Primjeri na temu Kvadratne jednadžbe. Rješavanje kvadratnih jednadžbi: formula korijena, primjeri

Ova tema može izgledati teško u početku jer mnogi nisu tako jednostavne formule. Ne samo da to rade sami kvadratne jednačine imaju dugu evidenciju, a korijeni se također nalaze kroz diskriminant. Ukupno su dobijene tri nove formule. Nije lako zapamtiti. To je moguće samo nakon čestog rješavanja ovakvih jednačina. Tada će se sve formule pamtiti same.

Opšti pogled na kvadratnu jednačinu

Ovdje predlažemo njihovo eksplicitno bilježenje, kada se prvo upiše najveći stepen, a zatim u opadajućem redoslijedu. Često postoje situacije kada su termini nedosljedni. Tada je bolje prepisati jednačinu u opadajućem redosledu stepena varijable.

Hajde da uvedemo neke oznake. Oni su predstavljeni u tabeli ispod.

Ako prihvatimo ove oznake, sve kvadratne jednadžbe se svode na sljedeću notaciju.

Štaviše, koeficijent a ≠ 0. Neka ova formula bude označena brojem jedan.

Kada je data jednadžba, nije jasno koliko će korijena biti u odgovoru. Jer jedna od tri opcije je uvijek moguća:

  • rješenje će imati dva korijena;
  • odgovor će biti jedan broj;
  • jednadžba uopće neće imati korijene.

I dok se odluka ne donese, teško je razumjeti koja će se opcija pojaviti u konkretnom slučaju.

Vrste zapisa kvadratnih jednačina

U zadacima mogu biti različiti unosi. Neće uvek izgledati opšta formula kvadratna jednačina. Ponekad će mu nedostajati neki termini. Ono što je gore napisano je kompletna jednačina. Ako izbacite drugi ili treći termin u njemu, dobijate nešto drugo. Ovi zapisi se nazivaju i kvadratne jednačine, samo nepotpune.

Štaviše, samo članovi sa koeficijentima “b” i “c” mogu nestati. Broj "a" ne može biti jednak nuli ni pod kojim okolnostima. Jer se u ovom slučaju formula pretvara u linearnu jednačinu. Formule za nepotpuni oblik jednadžbi će biti sljedeće:

Dakle, postoje samo dvije vrste; osim potpunih, postoje i nepotpune kvadratne jednadžbe. Neka prva formula bude broj dva, a druga - tri.

Diskriminanta i zavisnost broja korijena od njegove vrijednosti

Morate znati ovaj broj da biste izračunali korijene jednadžbe. Uvijek se može izračunati, bez obzira koja je formula kvadratne jednačine. Da biste izračunali diskriminanta, trebate koristiti jednakost napisanu ispod, koja će imati broj četiri.

Nakon zamjene vrijednosti koeficijenta u ovu formulu, možete dobiti brojeve sa različiti znakovi. Ako je odgovor da, onda će odgovor na jednadžbu biti dva različita korijena. Ako je broj negativan, neće biti korijena kvadratne jednadžbe. Ako je jednako nuli, biće samo jedan odgovor.

Kako riješiti kompletnu kvadratnu jednačinu?

Zapravo, razmatranje ovog pitanja je već počelo. Jer prvo morate pronaći diskriminanta. Nakon što se utvrdi da postoje korijeni kvadratne jednadžbe i njihov broj je poznat, potrebno je koristiti formule za varijable. Ako postoje dva korijena, onda morate primijeniti sljedeću formulu.

Pošto sadrži znak „±“, biće dve vrednosti. Izraz pod znakom kvadratnog korijena je diskriminanta. Stoga se formula može prepisati drugačije.

Formula broj pet. Iz istog zapisa je jasno da ako je diskriminanta jednaka nuli, tada će oba korijena imati iste vrijednosti.

Ako rješavanje kvadratnih jednadžbi još nije razrađeno, onda je bolje zapisati vrijednosti svih koeficijenata prije primjene diskriminantnih i varijabilnih formula. Kasnije ovaj trenutak neće uzrokovati poteškoće. Ali na samom početku dolazi do zabune.

Kako riješiti nepotpunu kvadratnu jednačinu?

Ovdje je sve mnogo jednostavnije. Nema čak ni potrebe za dodatnim formulama. A oni koji su već zapisani za diskriminatorno i nepoznato neće biti potrebni.

Prvo, pogledajmo nepotpunu jednačinu broj dva. U ovoj jednakosti potrebno je nepoznatu količinu izvaditi iz zagrada i riješiti linearnu jednačinu koja će ostati u zagradama. Odgovor će imati dva korijena. Prvi je nužno jednak nuli, jer postoji množitelj koji se sastoji od same varijable. Drugi će se dobiti rješavanjem linearne jednadžbe.

Nepotpuna jednačina broj tri rješava se pomicanjem broja s lijeve strane jednakosti na desnu. Zatim trebate podijeliti sa koeficijentom okrenutim prema nepoznatom. Ostaje samo da izvučete kvadratni korijen i zapamtite da ga dvaput zapišete sa suprotnim predznacima.

Ispod su neki koraci koji će vam pomoći da naučite kako riješiti sve vrste jednakosti koje se pretvaraju u kvadratne jednadžbe. Oni će pomoći učeniku da izbjegne greške zbog nepažnje. Ovi nedostaci mogu uzrokovati slabe ocjene pri proučavanju opsežne teme „Kvadratne jednačine (8. razred).“ Nakon toga, ove radnje neće trebati stalno izvoditi. Jer će se pojaviti stabilna vještina.

  • Prvo morate napisati jednačinu u standardnom obliku. Odnosno, prvo izraz sa najvećim stepenom varijable, a zatim - bez stepena, i poslednji - samo broj.
  • Ako se ispred koeficijenta "a" pojavi minus, to može zakomplikovati posao početniku koji proučava kvadratne jednadžbe. Bolje je da ga se otarasimo. U tu svrhu, sve jednakosti se moraju pomnožiti sa “-1”. To znači da će svi pojmovi promijeniti predznak u suprotan.
  • Preporučuje se da se na isti način riješite frakcija. Jednostavno pomnožite jednačinu odgovarajućim faktorom tako da se imenioci ponište.

Primjeri

Potrebno je riješiti sljedeće kvadratne jednadžbe:

x 2 − 7x = 0;

15 − 2x − x 2 = 0;

x 2 + 8 + 3x = 0;

12x + x 2 + 36 = 0;

(x+1) 2 + x + 1 = (x+1)(x+2).

Prva jednačina: x 2 − 7x = 0. Nepotpuna je, stoga se rješava kao što je opisano za formulu broj dva.

Nakon vađenja iz zagrada, ispada: x (x - 7) = 0.

Prvi korijen ima vrijednost: x 1 = 0. Drugi će se naći iz linearne jednačine: x - 7 = 0. Lako je vidjeti da je x 2 = 7.

Druga jednadžba: 5x 2 + 30 = 0. Opet nepotpuna. Samo se to rješava kao što je opisano za treću formulu.

Nakon pomjeranja 30 na desnu stranu jednačine: 5x 2 = 30. Sada trebate podijeliti sa 5. Ispada: x 2 = 6. Odgovori će biti brojevi: x 1 = √6, x 2 = - √6.

Treća jednačina: 15 − 2x − x 2 = 0. Ovdje i dalje, rješavanje kvadratnih jednadžbi će početi tako što ćemo ih prepisati u standardnom obliku: − x 2 − 2x + 15 = 0. Sada je vrijeme da iskoristimo drugu koristan savjet i pomnožite sve sa minus jedan. Ispada x 2 + 2x - 15 = 0. Koristeći četvrtu formulu, morate izračunati diskriminanta: D = 2 2 - 4 * (- 15) = 4 + 60 = 64. To je pozitivan broj. Iz onoga što je gore rečeno, ispada da jednačina ima dva korijena. Treba ih izračunati koristeći petu formulu. Ispada da je x = (-2 ± √64) / 2 = (-2 ± 8) / 2. Tada je x 1 = 3, x 2 = - 5.

Četvrta jednačina x 2 + 8 + 3x = 0 pretvara se u ovu: x 2 + 3x + 8 = 0. Njen diskriminanta je jednaka ovoj vrijednosti: -23. Budući da je ovaj broj negativan, odgovor na ovaj zadatak bit će sljedeći unos: "Nema korijena."

Petu jednačinu 12x + x 2 + 36 = 0 treba prepisati na sljedeći način: x 2 + 12x + 36 = 0. Nakon primjene formule za diskriminanta, dobija se broj nula. To znači da će imati jedan korijen, odnosno: x = -12/ (2 * 1) = -6.

Šesta jednačina (x+1) 2 + x + 1 = (x+1)(x+2) zahtijeva transformacije, koje se sastoje u tome da treba donijeti slične članove, prvo otvarajući zagrade. Umjesto prvog bit će sljedeći izraz: x 2 + 2x + 1. Nakon jednakosti pojavit će se ovaj unos: x 2 + 3x + 2. Nakon što se prebroje slični članovi, jednačina će dobiti oblik: x 2 - x = 0. Postalo je nepotpuno. Nešto slično ovome je već bilo govora malo više. Korijeni ovoga će biti brojevi 0 i 1.

U ovom članku ćemo se osvrnuti na rješavanje nepotpunih kvadratnih jednadžbi.

Ali prvo, hajde da ponovimo koje se jednačine nazivaju kvadratnim. Jednačina oblika ax 2 + bx + c = 0, gdje je x varijabla, a koeficijenti a, b i c neki brojevi, a a ≠ 0, naziva se kvadrat. Kao što vidimo, koeficijent za x 2 nije jednak nuli, pa stoga koeficijenti za x ili slobodni član mogu biti jednaki nuli, u kom slučaju dobijamo nepotpunu kvadratnu jednačinu.

Postoje tri vrste nepotpunih kvadratnih jednadžbi:

1) Ako je b = 0, c ≠ 0, tada je ax 2 + c = 0;

2) Ako je b ≠ 0, c = 0, tada je ax 2 + bx = 0;

3) Ako je b = 0, c = 0, onda je ax 2 = 0.

  • Hajde da shvatimo kako to riješiti jednačine oblika ax 2 + c = 0.

Da bismo rešili jednačinu, pomerimo slobodni član c na desnu stranu jednačine, dobijamo

ax 2 = ‒s. Pošto je a ≠ 0, obje strane jednačine dijelimo sa a, tada je x 2 = ‒c/a.

Ako je ‒s/a > 0, tada jednačina ima dva korijena

x = ±√(–c/a) .

Ako je ‒c/a< 0, то это уравнение решений не имеет. Более наглядно решение данных уравнений представлено на схеме.

Pokušajmo na primjerima razumjeti kako riješiti takve jednadžbe.

Primjer 1. Riješite jednačinu 2x 2 ‒ 32 = 0.

Odgovor: x 1 = - 4, x 2 = 4.

Primjer 2. Riješite jednačinu 2x 2 + 8 = 0.

Odgovor: jednačina nema rješenja.

  • Hajde da shvatimo kako to riješiti jednačine oblika ax 2 + bx = 0.

Da bismo riješili jednačinu ax 2 + bx = 0, faktorizirajmo je, odnosno izvadimo x iz zagrada, dobićemo x(ax + b) = 0. Proizvod je jednak nuli ako je barem jedan od faktora jednak na nulu. Tada je ili x = 0, ili ax + b = 0. Rješavanjem jednačine ax + b = 0, dobijamo ax = - b, odakle je x = - b/a. Jednačina oblika ax 2 + bx = 0 uvijek ima dva korijena x 1 = 0 i x 2 = ‒ b/a. Pogledajte kako izgleda rješenje ovakvih jednačina na dijagramu.

Konsolidirajmo svoje znanje konkretnim primjerom.

Primjer 3. Riješite jednačinu 3x 2 ‒ 12x = 0.

x(3x ‒ 12) = 0

x= 0 ili 3x – 12 = 0

Odgovor: x 1 = 0, x 2 = 4.

  • Jednačine trećeg tipa ax 2 = 0 rješavaju se vrlo jednostavno.

Ako je ax 2 = 0, onda je x 2 = 0. Jednačina ima dva jednaka korijena x 1 = 0, x 2 = 0.

Radi jasnoće, pogledajmo dijagram.

Uvjerimo se prilikom rješavanja primjera 4 da se jednadžbe ovog tipa mogu riješiti vrlo jednostavno.

Primjer 4. Riješite jednačinu 7x 2 = 0.

Odgovor: x 1, 2 = 0.

Nije uvijek odmah jasno koju vrstu nepotpune kvadratne jednačine moramo riješiti. Razmotrite sljedeći primjer.

Primjer 5. Riješite jednačinu

Pomnožimo obje strane jednačine zajedničkim nazivnikom, odnosno sa 30

Hajde da ga smanjimo

5(5x 2 + 9) – 6(4x 2 – 9) = 90.

Hajde da otvorimo zagrade

25x 2 + 45 – 24x 2 + 54 = 90.

Dajmo slično

Pomaknimo 99 s lijeve strane jednačine na desnu, mijenjajući predznak u suprotan

Odgovor: nema korijena.

Pogledali smo kako se rješavaju nepotpune kvadratne jednadžbe. Nadam se da sada nećete imati poteškoća sa ovakvim zadacima. Budite oprezni kada određujete vrstu nepotpune kvadratne jednadžbe, tada ćete uspjeti.

Ako imate pitanja na ovu temu, prijavite se na moje lekcije, zajedno ćemo rješavati probleme koji se pojave.

web stranicu, kada kopirate materijal u cijelosti ili djelomično, link na izvor je obavezan.

Razmotrimo kvadratnu jednačinu:
(1) .
Korijeni kvadratne jednadžbe(1) određuju se formulama:
; .
Ove formule mogu se kombinirati na sljedeći način:
.
Kada su korijeni kvadratne jednadžbe poznati, tada se polinom drugog stepena može predstaviti kao proizvod faktora (faktoriziranih):
.

Zatim pretpostavljamo da su to realni brojevi.
Hajde da razmotrimo diskriminanta kvadratne jednačine:
.
Ako je diskriminant pozitivan, tada kvadratna jednadžba (1) ima dva različita realna korijena:
; .
Zatim razlaganje kvadratni trinom u faktore ima oblik:
.
Ako je diskriminant jednak nuli, tada kvadratna jednadžba (1) ima dva višestruka (jednaka) realna korijena:
.
Faktorizacija:
.
Ako je diskriminanta negativna, tada kvadratna jednadžba (1) ima dva kompleksna konjugirana korijena:
;
.
Ovdje je imaginarna jedinica, ;
i su stvarni i imaginarni dijelovi korijena:
; .
Onda

.

Grafička interpretacija

Ako gradite graf funkcije
,
što je parabola, tada će tačke presjeka grafa sa osom biti korijeni jednadžbe
.
Na , graf siječe x-osu (os) u dvije tačke.
Kada je , graf dodiruje x-osu u jednoj tački.
Kada je , graf ne prelazi x-osu.

Ispod su primjeri takvih grafikona.

Korisne formule vezane za kvadratnu jednačinu

(f.1) ;
(f.2) ;
(f.3) .

Izvođenje formule za korijene kvadratne jednadžbe

Izvodimo transformacije i primjenjujemo formule (f.1) i (f.3):




,
Gdje
; .

Dakle, dobili smo formulu za polinom drugog stepena u obliku:
.
Ovo pokazuje da je jednadžba

izvedeno u
i .
To jest, i su korijeni kvadratne jednadžbe
.

Primjeri određivanja korijena kvadratne jednadžbe

Primjer 1


(1.1) .

Rješenje


.
Upoređujući s našom jednadžbom (1.1), nalazimo vrijednosti koeficijenata:
.
Pronalazimo diskriminanta:
.
Pošto je diskriminanta pozitivan, jednačina ima dva realna korijena:
;
;
.

Odavde dobijamo faktorizaciju kvadratnog trinoma:

.

Grafikon funkcije y = 2 x 2 + 7 x + 3 siječe x-osu u dvije tačke.

Nacrtajmo funkciju
.
Graf ove funkcije je parabola. Presijeca apscisnu osu (os) u dvije tačke:
i .
Ove tačke su korijeni originalne jednačine (1.1).

Odgovori

;
;
.

Primjer 2

Pronađite korijene kvadratne jednadžbe:
(2.1) .

Rješenje

Napišimo kvadratnu jednačinu u opštem obliku:
.
Upoređujući s originalnom jednadžbom (2.1), nalazimo vrijednosti koeficijenata:
.
Pronalazimo diskriminanta:
.
Pošto je diskriminanta nula, jednačina ima dva višestruka (jednaka) korijena:
;
.

Tada faktorizacija trinoma ima oblik:
.

Grafikon funkcije y = x 2 - 4 x + 4 dodiruje x-osu u jednoj tački.

Nacrtajmo funkciju
.
Graf ove funkcije je parabola. Dodiruje x-osu (os) u jednoj tački:
.
Ova tačka je korijen originalne jednačine (2.1). Zato što se ovaj korijen rastavlja dva puta:
,
tada se takav korijen obično naziva višestrukim. To jest, oni vjeruju da postoje dva jednaka korijena:
.

Odgovori

;
.

Primjer 3

Pronađite korijene kvadratne jednadžbe:
(3.1) .

Rješenje

Napišimo kvadratnu jednačinu u opštem obliku:
(1) .
Prepišimo originalnu jednačinu (3.1):
.
Upoređujući sa (1), nalazimo vrijednosti koeficijenata:
.
Pronalazimo diskriminanta:
.
Diskriminant je negativan, . Stoga nema pravih korijena.

Možete pronaći složene korijene:
;
;

Nacrtajmo funkciju
.
Graf ove funkcije je parabola. Ne siječe x-osu (os). Stoga nema pravih korijena.

Odgovori

Nema pravih korena. Složeni korijeni:
;
;
.

“, odnosno jednačine prvog stepena. U ovoj lekciji ćemo pogledati ono što se zove kvadratna jednačina i kako to riješiti.

Šta je kvadratna jednačina?

Bitan!

Stepen jednačine je određen najvišim stepenom do kojeg stoji nepoznata.

Ako je maksimalna snaga u kojoj je nepoznata "2", onda imate kvadratnu jednačinu.

Primjeri kvadratnih jednadžbi

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0,25x = 0
  • x 2 − 8 = 0

Bitan! Opšti oblik kvadratne jednadžbe izgleda ovako:

A x 2 + b x + c = 0

“a”, “b” i “c” su dati brojevi.
  • “a” je prvi ili najviši koeficijent;
  • “b” je drugi koeficijent;
  • “c” je slobodan član.

Da biste pronašli “a”, “b” i “c” potrebno je da uporedite svoju jednačinu sa opštim oblikom kvadratne jednačine “ax 2 + bx + c = 0”.

Vježbajmo određivanje koeficijenata "a", "b" i "c" u kvadratnim jednačinama.

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Jednačina Odds
  • a = 5
  • b = −14
  • c = 17
  • a = −7
  • b = −13
  • c = 8
1
3
= 0
  • a = −1
  • b = 1
  • c =
    1
    3
x 2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • c = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • c = −8

Kako riješiti kvadratne jednadžbe

Za razliku od linearne jednačine za rješavanje kvadratnih jednadžbi, poseban formula za pronalaženje korijena.

Zapamtite!

Za rješavanje kvadratne jednadžbe potrebno je:

  • smanjiti kvadratnu jednadžbu na opšti izgled"ax 2 + bx + c = 0". To jest, samo “0” treba da ostane na desnoj strani;
  • koristite formulu za korijenje:

Pogledajmo primjer kako koristiti formulu za pronalaženje korijena kvadratne jednadžbe. Rešimo kvadratnu jednačinu.

X 2 − 3x − 4 = 0


Jednačina “x 2 − 3x − 4 = 0” je već svedena na opći oblik “ax 2 + bx + c = 0” i ne zahtijeva dodatna pojednostavljenja. Da bismo to riješili, samo se trebamo prijaviti formula za pronalaženje korijena kvadratne jednadžbe.

Odredimo koeficijente “a”, “b” i “c” za ovu jednačinu.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

Može se koristiti za rješavanje bilo koje kvadratne jednadžbe.

U formuli “x 1;2 =” radikalni izraz se često zamjenjuje
“b 2 − 4ac” za slovo “D” i naziva se diskriminantnim. Koncept diskriminanta je detaljnije obrađen u lekciji „Šta je diskriminant“.

Pogledajmo još jedan primjer kvadratne jednadžbe.

x 2 + 9 + x = 7x

U ovom obliku prilično je teško odrediti koeficijente “a”, “b” i “c”. Hajde da prvo svedemo jednačinu na opšti oblik “ax 2 + bx + c = 0”.

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Sada možete koristiti formulu za korijene.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x =

6
2

x = 3
Odgovor: x = 3

Postoje slučajevi kada kvadratne jednadžbe nemaju korijen. Ova situacija se događa kada formula sadrži negativan broj ispod korijena.

Na primjer, za trinom \(3x^2+2x-7\), diskriminanta će biti jednaka \(2^2-4\cdot3\cdot(-7)=4+84=88\). A za trinom \(x^2-5x+11\), to će biti jednako \((-5)^2-4\cdot1\cdot11=25-44=-19\).

Diskriminanta se označava sa \(D\) i često se koristi u rješavanju. Također, po vrijednosti diskriminanta možete razumjeti kako otprilike izgleda graf (vidi dolje).

Diskriminant i korijeni kvadratne jednadžbe

Diskriminantna vrijednost pokazuje broj kvadratnih jednadžbi:
- ako je \(D\) pozitivan, jednačina će imati dva korijena;
- ako je \(D\) jednako nuli – postoji samo jedan korijen;
- ako je \(D\) negativan, nema korijena.

Ovo ne treba poučavati, nije teško doći do takvog zaključka, jednostavno znajući da je iz diskriminanta (odnosno, \(\sqrt(D)\) uključeno u formulu za izračunavanje korijena kvadrata jednadžba: \(x_(1)=\)\( \frac(-b+\sqrt(D))(2a)\) i \(x_(2)=\)\(\frac(-b-\sqrt( D))(2a)\) Pogledajmo svaki slučaj više detalja.

Ako je diskriminant pozitivan

U ovom slučaju, njegov korijen je neki pozitivan broj, što znači da će \(x_(1)\) i \(x_(2)\) imati različita značenja, jer u prvoj formuli \(\sqrt(D)\ ) se dodaje , au drugom se oduzima. I imamo dva različita korijena.

Primjer : Pronađite korijene jednadžbe \(x^2+2x-3=0\)
Rješenje :

Odgovori : \(x_(1)=1\); \(x_(2)=-3\)

Ako je diskriminanta nula

Koliko će biti korijena ako je diskriminanta nula? Hajde da urazumimo.

Korijenske formule izgledaju ovako: \(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) i \(x_(2)=\)\(\frac(- b- \sqrt(D))(2a)\) . A ako je diskriminant nula, onda je i njegov korijen jednak nuli. Onda se ispostavi:

\(x_(1)=\)\(\frac(-b+\sqrt(D))(2a)\) \(=\)\(\frac(-b+\sqrt(0))(2a)\) \(=\)\(\frac(-b+0)(2a)\) \(=\)\(\frac(-b)(2a)\)

\(x_(2)=\)\(\frac(-b-\sqrt(D))(2a)\) \(=\)\(\frac(-b-\sqrt(0))(2a) \) \(=\)\(\frac(-b-0)(2a)\) \(=\)\(\frac(-b)(2a)\)

Odnosno, vrijednosti korijena jednadžbe će biti iste, jer dodavanje ili oduzimanje nule ništa ne mijenja.

Primjer : Pronađite korijene jednadžbe \(x^2-4x+4=0\)
Rješenje :

\(x^2-4x+4=0\)

Zapisujemo koeficijente:

\(a=1;\) \(b=-4;\) \(c=4;\)

Izračunavamo diskriminanta koristeći formulu \(D=b^2-4ac\)

\(D=(-4)^2-4\cdot1\cdot4=\)
\(=16-16=0\)

Pronalaženje korijena jednadžbe

\(x_(1)=\) \(\frac(-(-4)+\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)

\(x_(2)=\) \(\frac(-(-4)-\sqrt(0))(2\cdot1)\)\(=\)\(\frac(4)(2)\) \(=2\)


Dobili smo dva identična korijena, tako da nema smisla pisati ih odvojeno - pišemo ih kao jedan.

Odgovori : \(x=2\)