Автомобильный кондиционер солнечная батарея. Холодильники и кондиционеры на солнечной энергии Экологичность как двигатель солнечного кондиционирования

Использование солнечной энергии для кондиционирования воздуха - привлекательная идея не только для южных регионов, где расходы на охлаждение являются определяющими в расходах тепла на поддержание в помещениях комфортных условий, но и для кондиционирования воздуха в общественных зданиях средних и даже северных регионов. Использование солнечной энергии для кондиционирования заманчиво и потому, что график прихода солнечной энергии совпадает с графиком потребления холода и потому, что добавление солнечного охлаждения к отоплению позволяет значительно улучшить экономику солнечного теплоснабжения.

Известны методы использования солнечной энергии для охлаждения могут быть разбиты на три класса: солнечный абсорбционное охлаждения, солнечно-механические системы и относительно солнечные системы, которые не работают от солнца, но используют для охлаждения некоторые компоненты солнечных систем. Внутри каждого класса систем можно было бы выделить свои подклассы, когда используются различные хладагентом, различные температурные уровни, а. следовательно, различные солнечные коллекторы, различные системы контроля.

Абсорбционное кондиционирования, основанное на поглощении хладоагентов растворами абсорбентов или адсорбентов, возможно осуществлять за счет солнечной энергии, если ее достаточно для осуществления основного этапа процесса регенерации рабочего вещества. Это могут быть закрыты циклы, например, с растворами бромистого лития в воде или растворами аммиака в воде, или открытые циклы, в которых хладагентом является вода, сочетаются с атмосферой. Остановимся кратко на некоторых абсорбционных солнечных охладителях, основанных на использовании водного раствора бромистого лития, раствора аммиака в воде и на осушительно-уволожнювальном кондиционировании воздуха. На сегодня абсорбционное кондиционирования за счет энергии от солнечных коллекторов и систем, аккумулирующих - наиболее простой подход к использованию солнечной энергии для кондиционирования (рис. 2.11). Сущность этой системы или ее разновидностей заключается в том, что генератор абсорбционных холодильников обеспечивается тепло от коллекторно-аккумуляторной системы.

Большинство используемых установок - бромистолитиеви машины водоохлаждаемый абсорбером и конденсатором. Поддержка температур в генераторе в пределах, обусловленных характеристиками плоских коллекторе) является решающим фактором, определяющим наряду с другими такие параметры, я эффективность теплообменников, температура охладителя.

Рис. 2.11. / - солнечный коллектор; 2 - бак-аккумулятор; 5 - дополнительный источник энергии; 4 - конденсатор; 5 - испаритель; б - абсорбер; 7 - теплообменник; 8 - генератор; 9 - трехпозиционный кран

Обычно в процессе солнечного кондиционирования используется водоохлаждаемый абсорбер и конденсатор, вызывает необходимость в градирни.

Разности давлений между линиями высшего и низшего уровней в системе ИлВг-Н20 весьма ограничены, так что эти системы могут использовать паровоздушные насосы и гравитационное возврата раствора из абсорбера в генератор. Поэтому отпадает необходимость в механических нагнетателях раствора с линии низкого в линию высокого давления.

Многие машины показывают достаточно стабильные значения коэффициента полезного действия, представляющий собой отношение холодопроизводительности к энергии, подведенной к генератору, как функцию изменения температуры генератора от рабочего уровня, обеспечиваемого минимумом соответствующих условий. Коэффициент полезного действия бромистолитиевих холодильников находится в пределах 0,6 ... 0,8. Если вода используется как охладитель, температуры в генераторе могут находиться в пределах 348 ... 368 К. Изменение температуры в генераторе, обеспечиваемая за счет солнечной энергии, приводит к изменению производительности холодильника. Температура теплоносителя, греющей должна быть выше, чем температура в генераторе. Здесь кроется некоторая несовместимость между необходимостью повышения температурного уровня и верхней границей температуры воды в накопителе танкера системы солнечного водонагревателя, не рассчитаны на высокое давление. К тому же температура 373 К является предельной для многих солнечных коллекторов и, кроме того, возникает необходимость в охлаждающих башнях.

В ранних экспериментах по созданию бромистолитиевих холодильников использовались промышленные абсорбционные машины без каких-либо переделок с учетом использования солнечной энергии. В дальнейшем холодильники стали меняться путем реконструкции генератора. Специальные эксперименты по применению солнечных установок большой производительности для обеспечения комфортных условий школы в Атланте были проведены Вестингхаузською электрической корпорацией. Исследование технико-экономических показателей подобных систем показали, что в южных районах комбинированное использование и охлаждения экономически более выгодно, чем отдельное отопление и охлаждение. Дальнейшие исследования направлялись на упрощение системы, облегчение ЕЕ эксплуатацию.

Система водоаммиачного холодильника похожа на ту, что изображена на рис. 2.11, за исключением того, что ректификационные секции должны быть соединены с верхней частью генератора для улавливания водяных паров, идущих от испарителя в конденсатор. Основные процессы в растворе сходны с процессами, происходящими в системе ЬиВг-Н20, однако давление и перепад давлений в системе намного выше. Для перекачки раствора из абсорбера в генератор нужны механические насосы. Во многих случаях у испытуемых установках конденсатор и абсорбер охлаждаются воздухом, при этом в генераторе температура находится в пределах 398 ... 443 К. Температура конденсации для кондиционеров с воздушным охлаждением соответствует более высоким температурам в генераторе, чем соответствующие параметры для системы с жидкостным охлаждением.

Есть достаточно совершенные установки, работающие за счет солнечной энергии с водоаммиачных системами. Температуры, которые необходимо создать в генераторах коммерческих холодильников, слишком высокие для современных плоских коллекторов, поэтому нужны фокусируя коллекторы и возникает необходимость создания как дешевых коллекторов такого типа, так и систем наблюдения за солнцем. Работы по водоаммиачных солнечными установками является продолжением исследований циклов, используют растворы с высокой концентрацией 1ч * Нз и направленных на уменьшение температур в генераторах. При создании солнечных холодильников наметились два пути: первый - прямое копирование существующих до сих пор холодильных машин, в том числе и абсорбционных, заменяя только энергетический источник, обеспечивающий работу генератора, второй - реконструкция генератора позволило уменьшить уровень температуры, обеспечивающей его работу и тем самым увеличить коэффициент использования солнечной энергии.

Институтом технической теплофизики НАН Украины было предложено осуществить регенерацию водно-солевых растворов абсорбционных холодильных установок путем испарения воды из них в окружающую среду, то есть сделать установки раздельного типа. При этом нагретый раствор приводится в соприкосновение с атмосферным воздухом в контактном массообменных аппарата, и испарение происходит за счет подвода тепла от внешнего источника. Потери хладагента при этом заполняют водопроводной водой. Величины потерь примерно эквивалентны потерям воды при отводе тепла конденсации в градирне. Применение такого способа регенерации (воздушной десорбции) позволяет уменьшить температуру раствора при регенерации на 12 ... 14 К, соответственно увеличивает КПД гелионагривача (солнечного коллектора с однослойным остекление и нейтральным поглотителем) на 30%.

Дальнейшим усовершенствованием установок с воздушной десорбцией появилось предложение до совмещения процессов нагрева солнечными лучами раствора и восстановление его концентрации. При этом раствор стекает тонкой пленкой по зачерненный поверхности (например, по кровле дома), омываемой наружным воздухом. В этом случае уменьшения температуры регенерации упрощает и, следовательно, удешевляет гелионагривачи и всю систему в целом. Для таких устройств как абсорбент обычно выбирают водный раствор хлористого лития. В отличие от раствора бромистого лития его использование позволяет получить холодную воду с температурой ниже 283 ... 285 К. Он обладает рядом преимуществ: меньшим удельным весом и рабочей концентрацией, пониженной коррозионной активностью, химической стабильностью (в процессе воздушной десорбции при контакте с воздухом в бромистолитиевому растворе возможно образование карбоната лития).

Принципиальная технологическая схема абсорбционной холодильной солнечной установки показана на рис. 2.12. Эта установка предназначена для охлаждения трехэтажного жилого дома. Как регенератор раствора используется односкатная крыша, ориентированный на юг, угол наклона его к горизонту около 5 °, площадь 180 м2.

Рис. 2.12. / - регенератор абсорбента; 2 - фильтр; С - теплообменник; 4 - вакуумный насос; 5,6- абсорбер - испаритель; 7-кондиционер; 8 - устройство вододобавкы; 9 - насос для кондиционной воды; 10- насос для перекачки хладагента (воды); 11 - линейный ресивер; 12- насос раствора абсорбента; 13 - градирня; 14 - насос для охлаждающей воды

Установка состоит из генератора раствора /, фильтра 2, теплообменника 3, абсорбера-испарителя 5-6 с линейным ресивером //, дренажного бака, поплавки регулятора, устройства вододобавкы в испаритель 8, вакуумнасоса 4, насосов для раствора, для хладагента (вода), для охлаждающей воды, для кондиционной воды, а также с запорных, регулирующих арматурных органов и др.

Установка работает следующим образом: кондиционная вода охлаждается в теплообменных трубах испарителя 6, паровая поверхность которого орошается кипящей при вакууме водой - хладагентом. Водяные пары, образующиеся абсорбируются в абсорбере 5 раствором хлористого лития, который при этом разбавляется. Теплота абсорбции отводится оборотной водой, поступающей из градирни. Воздух и другие газы, не конденсируются, удаляются из блока испарителя вакуумным насосом 4. Для восстановления концентрации слабый раствор подается на солнечный регенератор / через теплообменник 5, где предварительно нагревается. Крепкий раствор после регенерации сливается через воронку и направляется на абсорбцию. Он предварительно охлаждается в теплообменнике С, отдавая теплоту встречному потоку слабого раствора и воде с градирни. После этого слабый раствор поступает на орошение охлаждаемых трубок воздухоохладителя. Парогазовая смесь, удаляется из блока абсорбер-испаритель, перед поступлением в вакуумный насос омывает эти трубки и обогащается воздухом.

Раствор поступает в систему из регенератора, очищается от загрязнений в гравитационном фильтре 2. Кроме того, в схеме предусмотрены фильтры тонкой очистки от взвешенных частиц, продуктов коррозии и др. Как регенератор используется специальным образом оборудована поверхность крыши.

Устройство над поверхностью регенератора прозрачного экрана хотя и удорожает его, но предохраняет раствор от загрязнения, исключает отнесение раствора и позволяет нагреть его до более высокой температуры (не ухудшая условия регенерации). В этой установке кровля дома, орошаемая раствором, накрытая однослойным остеклением, образующей с кровлей щелевой канал для прохода воздуха. На входе в канал воздух очищается в фильтрах и, двигаясь против движения пленки, увлажняется поглощая воду, которая испаряется из раствора.

После регенерации раствор, имеет температуру около 338 К охлаждается в теплообменнике водопроводной водой используемой затем для горячего водоснабжения. Предварительно эта вод; нагревается в специально выделенной секции охладителя абсорбера. ^ Этом случае сокращается расход охлаждающей воды и соответственно потерь "теплоты в окружающую среду. Кровля имеет довольно значительный уклон, таи что движение воздуха осуществляется за счет разницы удельных весов нагревающего и наружного воздуха.

В открытом регенераторе в абсорбент попадает и некоторое количество воздуха, что негативно сказывается на процессе абсорбции и вызывает усиление коррозии аппаратов, поэтому холодный крепкий раствор после теплообменника поступает в деаэратор, из которого газы, не сконденсировались, постоянно удаляются небольшим насосом. Деаэратор соединяется с абсорбером. После деаэрации крепкий раствор смешивается со слабым и направляется на орошение теплообменных труб абсорбера.

Покрытие регенератора выполняется с гидрофильных материалов, обеспечивает образование тонкой сплошной пленки стекающего абсорбента. Даже на материалах, смачиваются хорошо, минимальная площадь орошения составляет 80 ... 100 кг / п. м, что вызывает необходимость рециркуляции раствора в регенераторе, которая осуществляется специальным насосом.

Во время дождя установка не работает, раствор поступает в абсорбер. Первые порции дождевой воды, содержащие много хлористого лития, собираются в баке емкостью 4 м остальная вода направляется в канализацию.

Используется аккумулятор тепла или холода большой емкости, рассчитанной примерно на 2 часа.

Другой класс абсорбционных кондиционеров использует комбинацию теплообменников, испарительных холодильников и осушителей. Эти системы берут воздуха или снаружи, или из помещения, осушают и затем охлаждают при испарении. Теплообменники используются в качестве устройств для сохранения энергии.

Основная идея осушительных-охлаждающих циклов может быть проиллюстрирована на примере "системы контроля окружающей среды" (рис. 2.13 а). Наиболее удобным способом визуализации процессов, происходящих в системе, является изображение в Психрометрический диаграмме изменения состояния воздуха, прошедшего через систему.

Рис. 2. 13. а - схема солнечной системы; б - солнечная система в Психрометрический диаграмме для идеальных условий; / - Вентилятор; // - Роторный теплообменник; /// - Роторный теплообменник; IV- роторный теплообменник; V- увлажнитель

Система в описываемом случае использует 100% наружного воздуха. Модификация этой системы, так называемый рециркуляционный вариант, пропускает на рециркуляцию через систему кондиционные выходящего воздуха из помещения.

В Психрометрический диаграмме обработки воздуха (рис. 2.13 6) наружный воздух, что параметры точки /, проходит через роторный теплообменник, после чего имеет более высокую температуру и более низкую влажность - точка 2. Охлаждение воздуха, прошедшего роторный теплообменник, осуществляется в соответствии с точки 3. Затем оно входит в испарительный теплообменник (холодильник) и охлаждается до состояния 4. Воздух входит в дом, тепловая нагрузка которого определяется разницей состояний точки 4 и точки 5. Воздух, покидает дом в состоянии и входит в испарительный холодильник и охлаждается к состоянию 6. При идеальных условиях температура в состоянии бы будет такой же, как и в состоянии и. Воздух входит в роторный теплообменник и нагревается до состояния 7, что при идеальных условиях будет соответствовать температуре состояния 2.

Дополнительно в этом случае солнечная энергия используется для нагрева воздуха от состояния 7 до состояния точки 8. Воздух с параметрами точки 8 входит в роторный теплообменник и охлаждается до состояния точки 9, при этом содержание влаги увеличивается.

Это диаграмма идеального процесса, в котором в испарительных холодильниках процесс идет по линии насыщения и эффективность тепло- и массообмена одинакова. Процесс тепло- массообмена в роторном теплообменнике достаточно сложный. В отечественной практике кондиционирования метод осушки воздуха с помощью солеводяних растворов хлористого лития и хлористого кальция включает такие процессы. Воздух обрабатывается в камере с насадкой концентрированными растворами указанных солей. В результате поглощения водяных паров оно осушается, а раствор становится менее концентрированным слабым. Для повторного применения слабый раствор необходимо восстанавливать до заданной концентрации путем выпаривания - регенерации раствора. Для этих целей используются кипятильники, после чего раствор должен быть охлажден.

Схема осушительно-увлажняющей установки представлена на рис. 2.14. Она состоит из камеры с раствором / и водой 2 с вентилятором 8, теплообменника С, градирни 4 с вентилятором 10 емкости для раствора 5 и воды 6, солнечного регенератора 7, теплообменника 8 с резервуаром для воды 15 насосов для раствора 11 и для воды 12.

Рис. 2.14. 1,2 камеры соответствии с раствором и водой; 3,8 - теплообменники; 4 - градирня и 5, б - емкости для раствора и воды; 7 - солнечный регенератор; 9,10 - вентиляторы; //, 12 - насосы; 13, 14, 16,17- вентиляторы; 15 - емкость для сбора горячей воды 18 - застекленная часть регенератора

Установка работает следующим образом. Обрабатываемую приточный воздух, проходя последовательно камеры 1-2, поступает в охлаждаемое помещение. В камере / за счет передачи раствора воздуха явной и скрытой теплоты температура его снижается и при адиабатическом увлажнении в камере 2 его температура снижается до 288 ... 293 К при относительной влажности 85 - 90%. Смешиваясь с внутренним воздухом, приточный воздух приобретает среднюю для помещения температуру 297 ... 298 К, при этом его относительная влажность снижается до 50 - 60%. За счет тепла, полученного от воздуха, температура раствора в камере / увеличивается до 303 ... 308 К, а его концентрация снижается и раствор поступает в емкость 5, откуда с помощью насоса прогоняется через теплообменник 3 и снова в камеру /. Другая небольшая часть тем же насосом подается в солнечный регенератор 7. До поступления в камеру / раствор в теплообменнике С охлаждается водой, которая в свою очередь передает полученное от раствора тепло окружающему пространству с помощью обработки ее в градирне 4. Часть раствора после регенерации и нагрева поступает в емкость 5 с раствором повышенной концентрации.

Нагретая в резервуаре 15 вода может использоваться для бытовых нужд. Объединение устройств различного назначения в одной установке повышает ее энергетическую эффективность.

.

Советы по экономии электроэнергии на кондиционеры: в соответствии с Китайской национальной метод управления энергоэффективности, EER относится к соотношение холодопроизводительности и потребляемой мощности, что только данные, используемые для оценки энергосберегающих кондиционеров чем она больше.это экономит электроэнергию. Если два переменного тока с той же потребляемой мощности, тот, с большей мощностью лучше по экономии электроэнергии.

Рабочие характеристики

Высокая эффективность, энергосбережение, удобно и экономия денег, превышающие национальные первого класса стандарт энергии.

Прочный и долговечный, гладкая running.Low загруженных работой компрессора продлить его продолжительность.

Здоровый и комфортный, постоянная температура и ведение болезни от кондиционера.

Это не преобразование частоты кондиционер, но превосходит его, потому что преобразование типа начинает экономить энергию, когда температура в помещении достигает заданного значения, а гибридные солнечные кондиционер работает в оптимальном состоянии сразу же после старта и достигает sanme эффекты традиционных кондиционер с меньшим энергопотреблением.

Супер роскошный вид украсят ваш home.Indoor панель принимает алюминиевого сплава и волочения металла цвет совет, чтобы сделать Ваш дом более сверкающим.

Автоматическое открытие и закрытие пыле воздуха на выходе.

Простота установки, так же как традиционные кондиционер.

При сильном адаптивность, Chuanglan гибридные солнечные кондиционер может работать на очень низких и высоких температур от -7 ℃ до 53 ℃.

Превышение национальных стандартов и применимы ко всем видам окружающей среды.

Высокая производительность японских компрессоров марки

Прочный и долговечный, плавный ход. Низкой нагрузкой работы компрессора продлить его продолжительность.

Четыре раза Теплообменник

В качестве одного из основных компонентов кондиционера, Chuanglan гибридный солнечный кондиционер принимает в четыре раза теплообменник (принимать Верховный Тихая в качестве примера) теплообменник эффективная площадь увеличивается на 20-40% больше, чем V-образные и плоские теплообменники, таким образом,охлаждения и нагрева эффекта значительно улучшилось.

Высококачественная внутренняя труба медная тему

По сравнению с обычной медной трубы, теплообменного области внутренней резьбой медь труб значительно увеличенные так же обмен эффект. В то же время, он может сопротивляться глазури и увеличить исходное способность при низкой температуре.

Гидрофильные алюминиевой фольги, чтобы предотвратить появление воды мосту, таким образом, чтобы обеспечить эффективность теплообмена.

Существует несколько видов кондиционеров, тем или иным образом использующих солнечную энергию, чтобы снизить или полностью отказаться от потребления электроэнергии из сети. О принципе работы таких устройств, получивших название «солнечные кондиционеры», и пойдет речь в этой статье.

Несмотря на некоторую абсурдность понятия «солнечный кондиционер» (традиционно солнце ассоциируется с теплом, а кондиционер - с холодом), оно вполне объяснимо, ведь именно в солнечный день потребность в кондиционировании наиболее велика. Таким образом, привязать работу кондиционера к солнцу было бы весьма логично: есть солнце - нужно охлаждение, нет - нет и потребности в холоде.

Принципиально солнечные кондиционеры можно разделить на две группы. Представители первой, активные солнечные кондиционеры, используют солнечную энергию напрямую - как тепловую. В свою очередь, пассивные солнечные кондиционеры используют энергию Cолнца, преобразованную, как правило, в электричество.

Солнечные кондиционеры с влагопоглотителями

Обычно около 30 % полезной холодильной мощности кондиционера (а в некоторых случаях до 50 %) тратится впустую - на образование конденсата, который затем просто сливается в канализацию.

Избежать появления конденсата, которое происходит из-за того, что температура испарителя ниже точки росы поступающего из помещения воздуха, можно, либо повысив температуру испарителя, либо понизив точку росы. Первый способ приводит к менее эффективному охлаждению воздуха, а потому требует увеличения его расхода. К тому же лишнюю влагу из воздуха все равно нужно удалять.

Второй способ - понижение точки росы воздуха в помещении - можно реализовать несколькими путями, и один из них - предварительно осушить подаваемый в кондиционер воздух.

Солнечные кондиционеры с влагопоглотителями (десикантами) относятся к активным солнечным кондиционерам и имеют повышенную энергоэффективность за счет невыпадения конденсата. Влага удаляется из потока воздуха влагопоглотителями перед испарителем. Таким образом, в испаритель попадает осушенная воздушная масса с точкой росы ниже температуры испарителя, чем и обеспечивается гарантия невыпадения конденсата.

Влагопоглотитель (это может быть, например, силикагель) вращается на диске. Поглотив влагу из внутреннего воздуха, десикант диском выносится на открытое для лучей солнца пространство, где выпаривается впитанная влага. Тем самым влагопоглотитель регенерируется, и диск возвращает его к контакту с внутренним воздухом.

Дополнительно отметим, что при описанной выше схеме в солнечные дни режим осушения воздуха не требует включения парокомпрессионного холодильного цикла кондиционера, что ведет к существенному энергосбережению: электроэнергия затрачивается только на вращение диска с влагопоглотителем.

Другим примером активных солнечных холодильных машин являются абсорбционные чиллеры, использующие солнечное тепло. Как известно, в абсорбционных машинах рабочим веществом является раствор из двух, иногда трех компонентов. Наиболее распространены бинарные растворы из поглотителя (абсорбента) и хладагента, отвечающие двум главным требованиям: высокая растворимость хладагента в абсорбенте и значительно более высокая температура кипения абсорбента по сравнению с хладагентом.

Для получения холода в абсорбционных холодильных машинах требуется тепловая энергия (как правило, используется бросовое тепло предприятий), которая подводится к генератору, где из рабочего вещества выкипает практически чистый хладагент, ведь его температура кипения гораздо ниже, чем у абсорбента.

Несмотря на то что абсорбционные чиллеры - весьма перспективная область развития холодильной техники, их применение ограничивается, как правило, промышленными объектами, так как только там есть достаточное количество бросового тепла.

В то же время в абсорбционных солнечных кондиционерах тепловую энергию, подводимую к генератору, получают от Cолнца. Это позволяет расширить область применения абсорбционных машин и использовать их не только в промышленном секторе. Учитывая, что тепловая энергия, получаемая от Cолнца, бесплатна, экономичность подобных решений в эксплуатации очевидна.

Фотоэлектрический солнечный кондиционер

В принцип работы фотоэлектрических солнечных кондиционеров заложено, пожалуй, наиболее очевидное использование солнечной энергии: питание кондиционера от солнечной батареи.

Действительно, о солнечных электростанциях, использующих возобновляемый источник энергии - энергию Cолнца, известно достаточно давно, и сказано о них очень многое. Ряд проектов уже воплощен в жизнь и успешно эксплуатируется в различных странах.

В более скромных масштабах солнечные батареи используются для энергоснабжения небольших объектов, например, коттеджей: от установленных, как правило, на кровле фотоэлектрических панелей получают электричество, расходуемое на бытовые нужды.

Еще реже от солнечных батарей предлагается запитывать различное оборудование. Если учесть, что в отличие от другой бытовой техники кондиционеры используются именно в солнечные дни, то было бы логично подключить к солнечной батарее именно кондиционер.

Подобные решения уже предлагаются многими зарубежными производителями оборудования для кондиционирования воздуха, например, Sanyo, Mitsubishi, LG. Однако очевидно, что кондиционер, будучи энергоемким оборудованием, потребует размещения достаточно большого количества фотоэлектрических панелей. Поэтому разные производители используют солнечные батареи по-разному: для запитывания только вентиляторов, для частичного электроснабжения кондиционера или для его полного обеспечения электроэнергией.

В любом случае к кондиционеру подводится силовой кабель от электросети, однако приоритет по источнику энергии отдается солнечным батареям. Например, для питания солнечных кондиционеров компаний GREE и MIDEA используется постоянный ток. В обычном режиме ток поступает от фотоэлектрических панелей, а при отсутствии солнца - через выпрямитель из электросети здания.

Однако отметим, что КПД современных фотоэлектрических панелей не превышает 25 %, что нельзя назвать эффективным преобразованием энергии. Даже несмотря на разработку комбинированных батарей на основе кристаллического кремния, КПД которых достигает 43 %, по-прежнему более половины энергии теряется в процессе ее конвертации. Именно поэтому считается, что фотоэлектрические солнечные кондиционеры уступают в эффективности, например, абсорбционным.

Экологичность как двигатель солнечного кондиционирования

Сегодня большое внимание уделяется экологичности тех или иных решений. Особо остро экологический вопрос стоит в области кондиционирования.

Пока солнечные климатические системы еще мало распространены. Однако направленность мировых усилий на снижение выбросов углекислого газа в атмосферу и рост цен на традиционные энергоносители могут стать хорошим стимулом для развития солнечной климатической техники.

Очевидно, что энергопотребление системы кондиционирования при параллельном использовании солнечной энергии снизится. Кроме того, использование тепловой энергии Cолнца может расширить область применения абсорбционных холодильных машин, работающих на безопасных рабочих жидкостях - воде или соляных растворах.

Юрий Хомутский, технический редактор журнала «МИР КЛИМАТА»

Каждый год с приближением лета увеличивается нагрузка на электрические сети. Летнюю жару плохо переносят не только люди, но и техника. Начинает сбоить электроника, все чаще включаются вентиляторы, холодильники работают почти непрерывно, открываются настежь окна, устраиваются сквозняки. И хотя это мало помогает, небольшой ветерок в помещении создает видимость более комфортной температуры, легче переносится жара. В этот период резко увеличивается спрос на различные установки микроклимата – наружные и напольные кондиционеры, вентиляторы с системой охлаждения воздуха.

Чтобы обеспечить комфортную температуру в квартире, достаточно одного кондиционера средней мощности. В офисных помещениях, где большие площади и объемы комнат, устанавливают по несколько кондиционеров на каждую комнату. Естественно, что установка большого количества этих приборов влечет за собой значительное увеличение нагрузки на электрическую сеть. Да и квартирный кондиционер, работающий практически круглосуточно, достаточно нагружает сеть. К тому же, при его мощности в 2500 ватт значительно увеличиваются расходы за электроэнергию.

Кроме стационарных кондиционеров, есть еще и такие, которые устанавливаются в автомобилях, жилых домиках на колесах, на катерах. Во время работы эти кондиционеры забирают часть мощности двигателей или потребляют энергию аккумуляторов. Чтобы снизить нагрузку на электрические сети в пиковые периоды, чтобы не допускать преждевременного разряда аккумуляторов, но вместе с тем обеспечить комфортные температурные условия, многие фирмы начали выпускать кондиционеры на солнечных батареях. В таких устройствах гелиевые панели либо представляют собой составную часть неразборной конструкции, либо устанавливаются отдельно, соединяясь с кондиционером специальным силовым кабелем.

Кондиционеры испарительного типа

Принцип работы кондиционеров испарительного типа предельно прост. В конструкцию входит открытая емкость, наполняемая водой. Вертикально устанавливается воздушный фильтр, представляющий собой несколько слоев пористых прокладок. Вода из емкости небольшим насосом подается в распыляющее устройство, установленное над воздушным фильтром. Из распыляющего устройства вода, разделенная на мелкие капли, попадает на воздушный фильтр, через который вентилятором подается теплый воздух. Этот воздух, проходя через прокладки фильтра, захватывает с собой капельки воды, которые очень быстро, практически мгновенно, испаряются, так как площадь их поверхности и объем чрезвычайно малы. При этом воздух, проходящий через фильтр, не только охлаждается, но и увлажняется.

К преимуществам такого кондиционера следует отнести его невысокую стоимость, простоту эксплуатации, небольшое энергопотребление, очищение и увлажнение воздуха. К недостаткам следует отнести необходимость периодического пополнения запасов воды, которая будет расходоваться на увлажнение прокладок фильтра. Недостатком прибора является также и то, что он малоэффективен в условиях повышенной влажности.

Схема кондиционера испарительного типа

Кондиционер испарительного типа Diablo Solar

Фирма Mountain Concepts выпустила Diablo Solar – небольшой кондиционер испарительного типа, работающий от солнечных батарей. Он отличается не только высокой производительностью, но и своей экономичностью. Кондиционер работает от гелиевых панелей, которые обеспечивают напряжение питания 24 вольт постоянного тока. Наличие аккумулятора позволяет использовать устройство и в темное время суток. Несмотря на свои небольшие размеры и мощность, этот кондиционер обеспечивает создание комфортного микроклимата в помещениях площадью до 30 квадратных метров. Его максимальная производительность достигает 3000 кубометров воздуха в час.


Diablo Solar с блоком солнечной батареи

В приборе предусмотрена система дистанционного управления, автоматический воздушный переключатель, установка времени срабатывания и выключения. Хорошо сбалансированный вентилятор работает практически бесшумно. Температура влажного охлажденного воздуха может быть на 8°С – 12°С ниже температуры воздуха, подаваемого снаружи.


Основные технические данные:

  • Производительность – 3000 м³/час;
  • Регулировка – 3 ступени;
  • Емкость бака – 20 литров;
  • Расход воды – 3 л/час;
  • Напряжение – 24 В постоянного тока;
  • Мощность – 80 ватт;
  • Размеры помещения – 30 м²;
  • Вес – 20 кг;
  • Размеры 560+350х690 мм

В комплект поставки входят: модуль солнечных батарей мощностью 90 ватт, два аккумулятора по 35 ампер-часов, инвертор, контроллер заряда, кабель – 3 метра, соединительные разъемы.

Стоимость комплекта – до 25000 рублей.

Кондиционеры компрессионного типа

Принцип работы таких кондиционеров точно такой же, как и у холодильников. И состоят эти кондиционеры из таких же элементов – испарителя, конденсатора, компрессора. В качестве хладагента используется легкокипящий фреон. Именно от него зависит охлаждение воздуха в помещении. Как и у любой другой жидкости, температура кипения фреона находится в прямой зависимости от давления. Чем ниже давление, тем ниже температура кипения.

Жидкий фреон вскипает в испарителе, где давление низкое настолько, что парообразование происходит при температуре от +10°С до +18°С. При этом происходит отбор тепла у входящего воздуха. Нагретый парообразный фреон поступает в компрессор. Там давление повышенное, а следовательно, и температура кипения выше. Здесь фреоновый пар конденсируется в жидкость и возвращается в испаритель. Цикл повторяется бесконечно.


Схема кондиционера компрессионного типа

Вентилятор выбрасывает теплый воздух наружу. Внутри помещения воздух прогоняется через испаритель, выходя из кондиционера уже охлажденным до заданной температуры.

Гибридный кондиционер на солнечных батареях SUNCHI ACDC 12

Компания Jiangsu Sunchi New Energy Co., Ltd. выпускает мощный гибридный кондиционер, работающий на солнечных батареях. Этот кондиционер компрессионного типа является универсальным прибором и может применяться для создания комфортного микроклимата в квартирах, офисах, производственных помещениях. Он может работать как на охлаждение, так и на подогрев воздуха. Тепловая мощность на охлаждение составляет 11000 BTU/h, что в переводе на привычные для нас единицы измерения равно примерно мощности в 3.2 киловатт, в то время, как тепловая мощность на обогрев составляет 12000 BTU/h или 3.5 киловатт. Этой мощности хватает для того, чтобы обслуживать помещение площадью до 75 квадратных метров.


Кондиционер на солнечных батареях SUNCHI ACDC 12

В комплект поставки входит сплит-система, три солнечные панели мощностью по 250 ватт каждая, инвертор, контроллер заряда аккумуляторов, аккумуляторная батарея (по желанию покупателя), соединительные кабели, трубопроводы, пульт дистанционного управления.

Основные технические характеристики:

  • Электропитание – 220 вольт 50 Гц;
  • Мощность одной солнечной батареи – 250 ватт;
  • Напряжение постоянного тока – 30 вольт;
  • Тепловая мощность на охлаждение –11000 BTU/h (3.2 кВт);
  • Мощность в режиме максимального охлаждения – 920 ватт;
  • Номинальная мощность в режиме охлаждения – 705 ватт;
  • Тепловая мощность на обогрев –12000 BTU/h (3.5 кВт);
  • Мощность в режиме максимального обогрева – 1025 ватт;
  • Номинальная мощность в режиме обогрева – 836 ватт;
  • Хладагент – фреон R410A;
  • Размеры внутреннего блока – 902х165х284 мм;
  • Размеры наружного блока – 762х284х590 мм;
  • Трехскоростной двигатель Panasonic – 1250/900/700 об/мин;
  • Стоимость – 65000 рублей (без аккумуляторов).

Кроме стационарных кондиционеров на солнечных батареях, различные фирмы выпускают мобильные устройства. Например, для автомобильных жилых домиков.


Дом на колесах с солнечными батареями

Солнечные батареи, установленные на крыше, обеспечивают энергией все электрооборудование, включая кондиционер, который создает благоприятную атмосферу в салоне, не расходуя при этом энергию аккумуляторов или генератора автомобиля.