Анодное питание умножитель напряжения. Удвоитель напряжения: особенности и принцип работы. Как удвоить напряжение постоянного тока. Принцип работы удвоителя

При необходимости получения постоянных напряжений, кратных по величине питающему их переменному напряжению питания, во многих областях радиотехники находят применение выпрямители с умножением напряжения (УН). Они подразделяются на однополупериодные и двухполупериодные, последовательного и параллельного типов.

Схема однополупериодного выпрямителя

На рис.1 показана схема однополупериодного выпрямителя с удвоением напряжения. Схема может применяться как самостоятельно, так и в качестве составляющего элемента многозвенных умножителей последовательного типа.

Рис. 1. Схема однополупериодного выпрямителя с удвоением напряжения.

На рис.2 показана параллельная схема двухполупериодного выпрямителя с удвоением напряжения (схема Латура). Данный УН как выпрямитель можно рассматривать как два однополупериодных, включенных (вторичная обмотка трансформатора Т1 - диод VD1 - конденсаторы С1, С3; вторичная обмотка трансформатора - диод VD2 конденсаторы С2, С4) последовательно. Удвоенное напряжение на его выходе получается в результате сложения раздельно выпрямленных разнополярных напряжений.

Рис. 2. Параллельная схема двухполупериодного выпрямителя с удвоением напряжения (схема Латура).

Последовательный многозвенный однополупериодный выпрямитель

Последовательный многозвенный однополупериодный выпрямитель (рис.3) с умножением напряжения чаще всего применяется при малых (до 10...15 мА) токах нагрузки.

Его схема состоит из однополупериодных выпрямителей - звеньев, в следующем алгоритме - одно звено (диод и конденсатор) - просто од-нополупериодный выпрямитель, состоящий из диода и конденсатора (выпрямителя и фильтра), два звена - умножитель напряжения в два раза, три - в три раза и т.д.

Величины емкости каждого звена в большинстве случаев одинаковы и зависят от частоты питающего УН напряжения и тока потребления .

Рис. 3. Схема многозвенного однополупериодного умножителя напряжения.

Физические процессы увеличения напряжения в многозвенном однополупериодном (рис.3) УН удобно рассматривать при подаче на него переменного синусоидального напряжения. Работает УН следующим образом.

При положительной полуволне напряжения на нижнем выводе вторичной обмотки Т1 через диод VD1 течет ток, заряжая конденсатор С1 до амплитудного значения.

При положительной полуволне питающего напряжения на нижнем выводе вторичной обмотки Т1 к аноду VD2 прикладываются сумма напряжений на вторичной обмотке и напряжение на конденсаторе С1; в результате чего через VD2 проходит ток, потенциал правой обкладки С2 относительно общего провода увеличивается до удвоенного входного напряжения и т.д. Отсюда следует, что чем больше звеньев, тем большее постоянное напряжение (теоретически) можно получить от УН.

Для правильного понимания образования и распределения потенциалов, возникающих на радиоэлементах при работе УН, предположим, что один входной импульс (ВИ) полностью заряжает конденсатор С1 (рис.3) до напряжения +U.

Представим второй положительный импульс, возникающий на верхнем выводе Т1 и поступающий на левую по схеме рис.3 обкладку С1 так же в виде заряженного до напряжения +U конденсатора (Си).

Их совместное соединение (рис.4) примет вид последовательно соединенных конденсаторов. Потенциал на С1 относительно общего провода увеличится до +2U, VD2 откроется, и до +2U зарядится конденсатор С2.

Рис. 4. Схема умножителя напряжения.

При появлении импульса величиной +U на нижнем выводе Т1 и суммировании его аналогичным образом с напряжением +2U на конденсаторе С2, через открывшийся VD3 на C3 появится напряжение +3U и т.д.

Из приводимых рассуждений можно сделать вывод, что величина напряжения относительно "общего" провода (рис.3) только на С1 будет равна амплитудному значению входного напряжения, т.е. +U, на всех же остальных конденсаторах умножителя напряжение будет ступенчато увеличиваться с шагом +2U.

Однако для правильного выбора рабочего напряжения используемых в УН конденсаторов имеет значение не напряжение на них относительно "общего" провода, а напряжение, приложенное к их собственным выводам. Это напряжение только на С1 равно +U, а для всех остальных оно независимо от ступени умножения равно +2U.

Теперь представим окончание времени действия импульса ВИ, как замыкание конденсатора Си (рис.4) перемычкой (S1). Очевидно, что в результате замыкания потенциал на аноде VD2 понизится до величины +U, а к катоду будет приложен потенциал 2U. Диод VD2 окажется закрытым обратным напряжением 2U-U=U.

Отсюда можно сделать вывод, что к каждому диоду УН относительно собственных электродов приложено обратное напряжение, не больше амплитудного значения импульса напряжения питания. Для выходного же напряжения УН все диоды включены последовательно.

Практические схемы УН для КВ и УКВ

Радиолюбителям-коротковолновикам, занимающимся самостоятельным изготовлением радиоаппаратуры, знакома проблема изготовления хорошего силового трансформатора для выходного каскада передатчика или трансивера.

Эту проблему поможет решить схема, показанная на рис.2. Достоинством практической реализации является использование готового, не дефицитного в связи с уходом старой техники, силового трансформатора (СТ) от унифицированного лампового телевизора (УЛТ) второго класса, который можно использовать в качестве силового трансформатора для питания усилителя мощности (УМ) радиостанции 3 категории.

Рекомендуемое техническое решение позволяет получить от СТ все необходимые выходные напряжения для УМ без каких либо доработок. СТ выполнен на сердечнике типа ПЛ, все обмотки конструктивно выполнены симметрично и имеют по половине витков на каждой из двух катушек.

Такой СТ удобен как для получения необходимого анодного напряжения, так и напряжения накала, т.к. допускает использование в качестве выходной в УМ как лампы с 6-вольтовым накалом (типа 6П45С), так и лампы (типа ГУ50) с 12-вольтовым накалом, для чего необходимо только соединить обмотки накала параллельно или последовательно. Применение же удвоителя позволит без затруднений получить напряжение 550...600 В при токе нагрузки порядка 150 мА.

Этот режим оптимален для получения линейной характеристики для лампы ГУ50 при работе на SSB. Соединив обмотки накала последовательно (используемые в ТВ для питания накала ламп и кинескопа) и применив УН по схеме рис.3, можно получить источник отрицательного напряжения смещения для управляющих сеток ламп (порядка минус 55.65 В).

В связи с небольшим током потребления по управляющей сетке, в качестве конденсаторов такого УН можно применить неполярные конденсаторы 0,5 мкФ на 100.200 В.

Эти же обмотки можно использовать и для получения напряжения коммутации режима "прием-передача". При построении выходного каскада с заземленной сеткой управляющая сетка подключается к источнику отрицательного напряжения (УН 55.65 В), катод подключается через дроссель (015 мм, n=24, ПЭВ-1 00,64 мм) к -300 В, а на анод подается +300 В, напряжение возбуждения подается на катод через конденсатор .

Можно подключить управляющую сетку непосредственно к -300 В, катод подсоединяется к -300 В через две параллельно соединенных цепочки, каждая из которых состоит из стабилитрона Д815А и 2-ваттного резистора 3,9 Ом . Напряжение возбуждения в этом случае подается на катод через широкополосный трансформатор.

Если выходной каскад УМ выполнен по схеме с общим катодом, то на анод подается +600 В, а на экранную сетку +300 В с точки соединения С1, С2, С3, С4 (выход -300 В соединен с "общим" проводом RXTX), что позволяет избавиться от мощных гасящих резисторов в цепи экранной сетки, на которых бесполезно выделяется большая тепловая мощность. На управляющую сетку подается отрицательное смещение -55.65 В с упомянутого ранее УН.

Для уменьшения уровня пульсаций питающего напряжения в выпрямителе можно также использовать и штатные дроссели (L1, L2, рис.2) фильтра источника питания того же УЛТ типа ДР2ЛМ с индуктивностью первичной обмотки порядка 2 Гн. Намоточные данные СТ и ДР2ЛМ приведены в .

Светотехника

Примером использования умножителя напряжения на четыре является схема для бесстартерного запуска ламы дневного света (ЛДС), показанная на рис.5, которая состоит из двух удвоителей напряжения, включенных последовательно по постоянному току и параллельно по переменному.

Рис. 5. Схема умножителя напряжения на четыре для бесстартерного запуска ламы дневного света.

Лампа зажигается без подогрева электродов. Пробой ионизированного промежутка "холодной" ЛДС происходит при достижении напряжения зажигания ЛДС на выходе УН. Поджиг ЛДС происходит практически мгновенно.

Зажженная лампа шунтирует своим низким входным сопротивлением высокое выходное сопротивление УН, конденсаторы которого в связи со своей малой величиной перестают функционировать как источники повышенного напряжения, а диоды начинают работать как обычные вентили.

2-обмоточный дроссель L1 (или два 1 -обмоточных) служит для сглаживания пульсаций выпрямленного напряжения. Падение напряжения питающей сети примерно равномерно распределяется на балластных конденсаторах С1, С2 и ЛДС, которые включены по переменному току последовательно, что соответствует нормальному рабочему режиму ЛДС.

При использовании в этой схеме ЛДС с диаметром цилиндрической части 36 мм зажигаются без каких-либо проблем, ЛДС с диаметром 26 мм зажигаются хуже, поскольку в связи с особенностями их конструкции напряжение зажигания даже новых ламп без подогрева накала может превышать 1200 В.

Телевидение

Известно, что выходной трансформатор строчной развертки (ТВС) является одним из напряженных узлов в телевизоре (ТВ). Как показывает эволюция развития схемотехники этого узла, с переходом от ламповых ТВ к цветным, в связи с увеличением мощности потребления от источника высокого напряжения (ток потребления черно-белого кинескопа с диагональю 61 см по второму аноду порядка 350 мкА, а цветного - уже 1 мА!), конструкторы ТВ постоянно искали пути повышения его надежности.

Схемотехнические решения получения высокого напряжения для питания второго анода кинескопа, которые использовались во всех моделях ламповых ТВ, имели место лишь в первых модификациях УЛПЦТ, а затем вместо повышающей обмотки ТВС (практически равной по числу витков анодной ) стали применять УН, которые по своей электрической прочности, а значит, и надежности значительно превышали аналогичные параметры намоточного узла.

Рис. 6. Схема умножителя напряжения с утроением, из телевизора Юность.

УН практически сразу же начали использовать в отечественных черно-белых переносных ТВ. К примеру, в ТВ "Юность 401" применена схема УН с утроением напряжения, показанная на рис.6.

При реализации практических схем УН имеет значение, с какой точкой схемы УН (1 или 2, рис.3) будет соединен "общий" провод схемы, в которой он будет использоваться, т.е. "фазировка" УН. В этом нетрудно убедиться с помощью осциллографа.

При проведении измерений на ненагруженном УН (рис.3) видно, что на нечетных звеньях величина переменной составляющей почти равна питающему напряжению, а на четных она практически отсутствует.

Поэтому при использовании в реальных конструкциях напряжений только с четных или только с нечетных звеньев умножения этот факт следует учитывать, подключая УН к источнику питания соответствующим образом.

Например, если "общий" провод (рис.3) соединен с точкой 2, то рабочие напряжения снимают с четных звеньев, если с точкой 1 - с нечетных.

При использовании одновременно четных и нечетных звеньев одного УН для получения постоянного напряжения от звена, в котором присутствует переменная составляющая, необходимо (особенно при емкостной нагрузке) между звеном умножителя и нагрузкой включить (рис.7) еще одно звено (диод и конденсатор).

Диод (VDd) в этом случае будет предотвращать замыкание через нагрузку переменной составляющей, а конденсатор (Cdf) выполнять функцию фильтра. Естественно, что конденсатор Cdf должен иметь рабочее напряжение, равное полному постоянному выходному напряжению.

Рис. 7. Включение еще одного звена к умножителю напряжения.

Не следует также забывать и об отрицательном влиянии на надежность работы многозвенных УН утечек, которые всегда имеются в радиоэлементах и материалах при их работе под большими напряжениями, что накладывает определенные ограничения на реально достижимую величину выходного напряжения.

Практический вариант схемотехники УН с умножением на три показан на рис.6; на четыре - на рис.4; на пять - на рис.8, рис.9; на шесть - на рис.10.

Рис. 8. Схема умножителя напряжения с умножением на четыре.

Рис. 9. Схема умножителя напряжения с умножением на пять.

Рис. 10. Схема умножителя напряжения с умножением на шесть.

В данной статье рассмотрена только часть схемотехники УН, применявшейся ранее и используемой в настоящее время в бытовой технике и радиолюбительском конструировании. Некоторые разновидности схемотехники УН, принципы работы которых аналогичны рассмотренным, опубликованы в .

В литературе и в общении с радиолюбителями часто приходится встречать путаницу касательно УН в терминах. К примеру, утверждается, что если на УН нанесена маркировка 8.5/25-1,2 или 9/27-1,3, то это утроитель напряжения. По схемотехнике эти УН являются умножителями на пять.

Маркировка несет информацию только о том, что при подаче на вход УН напряжения с амплитудой 8,5 кВ он обеспечивает получение на его выходе среднего значения постоянного (положительного) напряжения 25 кВ (при токе, потребляемом его нагрузкой, порядка 1 мА), т.е. маркировка говорит только о его входных и выходных параметрах.

Для получения высокого напряжения в ТВ используется импульсное напряжение, возникающее во вторичной обмотке ТВС во время обратного хода луча, следующее с частотой 15625 Гц, с длительностью (положительного) импульса около 12 мкс и скважностью около пяти.

При большом коэффициенте умножения значительную величину составляет также падение напряжения в прямом направлении на выпрямительных столбах, каковыми являются выпрямители УН. Например, для столба 5ГЕ600АФ, при работе его в качестве единичного выпрямителя, падение напряжения в прямом направлении составляет 800 В !

Из вышесказанного следует, что элементы УН к тому же служат для питающего импульсного напряжения также и интегрирующей цепью, снижающей относительно входного напряжения величину среднего значения постоянного напряжения (при токе нагрузки 1 мА) до величины приблизительно 5 кВ на одно звено. Именно эти факторы и являются основными, оказывающими влияние на величину выходного напряжения УН, а не примерная арифметика.

Исторически применение в качестве выпрямителей в первых образцах УН для ТВ селеновых диодов было определено достигнутым на тот момент уровнем технологии, их низкой себестоимостью, а также мягкой электрической характеристикой, позволяющей включать последовательно практически неограниченное количество диодов.

Очевидно, что селеновые выпрямители в связи с большим внутренним сопротивлением лучше, чем кремниевые, переносят кратковременные перегрузки. По мере совершенствования технологии изготовления кремниевых диодов в УН ТВ стали применять кремниевые столбы типа КЦ106.

При ремонтах ТВ даже предварительная оценка возможного наличия дефектов в выпрямительных элементах УН авометром невозможна. Физический смысл этого явления заключается в том, что для открывания одного кремниевого диода к нему необходимо приложить в прямом направлении разность потенциалов порядка 0,7 В.

Если, к примеру, вместо столба КЦ106Г использовать эквивалент из отдельно взятых диодов КД105Б (иобр=400 В), то для получения обратного напряжения 10 кВ потребуется цепочка из 25 последовательно включенных диодов, в результате чего необходимое напряжение для их открывания составит 17,5 В, а авометр позволяет приложить только 4,5 В!

Единственное, что можно однозначно констатировать после измерения УН авометром, - при проверке исправного УН стрелка омметра не должна отклоняться при измерении сопротивления между любыми его электродами.

Простое решение для предварительной проверки на работоспособность элементов УН методом вольтметра было предложено в . Суть предложения заключается в использовании для этой цели дополнительного источника (A1) постоянного напряжения (ИПН) 200...300 В и авометра, работающего в режиме вольтметра постоянного тока на пределе 200.300 В. Измерения производят следующим образом.

Авометр включают (рис.11) последовательно с одноименным полюсом ИПН и испытываемым выпрямительным столбом или УН. Алгоритм проверки.

Рис. 11. Схема включения авометра к выпрямительному столбу.

Если при измерении диода в противоположных направлениях показания вольтметра:

  • существенно различаются, то он исправен;
  • равны максимальному напряжению ИПН, то он пробит;
  • малы, то он оборван;
  • промежуточные величины говорят о наличии в нем значительных утечек.

Пригодность элементов испытываемого выпрямителя определяются эмпирически для конкретной марки статистическим методом сравнения с величинами падения напряжений, полученных практически при измерениях в прямом и обратном направлении исправного, аналогичного по марке столба или диода УН.

Радиолюбителям, которые занимаются ремонтом телевизионной техники на дому у заказчика, для предварительной проверки на работоспособность элементов УН методом вольтметра удобнее (исходя из массогабаритных размеров) использовать схему, показанную на рис.12 и предложенную в , которая питается через токоограничительные конденсаторы от сети 220 В.

Рис. 12. Схема питания с токоограничительными конденсаторами.

Схема хорошо зарекомендовала себя на практике, а по схемотехнике является выпрямителем с удвоением напряжения. Алгоритм измерений тот же. Эту же схему можно использовать и для устранения некоторых типов межэлектродных замыканий ("прострела") в кинескопе.

Довольно часто спрашивают, можно ли вместо УН8.5/25-1,2 устанавливать УН9/27-1,3? Совет один: можно, но осторожно! Все зависит от остроты возникшей проблемы и модификации телевизора. Для сравнения рассмотрим схемы

УН8.5/25-1,2 (рис.8) и УН9/27-1,3 (рис.9). Из схем УН видно, что в принципе прямая замена возможна, а обратная нет, так как они имеют разное количество входящих радиокомпонентов.

Поэтому при установке УН9/27-1,3 в ТВ УЛПЦТ поступают следующим образом: замыкают между собой выводы входа для импульсного напряжения и вывода "V"; провод от ТВС припаивают к соответствующему входу УН9/27; провод со знаком "земля" подсоединяют по кратчайшему расстоянию ко второму контакту ТВС; провод, идущий к варистору фокусировки, подсоединяют к выводу "+F", причем штатный конденсатор фильтра фокусировки С23* (согласно заводской схеме на ТВ) можно отключить, поскольку его функцию может выполнить конденсатор С1 (рис.10), который установлен внутри УН. К выводу "+" подсоединяют высоковольтный провод с "присоской" и ограничительным резистором Rф.

Получившееся в результате такой замены некоторое улучшение качества изображения на экране ТВ говорит совсем не о том, что это результат замены!

Причина заключается прежде всего в том, что в УН9/27-1,3 в качестве вентилей использованы кремниевые столбы типа КЦ106Г, падение напряжения на которых в прямом направлении (как упоминалось ранее) существенно меньше, чем на столбах типа 5ГЕ600АФ, которые входят в состав УН 8.5/25-1,2.

Именно на величину этой разницы и возрастает напряжение на выходе УН, а значит, и на втором аноде кинескопа, что и наблюдается визуально как увеличение яркости!

Кроме того, в ТВ УЛПЦТ при установке УН9/27-1,3 необходимо заменить штатную "присоску" с установленным внутри нее высоковольтным резистором 4,7 кОм Rф) "присоской" от ТВ 3УЦСТ с резистором 100 кОм. Rф выполняет три функции: является частью звена сглаживающего RC-фильтра для цепи высокого напряжения, образованного им и емкостью ак-вадага кинескопа Са (рис.9, 10), а также защитным резистором по постоянному току, ограничивающим его величину в цепи УН при случайных кратковременных межэлектродных пробоях внутри кинескопа (что в старых кинескопах происходит весьма часто и непредсказуемо).

Он же является и "сгорающим предохранителем", защищающим ТВС при пробое диодов УН, когда переменное напряжение, поступающее от ТВС, практически замыкается на корпус через Са, величина реактивного сопротивления которой для токов строчной частоты достаточно мала.

Поэтому следует иметь в виду, что значительно меньшая величина суммарного внутреннего сопротивления УН9/27-1,3 при малой величине (или отсутствии по тем или иным причинам) Rф в случаях замены УН нежелательна, поскольку может привести при появлении вышеуказанных неисправностей как к выходу из строя ТВС, так и к возгоранию самого ТВ.

Из неработоспособных в ТВ УН при определенном навыке и аккуратности можно "добыть" (если повезет) высоковольтные конденсаторы, которые могут еще послужить для срочного ремонта ТВ модификаций УЛПЦТИ или УПИМЦТ или для экспериментов с другими конструкциями.

Для этого вначале аккуратно разбивают молотком корпус УН и освобождают от компаунда корпуса конденсаторов, а затем отделяют последовательным откалыванием с помощью боко-резов их выводы от взаимных соединений и остатков компаунда. Практические разборки трех экземпляров каждой марки УН показали, что в УН8/25-1,2 конденсаторы имеют на корпусе маркировку К73-13 2200x10 кВ.

В УН9/27-1,3 (рис.10), который по сравнению с УН8/25-1,2 имеет большее число элементов, но меньшие габаритные размеры, использованы конденсаторы (судя по технологии изготовления и материалу, из которого они изготовлены) того же типа (маркировка на корпусах не нанесена), которые конструктивно выполнены в виде трехвыводной (диаметром 16 мм) сборки (С2, С4 - рис.10) из конденсаторов емкостью по 1000 пФ, и четырехвыводной (С1, С3, С5 - рис.10) сборки диаметром 18 мм. Причем С1 имеет емкость 2200 пФ, а С3, С5 - по 1000 пФ. Обе сборки имеют длину 40 мм.

Медицина

Одним из "экзотических" примеров применения УН в медицинской аппаратуре является его использование в конструкции электроэффлювиальной люстры (ЭЛ), которая предназначена для получения потока отрицательных ионов, оказывающих благоприятное воздействие на дыхательные пути человека.

Для получения высокого отрицательного потенциала для излучающей части генератора аэроионов использован УН с отрицательным выходным напряжением. Из-за достаточно большого объема вспомогательной информации рекомендации по конструкции и применению ЭЛ выходят за рамки настоящей статьи, поэтому ЭЛ упомянута только информативно.

Детали к схемам

Спецификация к рисункам:

  • к рис.2: С1-С4 - К50-20;
  • к рис.6: С1-С2 - КВИ-2;
  • к рис.7: С1, С2 - МБГЧ; С3-С5 - КСО-2;
  • к рис.10: С1-С6 - К15-4;
  • к рис.12: С1, С2 - К42У-2, С3, С4 -К50-20.

С.А. Елкин, г. Житомир, Украина. Электрик-2004-08.

Литература:

  1. Елкин С.А. Бесстартерный запуск ламп дневного света//Э-2000-7.
  2. Иванов Б. С Электроника в самоделках. М.: ДОСААФ, 1981.
  3. Казанский И.В. Усилитель мощности КВ радиостанции//В помощь радиолюбителю. - Выпуск 44. - М.: ДОСААФ, 1974.
  4. Костюк А. Усилитель мощности для СВ радиостанции//Радиолюбитель. -1998. - №4. - С.37.
  5. Кузинец Л.М. и др. Телевизионные приемники и антенны: Справ. - М.: Связь, 1974.
  6. Поляков В.Т. Радиолюбителям о технике прямого преобразования. - М.: Патриот, 1990.
  7. Пляц О.М. Справочник по электровакуумным, полупроводниковым приборам и интегральным микросхемам. -Минск: Высшая школа, 1976.
  8. Сотников С. Неисправности умножителя напряжения и цепей фокусиров-ки//Радио. - 1983. - №10. - С.37.
  9. Садченкова Д Умножители напря-жения//Радіоаматор. - 2000. - №12. -С.35.
  10. Фоменков А.П. Радиолюбителю о транзисторных телевизорах. - М.: ДОСААФ, 1978.
  11. Штань А.Ю, Штань Ю.А. О некоторых особенностях применения ионизаторов воздуха//Радіоаматор. - 2001. - №1. - С.24.
  12. 12. Ященко О. Устройство для проверки и восстановления кинескопов//Радио. - 1991. - №7. - С.43.

Многие электронщики часто используют схемы питания выполненные по принципу умножения напряжения. Ведь использование умножителя позволяют существенно уменьшить вес и габариты устройства. Для понимания физики работы такого электронного устройства, рассмотрим основные схемотехнические варианты построения таких конструкций. Их можно условно поделить на симметричные и несимметричные умножители. Несимметричные в свою очередь, подразделяются на два вида: первого и второго рода


Все конструкции обычно состоят из конденсаторов и диодов, для получения значений свыше киловольта, нужно применять специальные высоковольтные диоды и неполярные конденсаторы.

Эти конструкции широко используют в лазерной технике, в различных высоковольтных конструкциях, например в , в ионизаторах воздуха ,

Однофазные несимметричные схемы умножения представляют собой последовательное подключение нескольких одинаковых однотактных схем выпрямления с емкостной нагрузкой.


В схеме каждая последующуя емкость заряжается до более высокого значения. Если ЭДС вторичной обмотки трансформатора направлена от точки а к точке б, то открывается первый диод и идет заряд С1. Этот конденсатор заряжается до U равного амплитуде на вторичной обмотке трансформатора U 2m . При изменении ЭДС вторичной обмотки будет идти зарядный ток второго конденсатора по цепи: точка а, С1, VD2, С2, точка б. При этом емкость С2 заряжается до UC2 = U2m+UC1 = 2U2m, так как вторичная обмотка трансформатора и С1 оказались включенными согласованно и последовательно. При очередном изменении направления ЭДС вторичной обмотки начинается заряд С3 по цепи: точка б, С2, VD3, С3 точка а вторичной обмотки. Конденсатор С3 будет заряжаться до напряжения UC3 = U2m+UC2≈ 3U2m и так далее. Т.е, на каждом последующем конденсаторе кратность соответствует формуле:

Необходимое значение умноженного U снимается с одной емкости С n


Во время отрицательной полуволны емкость С1 заряжается через открытый диод VD1 до амплитудного значения U. Когда к входу приходит положительная волна полупериода, емкость С2 через открытый диод VD2 заряжается до значения 2Ua. Во время следующего цикла отрицательного полупериода через диод VD3 до значения 2U заряжается емкость СЗ. И в результате, при очередной положительной полуволне до 2U заряжается конденсатор С4.

Очень хорошо видно, что запуск умножителя осуществится за несколько периодов полуволн. Постоянное выходное напряжение сумируется из напряжений на последовательно включенных и постоянно подзаряжаемых емкостях С2 и С4 и равно 4Ua.

Изображенный на верхней схеме умножитель относится к последовательному типу. Существуют также параллельные, для которых требуется меньшие номиналы конденсатора на ступень удвоения.

Наиболее часто радиолюбители используют последовательные умножители. Они более универсальны, напряжение на диодах и конденсаторах разделено приблизительно равномерно, можно осуществить большее число ступеней умножения. Но есть свои плюсы и у параллельных конструкций. Однако их огромный минус, как увеличение напряжения на емкостях с увеличением числа ступеней умножения, ограничивает их использование до номиналов 20 кВ.

К достоинствам параллельной схемы, та что в центре рисунка, следует отнести следующие: на емкости С1, СЗ приходит только амплитудное напряжение, нагрузка на диоды одинаковая, достигается приличная стабильность выходного напряжения. Второй умножитель, схема которого приведена ниже. отличают такие характеристики, как возможность выдачи высокой мощности на выходе конструкции, простота в сборке своими руками, одинаковое распределение нагрузки между элементами, большое число ступеней преобразования.

Это мостовая схема у которой в два плеча моста подсоединены диоды VD1 VD2, а в два другие плеча - конденсаторы С1 С2. К одной из диагоналей моста подсоединена вторичная обмотка, к другой нагрузка. Схему удвоения можно представить в виде двух однополупериодных схем, включенных последовательно и работающих от одной вторичной обмотки. В первый полупериод, когда потенциал точки а вторичной обмотки положителен относительно б, откроется вентиль VD1 и начинается заряд С1. Ток в этот момент идет через вторичную обмотку, VD1 и С1.

Во второй полупериод заряжается С2. Зарядный ток этого конденсатора идет через вторичную обмотку, С2 и VD2. С1 и С2 по отношению к Rн1 (сопротивление нагрузки) включены последовательно, и U на нагрузке равно сумме UC1 + UC2. Основное преимущество данной схемы это повышенная частота пульсации по сравнению с двухфазной схемой и достаточно полное использование трансформатора.

Все чаще и чаще радиолюбители стали интересоваться схемами питания, которые построены по принципу умножения напряжения. Этот интерес связан с появлением на рынке миниатюрных конденсаторов с большой емкостью и повышением стоимости медного провода, который используется для намотки катушек трансформаторов. Дополнительным плюсом упомянутых устройств являются их малые габариты, что значительно снижает конечные размеры проектируемой аппаратуры. А что же представляет собой умножитель напряжения? Этот прибор состоит из подключенных определенным образом конденсаторов и диодов. По сути, это преобразователь переменного напряжения низковольтного источника в высокое постоянное напряжение. А зачем нужен умножитель напряжения постоянного тока?

Область применения

Такое устройство нашло широкое применение в телевизионной аппаратуре (в источниках анодного напряжения кинескопов), медицинском оборудовании (при питании мощных лазеров), в измерительной технике (приборы измерения радиации, осциллографы). Кроме того, оно используется в устройствах ночного видения, в электрошоковых приборах, бытовой и офисной аппаратуре (ксерокопировальные аппараты) и т. д. Умножитель напряжения завоевал такую популярность благодаря возможности формировать напряжение до десятков и даже сотен тысяч вольт, и это при незначительных размерах и массе устройства. Еще один немаловажный плюс упомянутых приборов - это простота изготовления.

Типы схем

Рассматриваемые устройства делятся на симметричные и несимметричные, на умножители первого и второго рода. Симметричный умножитель напряжения получается путем соединения двух несимметричных схем. У одной такой схемы меняется полярность конденсаторов (электролитов) и проводимость диодов. Симметричный умножитель обладает лучшими характеристиками. Одним из главных достоинств является удвоенное значение частоты пульсаций выпрямляемого напряжения.

Принцип работы

На фото показана простейшая схема однополупериодного прибора. Рассмотрим принцип работы. При действии отрицательного полупериода напряжения через открытый диод Д1 начинает заряжаться конденсатор С1 до амплитудного значения поданного напряжения. В тот момент, когда наступает период положительной волны, заряжается (через диод Д2) конденсатор С2 до удвоенного значения поданного напряжения. При начале следующего этапа отрицательного полупериода происходит заряд конденсатора С3 - также до удвоенного значения напряжения, а при смене полупериода и конденсатор С4 также заряжается до указанного значения. Запуск устройства осуществляется за несколько полных периодов напряжения переменного тока. На выходе получается постоянная физическая величина, которая складывается из показателей напряжений последовательных, постоянно заряжаемых конденсаторов С2 и С4. В результате получим величину, в четыре раза большую, чем на входе. Вот по такому принципу и работает умножитель напряжения.

Расчет схемы

При расчете необходимо задать требуемые параметры: выходное напряжение, мощность, переменное входное напряжение, габариты. Не следует пренебрегать и некоторыми ограничениями: входное напряжение не должно превышать 15 кВ, частота его колеблется в пределах 5-100 кГц, значение на выходе - не более 150 кВ. На практике применяют устройства с выходной мощностью 50 Вт, хотя реально сконструировать умножитель напряжения с выходным показателем, приближающимся к 200 Вт. Значение выходного напряжения напрямую зависит от тока нагрузки и определяется по формуле:

U вых = N*U вх - (I (N3 + +9N2 /4 + N/2)) / 12FC, где

I - ток нагрузки;

N - число ступеней;

F - частота входного напряжения;

С - емкость генератора.

Таким образом, если задать значение выходного напряжения, тока, частоты и количества ступеней, возможно высчитать необходимую

ОПРЕДЕЛЕНИЕ

Умножитель напряжения - это система, которая призвана преобразовывать напряжение переменного тока источника небольшого напряжения в высокое напряжение постоянного тока.

Их применяют в радиоэлектронике: медицинской и телевизионной аппаратуре, измерительной технике, бытовой технике и др. Умножитель напряжения составляют диоды и конденсаторы, которые соединяют специальным образом. Умножители способны сформировать напряжение до вольт, при этом имеют небольшую массу и размер. Умножители просты в изготовлении, их несложно рассчитываются.

Однополупериодный умножитель

На рис.1 приведена схема однополупериодного последовательного умножителя.


В течение отрицательного полупериода напряжения происходит зарядка конденсатора через диод , который открыт. Конденсатор заряжается до амплитудной величины приложенного напряжения . В течение положительного полупериода заряжается конденсатор через диод до разности потенциалов . Далее в отрицательный полупериод конденсатор заряжается через диод до разности потенциалов . В очередной положительный полупериод конденсатор заряжается до напряжения . При этом умножитель запускается за несколько периодов изменения напряжения. Напряжение на выходе постоянное и оно является суммой напряжений на конденсаторах и , которые постоянно заряжаются, то есть составляет величину, равную .

Обратное напряжение на диодах и рабочее напряжение конденсаторов в таком умножителе равно полной амплитуде входного напряжения. При практической реализации умножителя следует обращать внимание на изоляцию элементов, чтобы не допускать коронного разряда, который может вывести прибор из строя. Если необходимо изменить полярность напряжения на выходе, то меняют полярность диодов при соединении.

Последовательные умножители применяют особенно часто, так как они универсальны, имеют равномерное распределение напряжения на диодах и конденсаторах. С их помощью можно реализовать большое количество ступеней умножения.

Применяют, также параллельные умножители напряжения. Для них необходима меньшая емкость конденсатора на одну ступень умножения. Но, их недостатком считают увеличение напряжения на конденсаторах с ростом количества ступеней умножения, что создает ограничение в их использовании до напряжения выхода около 20 кВ. На рис. 2 приведена схема однополупериодного параллельного умножителя напряжения.


Для того чтобы рассчитать умножитель следует знать основные параметры: входное переменное напряжение, напряжение и мощность выхода, необходимые размеры (или ограничения в размерах), условия при которых умножитель будет работать. При этом следует учесть, что напряжение входа должно быть менее чем 15 кВ, частота от 5 до 100 кГц, напряжение выхода менее 150 кВ. Температурный интервал обычно составляет -55. Обычно мощность умножителя составляет до 50 Вт, но встречаются и более 200 Вт.

Для последовательного умножителя, если частота на входе в умножитель постоянна, то выходное напряжение вычисляют при помощи формулы:

где — входное напряжение; - частота напряжения на входе; N - число ступеней умножения; C - емкость конденсатора ступени; I - сила тока нагрузки.

Примеры решения задач

ПРИМЕР 1

Задание Какова должна быть емкость (C) ступени последовательного умножителя напряжения, если требуется получить напряжение на выходе 800 В, при частоте 50Гц, силе тока 10 А, используя 4 ступени умножения?
Решение Для последовательного умножителя напряжения будем использовать расчётную формулу вида:

До недавнего времени умножители напряжения недооценивали. Многие разработчики рассматривают эти схемы с точки зрения ламповой техно­логии, и поэтому упускают некоторые прекрасные возможности. Хоро­шо известно, каким удачным решением стало применение утроителей и учетверителей напряжения в телевизорах. К счастью, нам не надо ре­шать задачи, касающиеся рентгеновского излучения в ИИП, но схема умножения напряжения часто может быть полезна для дальнейшего со­кращения габаритов после того, как достигнут очевидный предел обыч­ными методами, использующими высокочастотную коммутацию и удале­ны трансформаторы, работающие с частотой 60 Гц. В других случаях умножители напряжения могут обеспечить изящный способ получения дополнительного выходного напряжения, используя одну вторичную об­мотку трансформатора.

Многие учебники подробно останавливаются на недостатках умножи­телей напряжения. Утверждается, что у них плохая стабильность напряже­ния и они слишком сложны. Констатация этих недостатков имеет под со­бой почву, но основана она на опыте применения ламповых схем, которые всегда работали с синусоидальными напряжениями с частотой 60 Гц. Свой­ства умножителей напряжения значительно улучшаются, когда они рабо­тают с прямоугольными, а не с синусоидальными напряжениями, и осо­бенно при работе с высокими частотами. При частоте переключения 1 кГц, и тем более при 20 кГц, умножитель напряжения заслуживает переоценки его возможностей. Учитывая, что для прямоугольного колебания пиковое и среднее квадратичное значение равны, конденсаторы в схеме умножите­ля имеют намного большее время накопления заряда, по сравнению со случаем синусоидальных колебаний. Это проявляется в повышении ста­бильности напряжения и улучшении фильтрации. Известно, что очень хо­рошая стабильность возможна и при синусоидальном напряжении, но толь­ко за счет конденсаторов большой емкости. Некоторые полезные схемы умножителей напряжения показаны на рис. 16.4. Два различных изображе­ния одной и той же схемы на рис. (А) показывает, что способ начертания схемы может иногда вводить в заблуждение.

Хотя стабильность теперь не является большой проблемой в умно­жителях напряжения, очень хорошая стабильность вовсе не обязательна в системе, где об окончательной стабилизации выходного постоянного напряжения позаботятся один или несколько контуров обратной связи. В частности, некоторые умножители напряжения очень хорошо работа­ют при 50-процентном рабочем цикле инвертора. Соответствующие ум­ножители напряжения рекомендуются в качестве нестабилизированного источника питания, обычно предшествующего схеме стабилизации с пет­лей обратной связи. Как правило, такое использование связано с преоб­разователем постоянного напряжения в постоянное. Например, напря­жение сети с частотой 60 Гц можно выпрямить и удвоить. Затем это постоянное напряжение используется в мощном преобразователе посто­янного напряжения в постоянное, который можно выполнить в виде импульсного стабилизатора. Заметьте, что этот метод дает возможность получить высокое выходное напряжение без трансформатора, работаю­щего на частоте 60 Гц.

Умножитель напряжения облегчает создание хорошего инвертора. Трансформатор инвертора лучше всего работает с коэффициентом трансформации около единицы. Значительные отклонения от этой вели­чины, особенно при повышении напряжения, часто приводят к появле­нию достаточно большой индуктивности рассеяния в обмотках транс­форматора, что вызывает неустойчивую работу инвертора. Так, те, кто экспериментировали с инверторами и преобразователями хорошо знают, что наиболее вероятным сбоем в работе даже простой схемы являются колебания, частота которых отличается от расчетной. А индуктивность рассеяния может легко привести к разрушению переключающих транзи­сторов. Этой проблемы можно избежать, применяя умножитель напря­жения, чтобы использовать трансформатор с коэффициентом трансфор­мации около единицы.

Рис. 16.4. Схемы умножителей напряжения. Обе схемы на рис. (А) электрически идентичны. Обратите внимание на допустимые и запре­щенные варианты заземления различных цепей – в некоторых случаях генератор и нагрузка не могут использовать одну и ту же точку зазем­ления.

Когда мы имеем дело с напряжениями синусоидальной формы, сле­дует помнить, что умножители напряжения оперируют с пиковым значе­нием напряжения. Таким образом, так называемый удвоитель напряжения, работающий с входным напряжением, имеющим эффективное значение 100 В, даст на выходе напряжение холостого хода 2 х 1,41 х 100 = 282 В. Таким образом, если емкость конденсаторов велика, а нагрузка относи­тельно небольшая, то результат больше похож на утроение входного эф­фективного значения напряжения. Подобное рассуждение справедливо и для других умножителей.

Если принять равными емкости всех конденсаторов и синусоидаль­ное напряжение на входе, то умножители напряжения должны иметь ве­личину (ocr не менее 100, где (0=2К /, рабочая частота выражена в гер­цах, емкость в фарадах, а – эффективное сопротивление в омах, соответствующее самой низкоомной нагрузке, которая может быть под­ключена. В этом случае выходное напряжение составит не менее 90% от максимально достижимого постоянного напряжения и будет относитель­но слабо изменяться. Для напряжения прямоугольной формы величина cocr может быть значительно меньше 100.

При выборе схемы умножения напряжения следует уделить внима­ние заземлению. На рис. 16.4, символ генератора обычно представляет вторичную обмотку трансформатора. Заметьте, что если один из выво­дов нагрузки должен быть заземлен, то в однополупериодных схемах возможно заземление одного вывода трансформатора, а в двухполупери­одных вариантах нет. Двухполупериодные схемы удобны для получения источников с двуполярным выходом, у которых один выход имеет поло­жительный потенциал относительно земли, а другой – отрицательный, и на каждом выходе имеется половина полного выходного напряжения.

Схемы, показанные на рис. 16.4(A), идентичны и являются двухполу­периодными выпрямителя с удвоением напряжения. Схема на рис. В представляет собой однополупериодный выпрямитель с удвоением на­пряжения. Схема рис. С работает как однополупериодный утроитель. Двухполупериодный учетверитель показан на рис. D, а однополупериод­ный учетверитель на рис. Е. Подобные умножители напряжения, нахо­дят широкое применение в телевизионных источниках питания обратно­го хода, обеспечивающих кинескопы высоким напряжением. Они используются также в счетчиках Гейгера, лазерах, электростатических сепараторах и т.д.

Хотя двухполупериодные умножители напряжения имеют лучшую стабильность и меньшие пульсации, чем однополупериодные, практи­чески различия становятся небольшими, если используются прямоу­гольные колебания высокой частоты. Используя конденсаторы большой емкости, всегда можно улучшить стабильность напряжения и уменьшить пульсации. Вообще, при частоте 20 кГц и выше, наличие у однополупе­риодных умножителей общей точки заземления оказывает определяю­щее влияние на выбор конструктора.

Соединяя большое число элементарных каскадов, можно получать очень высокие постоянные напряжения. Хотя этот способ не нов, ре­ально осуществить его, используя полупроводниковые диоды, оказалось проще, чем с прежними ламповыми выпрямителями, которые осложня­ли задачи изоляции и стоимости из-за цепей накала. Два примера много­каскадных умножителей напряжения показаны на рис. 16.5. Они умно­жают амплитудное значение входного переменного напряжения в восемь раз. В схеме на рис. 16.5А, ни на одном конденсаторе напряжение не превышает величины 2К Отличительной особенностью схемы, изобра­женной на рис. 16.5В является общая точка земли для входа и выхода. Однако номинальные напряжения конденсаторов должны постепенно повышаться по мере того, как они приближаются к выходу схемы. Хотя при частоте 60 Гц это приводит к увеличению габаритов и стоимость, но при высоких частотах эти недостатки менее чувствительны. Диоды в обе­их схемах должны выдержать пиковое входное напряжение Е, но для на­дежности следует применять диоды с номинальным напряжением, по крайней мере, в несколько раз выше, чем Е, В этих схемах обычно ис­пользуются конденсаторы, имеющие одинаковые емкости. Чем больше емкость конденсаторов, тем лучше стабильность и меньше пульсации. Однако конденсаторы большой емкости накладывают повышенные тре­бования к диодам в отношении максимальных значений токов.

Схема, показанная на рис. 16.6, оказалась очень полезной для при­менения в электронике. Заметьте, что она работает от однополярной последовательности импульсов. Это схема умножителя напряжения Кок-рофта-Уолтона, которая часто встречается в литературе. Хотя все кон­денсаторы могут иметь одну и ту же емкость и одно и то же номиналь­ное напряжение Е, но лучше воспользоваться следующим подходом:

Сначала рассчитываем емкость выходного конденсатора

где /q - выходной ток в амперах, а / – длительность однополярного им­пульса в микросекундах. Пусть в качестве примера = 40 мА. Если Вы принимаете, что частота равна 20 кГц, то t составляет половину величи­ны обратной 20 кГц, или

В качестве напряжения V принимается максимальная величина пульсаций. Разумной можно считать величину 100 мВ, тогда

Рис. 16.5. Два варианта многокаскадного умножителя напряжения. (А) В этой схеме ни на одном конденсаторе нет напряжения выше 2Е. (В) Особенностью этой схемы является общая точка заземления для входа и выхода.

По мере приближения ко входу схемы емкость конденсаторов посте­пенно увеличивается в несколько раз по сравнению с емкостью после­днего конденсатора С^. Эти вычисления простые, но могут оказаться не­верными, если на них не обратить пристального внимания. Отметьте числа, стоящие рядом с конденсаторами в схеме на рис. 16.6. Это коэф­фициенты, на которые надо умножать емкость С^, чтобы получить фак­тическую величину емкости. Таким образом, емкость конденсатора, обозна­ченного номером 2 равна 2С^ или в нашем примере 10 мкФ х 2 =20 мкФ. Конденсатор имеет емкость 5С^ или 50 мкФ. А первый конденсатор имеет емкость IIС^ или ПО мкФ.

Откуда берутся эти числа? Они представляют относительные значе­ния токов вдоль цепи. Если рядом с конденсаторами нет чисел, пока­занных на рис. 16.6, Вы можете определить их, используя выражение (2/1-1). Здесь п представляет коэффициент умножения входного напря­жения. Очевидно, что в умножителе на шесть л = 6. Вы начинаете с входного конденсатора и находите, что 2п-\ = 11. Затем продолжаете вдоль нижнего ряда конденсаторов, получая последовательно 2/1-3, 2/2-5, 2/1-7, 2/2-9 и, наконец, для – (2/2-11). Затем, следуя этой про­цедуре, начинаем с первого конденсатора слева в верхнем ряду. На сей раз, множители С^, следующие: 2/2-2, 2/2-4, 2/2-6, 2/2-8 и, наконец, для правого замыкающего конденсатора 2/2-10.

Рис. 16.6. Умножитель напряжения на шесть, работающий от источ­ника однополярных импульсов. Назначение чисел рядом с конденса­торами объяснено в тексте.

То, что конденсаторы около входа имеют большую емкость, чем те, ко­торые ближе к выходу, связано, с перекачкой заряда, который естественно должен быть достаточно большим на входе. В течение одного цикла про­исходит 2/2-1 переносов заряда. При каждом из таких переносов, происхо­дит естественная потеря энергии. Эти потери энергии минимальны, если емкости конденсаторов рассчитаны так, как было сказано выше.

Первое испытание любого умножителя напряжения должно прово­диться с переменным автотрансформатором или с каким-нибудь другим устройством, позволяющим плавно повышать входное напряжение. В противном случае скачком тока могут быть разрушены диоды. Строгость соблюдения этого правила зависит от таких факторов, как емкость кон­денсаторов, уровень мощности, частота, ESR конденсаторов и, конечно, номинальный пиковый ток диодов. Возможно, на входе умножителя не­обходимо поместить терморезистор, или резистор, включаемый с помо­щью реле. С другой стороны, во многих случаях можно обойтись вообще без защиты, потому что вполне доступны диоды, работающие с большими пиковыми токами. Иногда, защита «невидима», например, трансформатор на входе просто не может обеспечить большой скачок тока.

При работе с высокими напряжениями величина прямого падения напряжения на диодах не существенна. При низком напряжении накап­ливающееся падение напряжения на диодах может помешать достиже­нию требуемого выходного напряжения и существенно понизить к.п.д. умножителя напряжения. Следует убедиться, что время обратного вос­становления диодов совместимо с частотой входного напряжения. Ина­че, рассчитанный коэффициент умножения напряжения будет «загадоч­но» отсутствовать.