Is the parabola even or odd? How to identify even and odd functions

Function is one of the most important mathematical concepts. A function is the dependence of the variable y on the variable x, if each value of x corresponds to a single value of y. The variable x is called the independent variable or argument. The variable y is called the dependent variable. All values ​​of the independent variable (variable x) form the domain of definition of the function. All values ​​that the dependent variable (variable y) takes form the range of the function.

The graph of a function is the set of all points of the coordinate plane, the abscissas of which are equal to the values ​​of the argument, and the ordinates are equal to the corresponding values ​​of the function, that is, the values ​​of the variable x are plotted along the abscissa axis, and the values ​​of the variable y are plotted along the ordinate axis. To graph a function, you need to know the properties of the function. The main properties of the function will be discussed below!

To build a graph of a function, we recommend using our program - Graphing functions online. If you have any questions while studying the material on this page, you can always ask them on our forum. Also on the forum they will help you solve problems in mathematics, chemistry, geometry, probability theory and many other subjects!

Basic properties of functions.

1) The domain of definition of the function and the range of values ​​of the function.

The domain of a function is the set of all valid real values ​​of the argument x (variable x) for which the function y = f(x) is defined.
The range of a function is the set of all real y values ​​that the function accepts.

IN elementary mathematics functions are studied only on the set of real numbers.

2) Zeros of the function.

Values ​​of x for which y=0 are called function zeros. These are the abscissas of the points of intersection of the function graph with the Ox axis.

3) Intervals of constant sign of a function.

Intervals of constant sign of a function - such intervals of values ​​x on which the values ​​of the function y are either only positive or only negative are called intervals of constant sign of the function.

4) Monotonicity of the function.

An increasing function (in a certain interval) is a function in which a larger value of the argument from this interval corresponds to a larger value of the function.

A decreasing function (in a certain interval) is a function in which a larger value of the argument from this interval corresponds to a smaller value of the function.

5) Evenness (oddness) of the function.

An even function is a function whose domain of definition is symmetrical with respect to the origin and for any x f(-x) = f(x). The graph of an even function is symmetrical about the ordinate.

Not even function- a function whose domain of definition is symmetrical with respect to the origin and for any x from the domain of definition the equality f(-x) = - f(x) is true. The graph of an odd function is symmetrical about the origin.

Even function
1) The domain of definition is symmetrical with respect to the point (0; 0), that is, if point a belongs to the domain of definition, then point -a also belongs to the domain of definition.
2) For any value x f(-x)=f(x)
3) The graph of an even function is symmetrical about the Oy axis.

An odd function has the following properties:
1) The domain of definition is symmetrical about the point (0; 0).
2) for any value x belonging to the domain of definition, the equality f(-x)=-f(x) is satisfied
3) The graph of an odd function is symmetrical with respect to the origin (0; 0).

Not every function is even or odd. Functions general view are neither even nor odd.

6) Limited and unlimited functions.

A function is called bounded if there is a positive number M such that |f(x)| ≤ M for all values ​​of x. If such a number does not exist, then the function is unlimited.

7) Periodicity of the function.

A function f(x) is periodic if there is a non-zero number T such that for any x from the domain of definition of the function the following holds: f(x+T) = f(x). This smallest number is called the period of the function. All trigonometric functions are periodic. (Trigonometric formulas).

A function f is called periodic if there is a number such that for any x from the domain of definition the equality f(x)=f(x-T)=f(x+T) holds. T is the period of the function.

Every periodic function has an infinite number of periods. In practice, the smallest positive period is usually considered.

The values ​​of a periodic function are repeated after an interval equal to the period. This is used when constructing graphs.

How to insert mathematical formulas on a website?

If you ever need to add one or two mathematical formulas to a web page, then the easiest way to do this is as described in the article: mathematical formulas are easily inserted onto the site in the form of pictures that are automatically generated by Wolfram Alpha. Besides simplicity, this universal method will help improve website visibility search engines. It has been working for a long time (and, I think, will work forever), but is already morally outdated.

If you regularly use mathematical formulas on your site, then I recommend you use MathJax - a special JavaScript library that displays mathematical notation in web browsers using MathML, LaTeX or ASCIIMathML markup.

There are two ways to start using MathJax: (1) using a simple code, you can quickly connect a MathJax script to your website, which will be automatically loaded from a remote server at the right time (list of servers); (2) download the MathJax script from a remote server to your server and connect it to all pages of your site. The second method - more complex and time-consuming - will speed up the loading of your site's pages, and if the parent MathJax server becomes temporarily unavailable for some reason, this will not affect your own site in any way. Despite these advantages, I chose the first method as it is simpler, faster and does not require technical skills. Follow my example, and in just 5 minutes you will be able to use all the features of MathJax on your site.

You can connect the MathJax library script from a remote server using two code options taken from the main MathJax website or on the documentation page:

One of these code options needs to be copied and pasted into the code of your web page, preferably between tags and or immediately after the tag. According to the first option, MathJax loads faster and slows down the page less. But the second option automatically monitors and loads the latest versions of MathJax. If you insert the first code, it will need to be updated periodically. If you insert the second code, the pages will load more slowly, but you will not need to constantly monitor MathJax updates.

The easiest way to connect MathJax is in Blogger or WordPress: in the site control panel, add a widget designed to insert third-party JavaScript code, copy the first or second version of the download code presented above into it, and place the widget closer to the beginning of the template (by the way, this is not at all necessary , since the MathJax script is loaded asynchronously). That's all. Now learn the markup syntax of MathML, LaTeX, and ASCIIMathML, and you are ready to insert mathematical formulas into your site's web pages.

Any fractal is constructed according to a certain rule, which is applied sequentially an unlimited number of times. Each such time is called an iteration.

The iterative algorithm for constructing a Menger sponge is quite simple: the original cube with side 1 is divided by planes parallel to its faces into 27 equal cubes. One central cube and 6 cubes adjacent to it along the faces are removed from it. The result is a set consisting of the remaining 20 smaller cubes. Doing the same with each of these cubes, we get a set consisting of 400 smaller cubes. Continuing this process endlessly, we get a Menger sponge.

even if for all \(x\) from its domain of definition the following is true: \(f(-x)=f(x)\) .

The graph of an even function is symmetrical about the \(y\) axis:

Example: the function \(f(x)=x^2+\cos x\) is even, because \(f(-x)=(-x)^2+\cos((-x))=x^2+\cos x=f(x)\) .

\(\blacktriangleright\) A function \(f(x)\) is called odd if for all \(x\) from its domain of definition the following is true: \(f(-x)=-f(x)\) .

The graph of an odd function is symmetrical about the origin:

Example: the function \(f(x)=x^3+x\) is odd because \(f(-x)=(-x)^3+(-x)=-x^3-x=-(x^3+x)=-f(x)\) .

\(\blacktriangleright\) Functions that are neither even nor odd are called functions of general form. Such a function can always be uniquely represented as the sum of an even and an odd function.

For example, the function \(f(x)=x^2-x\) is the sum of the even function \(f_1=x^2\) and the odd \(f_2=-x\) .

\(\blacktriangleright\) Some properties:

1) The product and quotient of two functions of the same parity is an even function.

2) The product and quotient of two functions of different parities is an odd function.

3) Sum and difference of even functions - even function.

4) Sum and difference of odd functions - odd function.

5) If \(f(x)\) is an even function, then the equation \(f(x)=c \ (c\in \mathbb(R)\) ) has a unique root if and only when \(x =0\) .

6) If \(f(x)\) is an even or odd function, and the equation \(f(x)=0\) has a root \(x=b\), then this equation will necessarily have a second root \(x =-b\) .

\(\blacktriangleright\) The function \(f(x)\) is called periodic on \(X\) if for some number \(T\ne 0\) the following holds: \(f(x)=f(x+T) \) , where \(x, x+T\in X\) . The smallest \(T\) for which this equality is satisfied is called the main (main) period of the function.

A periodic function has any number of the form \(nT\) , where \(n\in \mathbb(Z)\) will also be a period.

Example: any trigonometric function is periodic;
for the functions \(f(x)=\sin x\) and \(f(x)=\cos x\) the main period is equal to \(2\pi\), for the functions \(f(x)=\mathrm( tg)\,x\) and \(f(x)=\mathrm(ctg)\,x\) the main period is equal to \(\pi\) .

In order to construct a graph of a periodic function, you can plot its graph on any segment of length \(T\) (main period); then the graph of the entire function is completed by shifting the constructed part by an integer number of periods to the right and left:

\(\blacktriangleright\) The domain \(D(f)\) of the function \(f(x)\) is a set consisting of all values ​​of the argument \(x\) for which the function makes sense (is defined).

Example: the function \(f(x)=\sqrt x+1\) has a domain of definition: \(x\in

Task 1 #6364

Task level: Equal to the Unified State Exam

At what values ​​of the parameter \(a\) does the equation

has a single solution?

Note that since \(x^2\) and \(\cos x\) are even functions, if the equation has a root \(x_0\) , it will also have a root \(-x_0\) .
Indeed, let \(x_0\) be a root, that is, the equality \(2x_0^2+a\mathrm(tg)\,(\cos x_0)+a^2=0\) is true. Substitute \(-x_0\) : \(2 (-x_0)^2+a\mathrm(tg)\,(\cos(-x_0))+a^2=2x_0^2+a\mathrm(tg)\ ,(\cos x_0)+a^2=0\) .

Thus, if \(x_0\ne 0\) , then the equation will already have at least two roots. Therefore, \(x_0=0\) . Then:

We received two values ​​for the parameter \(a\) . Note that we used the fact that \(x=0\) is exactly the root of the original equation. But we never used the fact that he is the only one. Therefore, you need to substitute the resulting values ​​of the parameter \(a\) into the original equation and check for which specific \(a\) the root \(x=0\) will really be unique.

1) If \(a=0\) , then the equation will take the form \(2x^2=0\) . Obviously, this equation has only one root \(x=0\) . Therefore, the value \(a=0\) suits us.

2) If \(a=-\mathrm(tg)\,1\) , then the equation will take the form \ We rewrite the equation in the form \ Since \(-1\leqslant \cos x\leqslant 1\) , then \(- \mathrm(tg)\,1\leqslant \mathrm(tg)\,(\cos x)\leqslant \mathrm(tg)\,1\) . Consequently, the values ​​of the right side of the equation (*) belong to the segment \([-\mathrm(tg)^2\,1; \mathrm(tg)^2\,1]\) .

Since \(x^2\geqslant 0\) , then the left side of the equation (*) is greater than or equal to \(0+ \mathrm(tg)^2\,1\) .

Thus, equality (*) can only be true when both sides of the equation are equal to \(\mathrm(tg)^2\,1\) . This means that \[\begin(cases) 2x^2+\mathrm(tg)^2\,1=\mathrm(tg)^2\,1 \\ \mathrm(tg)\,1\cdot \ mathrm(tg)\,(\cos x)=\mathrm(tg)^2\,1 \end(cases) \quad\Leftrightarrow\quad \begin(cases) x=0\\ \mathrm(tg)\, (\cos x)=\mathrm(tg)\,1 \end(cases)\quad\Leftrightarrow\quad x=0\] Therefore, the value \(a=-\mathrm(tg)\,1\) suits us .

Answer:

\(a\in \(-\mathrm(tg)\,1;0\)\)

Task 2 #3923

Task level: Equal to the Unified State Exam

Find all values ​​of the parameter \(a\) , for each of which the graph of the function \

symmetrical about the origin.

If the graph of a function is symmetrical with respect to the origin, then such a function is odd, that is, \(f(-x)=-f(x)\) holds for any \(x\) from the domain of definition of the function. Thus, it is required to find those parameter values ​​for which \(f(-x)=-f(x).\)

\[\begin(aligned) &3\mathrm(tg)\,\left(-\dfrac(ax)5\right)+2\sin \dfrac(8\pi a+3x)4= -\left(3\ mathrm(tg)\,\left(\dfrac(ax)5\right)+2\sin \dfrac(8\pi a-3x)4\right)\quad \Rightarrow\quad -3\mathrm(tg)\ ,\dfrac(ax)5+2\sin \dfrac(8\pi a+3x)4= -\left(3\mathrm(tg)\,\left(\dfrac(ax)5\right)+2\ sin \dfrac(8\pi a-3x)4\right) \quad \Rightarrow\\ \Rightarrow\quad &\sin \dfrac(8\pi a+3x)4+\sin \dfrac(8\pi a- 3x)4=0 \quad \Rightarrow \quad2\sin \dfrac12\left(\dfrac(8\pi a+3x)4+\dfrac(8\pi a-3x)4\right)\cdot \cos \dfrac12 \left(\dfrac(8\pi a+3x)4-\dfrac(8\pi a-3x)4\right)=0 \quad \Rightarrow\quad \sin (2\pi a)\cdot \cos \ frac34 x=0 \end(aligned)\]

The last equation must be satisfied for all \(x\) from the domain of definition \(f(x)\) , therefore, \(\sin(2\pi a)=0 \Rightarrow a=\dfrac n2, n\in\ mathbb(Z)\) .

Answer:

\(\dfrac n2, n\in\mathbb(Z)\)

Task 3 #3069

Task level: Equal to the Unified State Exam

Find all values ​​of the parameter \(a\) , for each of which the equation \ has 4 solutions, where \(f\) is an even periodic function with period \(T=\dfrac(16)3\) defined on the entire number line , and \(f(x)=ax^2\) for \(0\leqslant x\leqslant \dfrac83.\)

(Task from subscribers)

Since \(f(x)\) is an even function, its graph is symmetrical with respect to the ordinate axis, therefore, for \(-\dfrac83\leqslant x\leqslant 0\) \(f(x)=ax^2\) . Thus, for \(-\dfrac83\leqslant x\leqslant \dfrac83\) , and this is a segment of length \(\dfrac(16)3\), the function is \(f(x)=ax^2\) .

1) Let \(a>0\) . Then the graph of the function \(f(x)\) will look like this:


Then, in order for the equation to have 4 solutions, it is necessary that the graph \(g(x)=|a+2|\cdot \sqrtx\) pass through the point \(A\) :


Therefore, \[\dfrac(64)9a=|a+2|\cdot \sqrt8 \quad\Leftrightarrow\quad \left[\begin(gathered)\begin(aligned) &9(a+2)=32a\\ &9 (a+2)=-32a\end(aligned)\end(gathered)\right. \quad\Leftrightarrow\quad \left[\begin(gathered)\begin(aligned) &a=\dfrac(18)(23)\\ &a=-\dfrac(18)(41) \end(aligned) \end( gathered)\right.\] Since \(a>0\) , then \(a=\dfrac(18)(23)\) is suitable.

2) Let \(a0\) ). If the product of two roots is positive and their sum is positive, then the roots themselves will be positive. Therefore, you need: \[\begin(cases) 12-a>0\\-(a-10)>0\end(cases)\quad\Leftrightarrow\quad a