можем вычислить вторую космическую скорость. На старте тело обладает положительной кинетической энергией
иотрицательной потенциальной энергией
,m - масса тела; M з - масса Земли; II - скорость тела на старте (искомая космическая скорость);R з - радиус Земли (предполагаем, что необходимую космическую скорость тело приобретает в непосредственной близости от поверхности Земли).

Полная энергия тела
(12.16)

откуда
(12.17)

Массу Земли можно выразить через ускорение свободного падения g 0 (вблизи поверхности Земли):
.

Подставив это выражение в (12.17), получим окончательно

(12.18)

так как
есть первая космическая скорость.

V. Условия равновесия механической системы.

    Пусть на некоторое тело действуют только консервативная сила. Это значит, что данное тело вместе с телами, с которыми оно взаимодействует, образует замкнутую консервативную систему . Выясним,

при каких условиях рассматриваемое тело будет находиться в состоянии равновесия (сформулируем эти условия с энергетической точки зрения).

    Условия равновесия с точки зрения динамики нам известны: тело находится в равновесии, если его скорость и геометрическая сумма всех действующих на него сил равны нулю:

(12.19)

(12.20)

Пусть консервативная сила, действующая на тело, такова, что потенциальная энергия тела зависит только от одной координаты, например, x . График этой зависимости приведён на рисунке 23. Из связи потенциальной энергии с силой следует, что в состоянии равновесия

производная от потенциальной энергии по x равна нулю.

(12.21)

т.е. в состоянии равновесия тело обладает экстремальным запасом потенциальной энергии. Убедимся в том, что потенциальная энергия в состоянии устойчивого равновесия минимальная , а в состоянии неустойчивого равновесия – максимальная .

3. Устойчивое равновесие системы характеризуется тем, что при отклонении системы из этого состояния возникают силы, возвращающие систему в первоначальное состояние.

При отклонении из состояния неустойчивого равновесия возникают силы, стремящиеся отклонить систему ещёдальше от первоначального положения. Отклоним тело из положения A влево (см. рис.23). При этом появится сила , проекция которой на осьx равна:

(12.22)

Производная
в точке отрицательна (угол
- тупой). Из (12.22) следует, >0; направление силы совпадает с направлением оси x , т.е. сила направления к положению равновесия A . Тело самопроизвольно, без дополнительного воздействия вернётся в положение равновесия. Следовательно, состояние A – состояние устойчивого равновесия. Но в этом состоянии, как видно из графика, потенциальная энергия минимальна.

4. Отклоним тело из положения B также влево. Проекция силы
на осьx :

получается отрицательной (
>0, так как угол
острый).

Это значит, что направление силы
противоположно положительному направлению оси x , т.е. сила
направленаот положения равновесия. Состояние B , в котором потенциальная энергия максимальна, неустойчиво.

Таким образом, в состоянии устойчивого равновесия потенциальная энергия системы минимальна , в состоянии неустойчивого равновесия – максимальна.

Если известно, что потенциальная энергия некоторой системы минимальна, то это ещё не значит, что система находится в равновесии. Необходимо ещё, чтобы в этом состоянии система не обладала кинетической энергией:
(12.23)

Итак, система находится в состоянии устойчивого равновесия, если E к =0, а E п минимальна. Если E к =0, а E п максимальна, то система находится в неустойчивом равновесии.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Человек стоит в центре скамьи Жуковского и вместе с ней вращается по инерции. Частота обращения
Момент инерции тела человека относительно оси вращения
В вытянутых в стороны руках человек держит две гири массой
каждая. Расстояние между гирями

Сколько оборотов в секунду будет делать скамейка с человеком, если он опустит руки и расстояние между гирями станет равным
Моментом инерции скамейки пренебречь.

Решение. Человек, держащий гири (см. рис.24), составляет вместе со скамейкой изолированную механическую систему, поэтому момент импульса
этой системы должен иметь постоянное значение.

Следовательно, для нашего случая

где и- момент инерции человека и угловая скорость скамейки и человека с вытянутыми руками.и
- момент инерции тела человека и угловая скорость скамейки и человека с опущенными руками. Отсюда
, заменив угловую скорость через частоту(
), получим

Момент инерции системы, рассматриваемой в данной задаче, равен сумме момента инерции тела человека и момента инерции гирь в руках человека, который можно определить по формуле момента инерции материальной точки

Следовательно,

где
масса каждой из гирь,и
первоначальное и конечное расстояние между ними. С учетом сделанных замечаний имеем


Подставляя численные значения величин, найдем

Пример 2. Стержень длиной
и массой
может вращаться вокруг неподвижной оси, проходящей через верхний конец стержня (см. рис.25). В середину стержня ударяет пуля массой
, летящая в горизонтальном направлении со скоростью
, и застревает в стержне.

На какой уголотклонится стержень после удара?

Решение. Удар пули следует рассматривать как неупругий: после удара и пуля, и соответствующая точка стержня будут двигаться с одинаковыми скоростями.

Сначала пуля, ударившись о стержень, за ничтожно малый промежуток времени приводит его в движение с некоторой угловой скоростью и сообщает ему некоторую кинетческую энергию
где
момент инерции стержня относительно оси вращения. Затем стержень поворачивается на некоторый угол, причем его центр тяжести поднимается на некоторую высоту
.

В отклоненном положении стержень будет обладать потенциальной энергией

Потенциальная энергия получена за счет кинетической энергии и равна ей по закону сохранения энергии, т.е.

, откуда

Для определения угловой скорости воспользуемся законом сохранения момента импульса.

В начальный момент удара угловая скорость стержня
и поэтому момент импульса стержня
Пуля коснулась стержня, имея линейную скорость, и начала углубляться в стержень, сообщая ему угловое ускорение и участвуя во вращении стержня около оси.

Начальный импульс пули
где
расстояние точки попадания пули от оси вращения.

В конечный момент удара стержень имел угловую скорость , а пуля – линейную скоростьравную линейной скорости точек стержня, находящихся на расстоянииот оси вращения.

Так как
, то конечный момент импульса пули

Применив закон сохранения момента импульса, можно записать

Подставив числовые значения, получим

После этого находим


ВОПРОСЫ ДЛЯ САМОПРОВЕРКИ

    Какая система тел называется замкнутой?

2. Какая система взаимодействующих тел называется консервативной?

    При каких условиях сохраняется импульс отдельного тела?

    Сформулируйте закон сохранения импульса для системы тел.

    Сформулируйте закон сохранения момента импульса (для отдельного тела и системы тел).

    Сформулируйте закон сохранения механической энергии.

    Какие системы называются диссипативными?

    Что называется столкновением тел?

    Какое столкновение называется абсолютно неупругим и какое абсолютно упругим?

10.Какие законы выполняются при абсолютно неупругом и абсолютно упругом столкновениях тел, образующих замкнутую систему?

11.Что такое вторая космическая скорость? Выведите формулу для этой скорости.

    Сформулируйте условия равновесия механической системы.

Министерство образования и науки РФ

Государственное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет экономики и финансов»

Кафедра систем технологий и товароведения

Доклад по курсу концепции современного естествознания на тему «Космические скорости»

Выполнила:

Проверил:

г. Санкт-Петербург

Космические скорости.

Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) - это минимальная скорость, при которой какое-либо тело в свободном движении сможет:

v1 - стать спутником небесного тела (то есть способность вращаться по орбите вокруг НТ и не падать на поверхность НТ).

v2 - преодолеть гравитационное притяжение небесного тела.

v3 - покинуть Солнечную систему, преодолев притяжение Солнца.

v4 - покинуть галактику Млечный Путь.

Первая космическая скорость или Круговая скорость V1 - скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты. Иными словами, первая космическая скорость - это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.

Для вычисления первой космической скорости необходимо рассмотреть равенство центробежной силы и силы тяготения действующих на объект на круговой орбите.

где m - масса объекта, M - масса планеты, G - гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), - первая космическая скорость, R - радиус планеты. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем

Первую космическую скорость можно определить через ускорение свободного падения - так как g = GM/R², то

Вторая космическая скорость (параболическая скорость, скорость убегания) - наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела. Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).

Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой. Для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца. Для Солнца вторая космическая скорость составляет 617,7 км/с.

Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.

Вывод формулы:

Для получения формулы второй космической скорости удобно обратить задачу - спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния.

Запишем закон сохранения энергии

где слева стоят кинетическая и потенциальная энергии на поверхности планеты (потенциальная энергия отрицательна, так как точка отсчета взята на бесконечности), справа то же, но на бесконечности (покоящееся тело на границе гравитационного влияния - энергия равна нулю). Здесь m - масса пробного тела, M - масса планеты, R - радиус планеты, G - гравитационная постоянная, v2 - вторая космическая скорость.

Разрешая относительно v2, получим

Между первой и второй космическими скоростями существует простое соотношение:

Третья космическая скорость - минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы в межзвёздное пространство.

Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с. Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу (скорость убывает к нулю асимптотически).

Четвёртая космическая скорость - минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы (для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра). По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное - скрытая масса.