Французский математик решил задачу о замощении плоскости. Узоры пенроуза и квазикристаллы С помощью рефлексии, воображения и интуиции она пытается подобрать новые отношения, новые уровни структуры, новые и различные виды порядка в этих элементах и структу

В мире математики сенсация. Открыт новый вид пятиугольников , которые покрывают плоскость без разрывов и без перекрытий.

Это всего 15-й вид таких пятиугольников и первый, открытый за последние 30 лет.

Плоскость покрывается треугольниками и четырехугольниками любой формы, а вот с пятиугольниками все гораздо сложнее и интереснее. Правильные пятиугольники не могут покрыть плоскость, но некоторые неправильные пятиугольники могут. Поиск таких фигур уже сто лет является одной из самых интересных математических задач. Квест начался в 1918 году, когда математик Карл Рейнхард открыл пять первых подходящих фигур.

Долгое время считалось, что Рейнхард рассчитал все возможные формулы и больше таких пятиугольников не существует, но в 1968 году математик Р.Б.Кершнер (R. B. Kershner) нашел еще три, а Ричард Джеймс (Richard James) в 1975 году довел их число до девяти. В том же году 50-летняя американская домохозяйка и любительница математики Марджори Райс (Marjorie Rice) разработала собственный метод нотации и в течение нескольких лет открыла еще четыре пятиугольника. Наконец, в 1985 году Рольф Штайн довел число фигур до четырнадцати.

Пятиугольники остаются единственной фигурой, в отношении которой сохраняется неопределенность и загадка. В 1963 году было доказано, что существует всего три вида шестиугольников, покрывающих плоскость. Среди выпуклых семи-, восьми- и так далее -угольников таких нет. А вот с «пентагонами» пока не все ясно до конца.

До сегодняшнего дня было известно всего 14 видов таких пятиугольников. Они изображены на иллюстрации. Формулы для каждого из них приведены по ссылке .

В течение 30 лет никто не мог найти ничего нового, и вот наконец-то долгожданное открытие! Его сделала группа ученых из Вашингтонского университета: Кейси Манн (Casey Mann), Дженнифер Маклауд (Jennifer McLoud) и Дэвид вон Деро (David Von Derau). Вот как выглядит маленький красавчик.

«Мы открыли фигуру с помощью компьютерного перебора большого, но ограниченного количества вариантов, - говорит Кейси Манн. - Конечно, мы очень взволнованы и немного удивлены, что удалось открыть новый вид пятиугольника».

Открытие кажется чисто абстрактным, но на самом деле оно может найти практическое применение. Например, в производстве отделочной плитки.

Поиск новых пятиугольников, покрывающих плоскость, наверняка продолжится.

    Почему у человека некоторые органы - парные (например, легкие, почки), а другие - в одном экземпляре?

    Каустики - это вездесущие оптические поверхности и кривые, возникающие при отражении и преломлении света. Каустики можно описать как линии или поверхности, вдоль которых концентрируются световые лучи.

    Шабат Г. Б.

    Мы сейчас знаем о строении Вселенной примерно столько же, сколько древние люди знали о поверхности Земли. Точнее, мы знаем, что небольшая часть Вселенной, доступная нашим наблюдениям, устроена так же, как небольшая часть трёхмерного евклидова пространства. Иначе говоря, мы живём на трёхмерном многообразии (3-многообразии).

    Виктор Лаврус

    Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения – высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.

    Документальный фильм «Измерения» - это два часа математики, постепенно выводящие вас в четвёртое измерение.

    Сергей Стафеев

    Самой наукоемкой задачей древних народов была ориентация в пространстве и во времени. В том числе для этого человечеством с незапамятных времен воздвигались многочисленные мегалитические сооружения - кромлехи, дромосы, дольмены и менгиры. Были изобретены невероятно остроумные приспособления, позволившие отсчитывать время с точностью до минут или визировать направления с погрешностью не более полградуса. Мы покажем, как на всех континентах люди создавали ловушки для солнечных лучей, строили храмы, как-бы "нанизанные" на астрозначимые направления, рыли наклонные туннели для дневных наблюдений за звездами или воздвигали обелиски-гномоны. Невероятно, но наши далекие предки, например, умудрялись следить не только за солнечными или лунными тенями, но даже за тенью от Венеры.

Чтобы исследовать и описать объём, люди пользуются способом проецирования объёмного тела на плоскости. Это выглядит примерно так:

Зная, как выглядят проекции, можно распознать, исследовать, сконструировать истинный трёхмерный объект.

Это и есть метод исследования, распространённый в классической кристаллографии. Исследователи изучают сначала одну проекцию или плоскость, «мостя её» просчитанными элементами плотно как паркет, и изучают при этом симметрию и другие особенности в замощённой плоскости.

Затем заполняют этими плоскостями весь трёхмерный объём, как книги заполняют кубическую упаковочную коробку. Этот метод так и называется – метод замощения.

Интерес к замощению возник в связи с построением мозаик, орнаментов и других узоров, основанных на правильных многогранниках: треугольниках, квадратах и шестигранниках.

Замостить плоскость из правильного пятиугольника или пентагона никогда не удавалось. Он оставляет прорехи – незаполненные щели. И поэтому, в классической кристаллографии пентагональная симметрия считается по сегодняшний день запрещённой.

И, наконец, такой способ был найден.

В 1976 году английский ученый математик Роджер Пенроуз, активно работающий в различных областях математики, общей теории относительности и квантовой теории, дал математическое описание, названной в честь него «мозаики Пенроуза».

Она позволила с помощью всего лишь двух плиток весьма простой формы замостить бесконечную плоскость никогда не повторяющимся узором.


Чтобы понять математическую сущность “ромбов Пенроуза”, обратимся к пентаграмме.

В своей простейшей форме “плитки Пенроуза” представляют собой набор ромбовидных фигур двух типов, одни с внутренним углом 36°, другие – 72°. Каждый состоит из двух треугольников, которые заполняют соответствующую модель пентаграммы.

Соотношения элементов пентаграммы полностью отражают золотую пропорцию Фибоначчи. Ее основой является иррациональное число = 1,6180339…

Идея Пенроуза о плотном заполнении плоскости с помощью “золотых” ромбов была трансформирована на трехмерное пространство.

При этом роль “ромбов Пенроуза” в новых пространственных структурах могут играть икосаэдры и додекаэдры.

Это была красивая находка, всего одна из многочисленных придумок светлого и цепкого ума Роджера Пенроуза, который увлекается пространственными парадоксами. Здесь присутствует его безукоризненое понимание золотой пропорции Фибоначчи, что приблизило его исследование к искусству.

И именно это послужило базой для дальнейших исследований и открытия квазикристаллов в химических лабораториях и новому, более творческому пониманию трёхмерного пространства, как для науки,так и для искусства.

Одной из ярких примеров творческого исследования, привлекших моё внимание, стала молодая словенская художница Матюшка Тейя Крашек.

Она получила степень бакалавра живописи в Колледже визуальных искусств (Любляна, Словения). Ее теоретическая и практическая работа фокусируется на симметрии как связующей концепции между искусством и наукой.

Ее художественные работы представлялись на многих международных выставках и опубликованы в международных журналах.

М.Т. Крашек на своей выставке ‘Kaleidoscopic Fragrances’, Любляна, 2005

Художественное творчество Матюшки Тейи Крашек связано с различными видами симметрии, плитками и ромбами Пенроуза, квазикристаллами, золотым сечением как главным элементом симметрии, числами Фибоначчи и др.

С помощью рефлексии, воображения и интуиции она пытается подобрать новые отношения, новые уровни структуры, новые и различные виды порядка в этих элементах и структурах.

В своих работах она широко использует компьютерную графику как весьма полезное средство для создания художественных работ, которое является связующим звеном между наукой, математикой и искусством.

Если мы выберем одно из чисел Фибоначчи (например, 21 см) для длины стороны ромба Пенроуза в этой ощутимо нестабильной композиции, мы можем наблюдать, как длины некоторых отрезков в композиции образуют последовательность Фибоначчи.

Большое количество художественных композиций художницы посвящено квазикристаллам Шехтмана и решеткам Пенроуза.

В этих удивительных композициях проявления круговой симметрии можно наблюдать отношения между ромбами Пенроуза:

каждые два соседних ромба Пенроуза образуют пентагональную звезду. Можно заметить Декагон, образованный ребрами 10 смежных ромбов Пенроуза, создающий новый правильный многогранник.

И на последнем рисунке бесконечное взаимодействие ромбов Пенроуза – пентаграммы, пятиугольники, уменьшающиеся к центральной точке композиции. Отношения золотой пропорции представлены многими различными способами в различных шкалах.

Художественные композиции Матюшки Тейи Крашек привлекли огромное внимание представителей науки и искусства.

Мозаика Пенроуза – великолепный пример того, как красивое построение, находящееся на стыке различных дисциплин, обязательно находит себе применение.

Речь пойдет о замощении плоскости. Замощение - это покрытие всей плоскости неперекрывающимися фигурами. Вероятно, впервые интерес к замощению возник в связи с построением мозаик, орнаментов и других узоров. Известно много орнаментов, составленных из повторяющихся мотивов. Одно из простейших замощений приведено на рисунке 1.

Плоскость покрыта параллелограммами, причем все параллелограммы одинаковы. Любой параллелограмм этого замощения можно получить из розового параллелограмма сдвигая последний на вектор (векторы и определяются ребрами выделенного параллелограмма, n и m - целые числа). Следует заметить, что всё замощение как целое переходит в себя при сдвиге на вектор (или). Это свойство можно взять в качестве определения: именно, периодическим замощением с периодами и назовём такое замощение, которое переходит в себя при сдвиге на вектор и на вектор. Периодические замощения могут быть и весьма замысловатыми, некоторые из них очень красивы.

Квазипериодические замощения плоскости

Существуют интересные и непериодические замощения плоскости. В 1974г. Английский математик Роджер Пенроуз открыл квазипериодические замощения плоскости. Свойства этих замощений естественным образом обобщают свойства периодических. Пример такого замощения приведён на рисунке 2.

Вся плоскость покрыта ромбами. Между ромбами нет промежутков. Любой ромб замощения с помощью сдвигов и поворотов можно получить всего из двух. Это узкий ромб (36 0 , 144 0) и широкий ромб (72 0 , 108 0), показанные на рисунки 3. Длина сторон каждого из ромбов равна 1. Это замощение не является периодическим - оно очевидно не переходит в себя ни при каких сдвигах. Однако оно обладает неким важным свойством, которое приближает его к периодическим замощениям и заставляет называть его квазипериодическим. Дело в том, что любая конечная часть квазипериодического замощения встречается во всем замощении бесчисленно множество раз. Это замощение обладает осью симметрии 5 порядка, в то время как таких осей у периодических замощений не существует.

Другое квазипериодическое замощение плоскости, построенное Пенроузом, приведено на рисунке 4. Вся плоскость покрыта четырьмя многоугольниками специального вида. Это звезда, ромб, правильный пятиугольник.

А) Преобразование инфляции и дефляции

Каждый из показанных выше трех примеров квазипериодического замощения - это покрытие плоскости с помощью сдвигов и поворотов конечного количества фигур. Это покрытие не переходит в себя ни при каких сдвигах, любая конечная часть покрытия встречается во всём покрытии бесчисленное множество раз, притом, одинаково часто, по всей плоскости. Замощения, описанные выше, обладают некоторым специальным свойством, которое Пенроуз назвал инфляцией. Изучение этого свойства позволяет разобраться в структуре этих покрытий. Более того, инфляцию можно использовать для построения узоров Пенроуза. Наиболее наглядным образом можно проиллюстрировать инфляцию на примере треугольников Робинсона. Треугольники Робинсона - это два равнобедренных треугольника P, Q с углами (36 0 , 72 0 , 72 0) и (108 0 , 36 0 , 36 0) соответственно и длинами сторон, как на рисунке 6. Здесь ф - золотое сечение:

Эти треугольники можно разрезать на меньшие, так, чтобы каждый их новых (меньших) треугольников был подобен одному из исходных. Разрезание показано на рисунке 7: прямая ас является биссектрисой угла dab, а отрезки ae, ab и ac равны. Легко видеть, что треугольник acb и ace равны между собой и подобны треугольнику Р, а треугольник cde подобен треугольнику Q. Треугольник Q разрезан так. Длина отрезка gh равна длине отрезка ih (и равна 1). Треугольник igh подобен треугольнику Р, а треугольник igf подобен треугольнику Q. Линейные размеры новых треугольников в t раз меньше чем у исходных. Такое разрезание называется дефляцией.

Обратное преобразование - склеивание - называется инфляцией.

Рисунок показывает нам, что из двух Р - треугольников и одного Q - треугольника можно склеить Р - треугольник, а из Р и Q треугольника можно склеить Q треугольник. У новых (склеенных) треугольников линейные размеры в t раз больше, чем у исходных треугольников.

Итак, мы ввели понятие преобразований инфляции и дефляции. Ясно, что преобразование инфляции можно повторить; при этом получится пара треугольников, размеры которых в t 2 раз больше исходных. Последовательно применяя преобразования инфляции, можно получить пару треугольников сколь угодно большого размера. Таким образом, можно замостить всю плоскость.

Можно показать, что описанное выше замощение треугольниками Робинсона не является периодическим

Доказательство

Наметим доказательство этого утверждения. Будем рассуждать от противного. Предположим, что замощение плоскости треугольниками Робинсона периодическое с периодами u и w . Покроем плоскость сетью параллелограммов со сторонами u, w Обозначим через р число Р - треугольников, у которых левая нижняя вершина (относительно нашей сети) расположена в заштрихованном параллелограмме; аналогично определим число q. (Отобранные р+q треугольников образуют так называемую фундаментальную область данного периодического замощения.) Рассмотрим круг с радиусом R с центром О. Обозначим через PR (собственно QR) число Р-треугольников (соответственно - Q - треугольников), лежащих внутри этого круга.

Докажем, что

1) Действительно, число треугольников, пересекающих окружность радиуса R, пропорционально R, в то время как число треугольников внутри круга радиуса R пропорционально R 2 . Поэтому в пределе отношение числа Р - треугольников к числу Q - треугольников в круге равно этому отношению в фундаментальной области.

Возьмем теперь наше замощение и выполним преобразования дефляции. Тогда в исходной фундаментальной области окажется pґ = 2p + q меньших Р - треугольников и qґ = p +q меньших Q - треугольников. Обозначим через pґR и qґR число меньших треугольников в круге радиуса R. Теперь легко получить противоречие. В самом деле,

= = = = (правило Лопиталя)

Откуда, решая уравнение

p/q=(2p+q)/(p+q),

в то время как p и q - целые! Противоречие показывает, что замощение треугольниками Робинсона - не периодическое.

Оказывается, что это покрытие треугольниками Робинсона не единственное. Существует бесконечно много различных квазипериодических покрытий плоскости треугольниками Робинсона. Грубо говоря, причина этого явления лежит в том, что при дефляции биссектрису на рисунке 7 можно провести из вершины b , а не из вершины а. Использую этот произвол, можно добиться, например, что бы покрытие треугольниками превратилось в покрытие треугольниками ромбами

Б) Преобразование дуальности

Способ построения квазипериодических замощений, приведенный выше, выглядит как догадка. Однако существует регулярный способ построения квазипериодических покрытий. Это метод преобразования дуальности, идея которого принадлежит голландскому математику де Брауну.

Поясним этот метод на примере построения замещения плоскости ромбами (см. рис 3). Сначала построим сетку G. Для этого возьмём правильный пятиугольник и пронумеруем его стороны (j = 1,2,3,4,5; рис 10). Рассмотрим сторону с номером j. Построим бесконечный набор прямых, параллельных этой стороне, так что бы расстояние между двумя ближайшими прямыми равнялось 1.

Проведём аналогичное построение для каждой из сторон пятиугольника; прямые мы проведём так, чтобы они пересекались лишь попарно. Получится набор прямых, который не является периодическим (Рис 9).Прямые в этом наборе будем обозначать буквами l. Перенумеруем прямые двумя индексами: l j (n). Здесь j указывает на направление прямой (какой стороне пятиугольника она параллельна). Целое число n нумерует различные параллельные прямые, пробегает все целые значения (как положительные, так и отрицательные). Этот набор прямых делит плоскость на бесконечный набор многоугольников. Эти многоугольники называются гранями сетки. Стороны многоугольников будем называть ребрами сетки, а вершины многоугольников - вершинами сетки. (Аналогично для квазипериодического покрытия Q: ромбы - это грани Q, стороны ромбов - рёбра Q, вершины ромбов - вершины Q)

Таким образом, сетка G построена. Совершим теперь преобразование дуальности. Каждый грани сетки G сопоставим вершину квазипериодического покрытия Q (вершину ромба). Вершины обозначим буквами (это векторы). Сначала сопоставим каждой грани M сетки пять целых чисел n j = (M), j - 1,2, ….5 по следующему правилу. Внутренние точки M лежат между какой-то прямой l j (n) и параллельной ей прямой l j (n+1).

Это целое число n мы сопоставим грани M. Поскольку в сетке есть прямые пяти направлений, то таким образом мы сопоставим пять целых чисел n j (M) каждой М сетки G. Вершина квазипериодического покрытия Q, соответствующая данной грани М сетки G, строится так:

(M) = n 1 (M) + + … +

Здесь - вектор единичной длины, направленный из центра правильного пятиугольника к середине стороны с номером j. Таким образом, каждой грани сетки мы сопоставили вершину покрытия. Так можно построить все вершины Q.

Теперь некоторые вершины соединим между собой отрезками прямых линий. Это будут ребра покрытия Q (стороны ромбов). Для этого рассмотрим пару граней М1 и М2 , имеющих общее ребро. Вершины покрытия, соответствующие этим граням и, мы и соединим между собой отрезками.

Тогда оказывается, что разность

Может быть, равна лишь одному из десяти векторов.

Таким образом, каждому ребру сетки сопоставляется грань покрытия Q. Каждой вершине сетки сопоставляется грань покрытия Q (ромб) Действительно, к каждой вершине сетки примыкают четыре грани M R (R = 1,2,3,4). Рассмотрим соответствующие им четыре вершины покрытия (M R). Из свойства разности (2) следует, что ребра покрытия, проходящие через эти вершины, образуют границу ромба. Квазипериодического покрытие плоскости ромбами построено.

Мы проиллюстрировали метод преобразования дуальности. Это общий способ построения способ квазипериодических покрытий. В этой конструкции правильный пятиугольник можно заменить на любой правильный многоугольник. Получится новое квазипериодическое покрытие. Метод преобразования дуальности применим и для построения квазипериодических структур в пространстве.

В) Квазипериодическое заполнение трехмерного пространства

Существует трехмерное обобщение узоров Пенроуза. Трехмерного пространство может быть заполнено параллелепипедами специального вида. Параллелепипеды не имеют общих внутренних точек и между ними нет промежутков. Каждый параллелепипед этого заполнения с помощью сдвигов и поворотов может быть получено всего из двух параллелепипедов. Это так называемые параллелепипеды Аммана-Маккэя. Для того, чтобы задать параллелепипед, достаточно задать три ребра, выходящих из одной вершины. Для первого параллелепипеда Аммана-Маккэя эти векторы имеют вид:

= (0; 1; ф), = (-ф; 0; -1)

А для второго параллелепипеда:

= (0; -1;ф), = (ф; 0;1), = (0;1; ф)

Заполнение этими параллелепипедами не переходит в себя ни при каких сдвигах, однако любая конечная ему часть встречается во всем заполнение бесчисленное множества раз. Заполнение пространства этими параллелепипедами связано с симметриями икосаэдра. Икосаэдр - платоновское тело. Каждая из его граней является правильным треугольником. Икосаэдр имеет 12 вершин, 20 граней и 30 ребер

Применение

Оказалось, что именно такими симметриями обладает быстро охлажденный алюминиево-марганцевый расплав (открытый в 1984г.) Таким образом, узоры Пенроуза помогли понять структуру вновь открытого вещества. И не только этого вещества, найдены и другие реальные квазикристаллы, их экспериментальное и теоретическое изучение находится на переднем крае современной науки.

Пример замощения на гиперболической плоскости

Французский математик Михаэль Рао из Лионского университета закончил решение задачи о замощении плоскости выпуклыми многоугольниками. Препринт работы можно на странице ученого.

Многоугольник называется выпуклым, если все его углы меньше 180 градусов или, что то же самое, вместе с любой парой точек такой многоугольник содержит и отрезок, их соединяющий. Задача о замощении (еще ее называют задачей о паркете) формулируется так: пусть плоскость разбита на многоугольники так, что любые два многоугольника либо не имеют общих точек, либо имеют только граничные общие точки. Если все многоугольники такого разбиения одинаковы (то есть один в другой можно перевести композицией сдвига, поворота или осевой симметрии), то говорят, что многоугольник замощает плоскость. Задача звучит так: описать все выпуклые многоугольники, замощающие плоскость.

Используя некоторые комбинаторные рассуждения, можно доказать, что у такого многоугольника может быть только 3, 4, 5 или 6 сторон. Легко проверяется, что плоскость можно замостить любым трех- и четырехугольником. Об этом подробнее можно прочитать в нашем материале .

Чтобы описать все шестиугольники, обозначим их углы как A, B, C, D, E, F, а стороны как a, b, c, d, e, f. При этом считаем, что сторона a примыкает к углу A справа и все стороны и углы названы по часовой стрелке. В 60-е годы было доказано, что все шестиугольники, которыми можно замостить плоскость, принадлежат как минимум одному из трех классов (классы тут пересекаются, скажем, правильный шестиугольник принадлежит всем трем) :

  1. A + B + C = 360
  2. A + B + D = 360, a = d, c = e
  3. A = C = E = 120, a = b, c = d, e = f.


Все 15 известных пятиугольных замощений

Самый сложный случай - случай пятиугольного паркета. В 1918 году математик Карл Райнхардт описал пять классов таких паркетов, простейшим из которых был класс пятиугольников с условием, что найдется сторона, сумма примыкающих к которой углов равна 180 градусам. В 1968 году Роберт Кершнер нашел еще три таких класса, а в 1975 году Ричард Джеймс нашел еще один. Про открытие Джеймса написал журнал Scientific American, статью в нем увидела американская домохозяйка и математик-любитель Мардж Райс, которая вручную за 10 лет нашла еще 5 семейств.

Последнее продвижение в задаче о замощении произошло в августе 2015 года. Тогда математики из филиала Вашингтонского университета в Ботелле с помощью компьютерной программы 15-й класс пятиугольных паркетов. В своей новой работе Михаэль Рао свел задачу классификации пятиугольных паркетов к перебору 371 вариантов. Варианты он перебрал на компьютере и показал, что ничего, кроме 15-ти уже известных классов замощений, не существует. Тем самым он окончательно закрыл задачу о замощении.

Андрей Коняев