Расчет плоской шарнирной фермы. Как правильно рассчитать фермы для навесов: чертеж и правила сборки. Расчет балок в Sopromatguru

2.6.1. Общие понятия.

Плоская стержневая система, которая после включений шарниров во все узлы остается геометрически неизменяемой называется фермой.

Примеры ферм показаны на рис.2.37..

В реальных стержневых конструкциях, которые подходят под определение “ферма”, стержни в узлах соединены не шарнирами, а балками, заклепками, сваркой или замоналичены (в железобетонных конструкциях). Тем не менее, в расчетных схемах таких конструкций могут вводится в узлы шарниры, но при условии, что

· стержни являются идеально прямыми;

· оси стержней пересекаются в центре узла;

· сосредоточенные силы приложены только к узлам;

· размеры поперечных сечений стержней значительно меньше их длины.

Рис.2.37.. Статически определимые плоские фермы.

При этих условиях стержни фермы работают только на растяжение или сжатие, в них возникают только продольные силы .

Это обстоятельство существенно упрощает расчет стержневой системы и позволяет получать результаты с достаточной степенью точности.

Для определения усилий в стержнях фермы методом сечений необходимо:

1) Сечение проводить таким образом, чтобы оно

· пересекало ось стержня, в котором определяется усилие;

· пересекало по возможности не более трех стержней;

· разделяло ферму на две части.

2) Продольные усилия в стержнях направлять в положительном направлении, т.е. от узла.

3) Выбирать такие уравнения равновесия для части фермы, которые включали бы лишь одно искомое усилие. Такими уравнениями являются, например,

· сумма моментов относительно точки, в которой пересекаются лини действия усилий в стержнях ферм, разрезанных сечением; такие точки принято называть моментными ;

· сумма проекций сил на вертикальную ось для раскосов ферм с параллельными поясами.

4) Для определения усилий в стойках вырезать узлы, если в них сходится не более трех стержней.

5) Для упрощения определения плеч внутренних усилий относительно моментной точки при составлении уравнений моментов при необходимости заменять искомые усилия их проекциями на взаимно перпендикулярные оси.

2.6.2. Определение усилий в стержнях фермы.

Для определения усилий в стержнях фермы необходимо:

· определить реакции опор;

· методом сечений определить требуемые усилия;

· произвести проверку полученных результатов.

Реакции опор в простых балочных фермах, показанных на рис.2.37, определяются также как в однопролетных балках с помощью уравнений вида

Для проверки реакций опор используем уравнение

Рассмотрим алгоритм расчета на конкретном примере.

Дана расчетная схема фермы (рис.2.38).

Требуется определить усилия в стержнях 4-6, 3-6, 3-5, 3-4, 7-8.



Решение задачи.

1) Определяем реакции опор .

Для этого используем уравнение равновесия:

Записываем уравнения, используя принятое правило знаков:

Решая уравнения, находим

Проверяем реакции опор по уравнению .

2) Определяем усилия в стержнях фермы .

а) Усилия в стержнях 4-6, 3-6, 3-5.

Для определения усилий в указанных стержнях разрезаем ферму сечением а-а на две части и рассматриваем равновесие левой части фермы (рис.2.39.

К левой части фермы прикладываем реакцию опоры , силу , действующую в узле 4, и искомые усилия в стержнях фермы , , . Эти усилия направляем вдоль соответствующих стержней в сторону от узла, то есть в положительном направлении.

Для определения усилий , , можно использовать следующую систему уравнений:

Но в этом случае получим совместную систему уравнений, в которые будут входить все искомые усилия.

Для упрощения решения задачи необходимо использовать уравнения равновесия, в которые входило бы только одно неизвестное.

Для определения усилия таким уравнением является

т. е. сумма моментов относительно узла 3, в котором пересекаются линии действия усилий и , так как моменты этих сил относительно узла 3 равны нулю. Для усилия таким уравнением является

т. е. сумма моментов относительно узла 6, в котором пересекаются линии действия усилий и .

Для определения усилия следует использовать уравнение суммы моментов относительно точки О, в которой пересекаются линии действия усилий и , т. е.

При записи указанных уравнений возникают математические трудности по определению плеч сил относительно соответствующих точек. Для упрощения решения этой задачи рекомендуется разложить искомое усилие по осям Х, Y и использовать проекции усилия при записи уравнения равновесия.

Покажем это на примере усилия (рис.2.40).

Запишем уравнение :

Решая уравнение, получаем:

В данном примере проекция усилия на ось Х имеет момент относительно точки О равный нулю, так как линия её действия проходит через точку О.

3) Определяем усилие в стержне 3-4.

Для определения усилия вырезаем в узел 4 фермы сечением b-b (рис.2.41.а).

4) Определяем усилие в стержне 7-8.

Вырезаем узел 8 сечение с-с (рис.2.41.б). Составляем два уравнения равновесия

Для определения усилия имеем два уравнения с тремя неизвестными. Следовательно, одно из этих неизвестных ( или ) должно быть определено предварительно.

Если усилие известно, то для определения усилия можно использовать уравнение:

сумма проекций сил, приложенных в узле, на ось x, перпендикулярную линии действия силы .

Необходимо отметить, что усилия в стержнях фермы можно определять, рассматривая поочередно равновесие её узлов и составляя для каждого узла по два уравнения

Начинать необходимо с узла, в котором сходятся только два стержня, а затем последовательно рассматривать узлы, в которых только два неизвестных усилия. Рассмотрим пример (рис.2.42).

1) Рассматриваем узел 1, в котором сходятся только два стержня. Составляем и решаем уравнения

2) Рассматриваем узел 2, в котором сходятся 3 стержня, но известно усилие :

Решая систему уравнений, находим:

Затем рассматривается узел 4 и т. д.

Такой способ определения усилий в стержнях фермы имеет следующие недостатки:

· ошибка, допущенная в процессе расчета, распространяется на последующие вычисления;

· он не рационален для определения усилий лишь в отдельных стержнях фермы.

К достоинствам способа относится возможность применения при составлении программ для расчета на ЭВМ.

2.6.3. Проверка результатов расчета.

Для проверки результатов расчета нужно использовать уравнения равновесия, которые включают наибольшее число усилий. Так, например, для проверки усилий , , (рис.3.3) такими уравнениями являются

Фермами называют плоские и пространственные стержневые конструкции с шарнирными соединениями элементов, загружаемые исключительно в узлах. Шарнир допускает вращение, поэтому считается, что стержни под нагрузкой работают только на центральное растяжение-сжатие. Фермы позволяют значительно сэкономить материал при перекрытии больших пролётов.

Рисунок 1

Фермы классифицируются:

  • по очертанию внешнего контура;
  • по виду решётки;
  • по способу опирания;
  • по назначению;
  • по уровню проезда транспорта.

Также выделяют простейшие и сложные фермы . Простейшими называют фермы, образованные последовательным присоединением шарнирного треугольника. Такие конструкции отличаются геометрической неизменяемостью, статической определимостью. Фермы со сложной структурой, как правило, статически неопределимы.

Для успешного расчёта необходимо знать виды связей и уметь определять реакции опор. Эти задачи подробно рассматриваются в курсе теоретической механики. Разницу между нагрузкой и внутренним усилием, а также первичные навыки определения последних дают в курсе сопротивления материалов.

Рассмотрим основные методы расчёта статически определимых плоских ферм.

Способ проекций

На рис. 2 симметричная шарнирно-опёртая раскосная ферма пролётом L = 30 м, состоящая из шести панелей 5 на 5 метров. К верхнему поясу приложены единичные нагрузки P = 10 кН. Определим продольные усилия в стержнях фермы. Собственным весом элементов пренебрегаем.

Рисунок 2

Опорные реакции определяются путём приведения фермы к балке на двух шарнирных опорах. Величина реакций составит R (A) = R (B) = ∑P/2 = 25 кН. Строим балочную эпюру моментов, а на её основе - балочную эпюру поперечных усилий (она понадобится для проверки). За положительное направление принимаем то, что будет закручивать среднюю линию балки по часовой стрелке.

Рисунок 3

Метод вырезания узла

Метод вырезания узла заключается в отсечении отдельно взятого узла конструкции с обязательной заменой разрезаемых стержней внутренними усилиями с последующим составлением уравнений равновесия. Суммы проекций сил на оси координат должны равняться нулю . Прикладываемые усилия изначально предполагаются растягивающими, то есть направленными от узла. Истинное направление внутренних усилий определится в ходе расчёта и обозначится его знаком.

Рационально начинать с узла, в котором сходится не более двух стержней. Составим уравнения равновесия для опоры, А (рис. 4).

F (y) = 0: R (A) + N (A-1) = 0

F (x) = 0: N (A-8) = 0

Очевидно, что N (A-1) = -25кН. Знак «минус» означает сжатие, усилие направлено в узел (мы отразим это на финальной эпюре).

Условие равновесия для узла 1:

F (y) = 0: -N (A-1) - N (1−8) ∙cos45° = 0

F (x) = 0: N (1−2) + N (1−8) ∙sin45° = 0

Из первого выражения получаем N (1−8) = -N (A-1) /cos45° = 25кН/0,707 = 35,4 кН. Значение положительное, раскос испытывает растяжение. N (1−2) = -25 кН, верхний пояс сжимается. По этому принципу можно рассчитать всю конструкцию (рис. 4).

Рисунок 4

Метод сечений

Ферму мысленно разделяют сечением, проходящим как минимум по трём стержням, два из которых параллельны друг другу. Затем рассматривают равновесие одной из частей конструкции . Сечение подбирают таким образом, чтобы сумма проекций сил содержала одну неизвестную величину.

Проведём сечение I-I (рис. 5) и отбросим правую часть. Заменим стержни растягивающими усилиями. Просуммируем силы по осям:

F(y) = 0: R(A) - P + N(9−3)

N(9−3) = P - R(A) = 10 кН - 25 кН = -15 кН

Стойка 9−3 сжимается.

Рисунок 5

Способ проекций удобно применять в расчётах ферм с параллельными поясами, загруженными вертикальной нагрузкой. В этом случае не придётся вычислять углы наклона усилий к ортогональным осям координат. Последовательно вырезая узлы и проводя сечения, мы получим значения усилий во всех частях конструкции. Недостатком способа проекций является то, что ошибочный результат на ранних этапах расчёта повлечёт за собой ошибки во всех дальнейших вычислениях.

Требует составлять уравнение моментов относительно точки пересечения двух неизвестных сил. Как и в методе сечений, три стержня (один из которых не пересекается с остальными) разрезаются и заменяются растягивающими усилиями.

Рассмотрим сечение II-II (рис. 5). Стержни 3−4 и 3−10 пересекаются в узле 3, стержни 3−10 и 9−10 пересекаются в узле 10 (точка K). Составим уравнения моментов. Суммы моментов относительно точек пересечения будут равняться нулю. Положительным принимаем момент, вращающий конструкцию по часовой стрелке.

m(3) = 0: 2d∙R(A) - d∙P - h∙N(9−10) = 0

m(K) = 0: 3d∙R(A) - 2d∙P - d∙P + h∙N(3−4) = 0

Из уравнений выражаем неизвестные:

N(9−10) = (2d∙R(A) - d∙P)/h = (2∙5м∙25кН - 5м∙10кН)/5м = 40 кН (растяжение)

N(3−4) = (-3d∙R(A) + 2d∙P + d∙P)/h = (-3∙5м∙25кН + 2∙5м∙10кН + 5м∙10кН)/5м = -45 кН (сжатие)

Способ моментной точки позволяет определить внутренние усилия независимо друг от друга, поэтому влияние одного ошибочного результата на качество последующих вычислений исключено. Данным способом можно воспользоваться в расчёте некоторых сложных статически определимых ферм (рис. 6).

Рисунок 6

Требуется определить усилие в верхнем поясе 7−9. Известны размеры d и h, нагрузка P. Реакции опор R(A) = R(B) = 4,5P. Проведём сечение I-I и просуммируем моменты относительно точки 10. Усилия от раскосов и нижнего пояса не попадут в уравнение равновесия , так как сходятся в точке 10. Так мы избавляемся от пяти из шести неизвестных:

m(10) = 0: 4d∙R(A) - d∙P∙(4+3+2+1) + h∙O(7−9) = 0

O(7−9) = -8d∙P/h

Нулевым называют стержень, в котором усилие равно нулю. Выделяют ряд частных случаев, в которых гарантированно встречается нулевой стержень.

  • Равновесие ненагруженного узла, состоящего из двух стержней, возможно только в том случае, если оба стержня нулевые.
  • В ненагруженном узле из трёх стержней одиночный (не лежащий на одной прямой с остальными двумя) стержень будет нулевым.

Рисунок 7

  • В трехстержневом узле без нагрузки усилие в одиночном стержне будет равно по модулю и обратно по направлению приложенной нагрузке. При этом усилия в стержнях, лежащих на одной прямой, будут равны друг другу, и определятся расчётом N(3) = -P, N(1) = N(2) .
  • Трехстержневой узел с одиночным стержнем и нагрузкой , приложенной в произвольном направлении. Нагрузка P раскладывается на составляющие P" и P" по правилу треугольника параллельно осям элементов. Тогда N(1) = N(2) + P", N(3) = -P".

Рисунок 8​

  • В ненагруженном узле из четырёх стержней, оси которых направлены по двум прямым, усилия будут попарно равны N(1) = N(2) , N(3) = N(4) .

Пользуясь методом вырезания узлов и зная правила нулевого стержня, можно проводить проверку расчётов, проведённых другими методами.

Расчёт ферм на персональном компьютере

Современные вычислительные комплексы основаны на методе конечного элемента. С их помощью осуществляют расчёты ферм любого очертания и геометрической сложности . Профессиональные программные пакеты Stark ES, SCAD Office, ПК Лира обладают широким функционалом и, к сожалению, высокой стоимостью, а также требуют глубокого понимания теории упругости и строительной механики. Для учебных целей и подойдут бесплатные аналоги, например Полюс 2.1.1.

В Полюсе можно рассчитывать плоские статически определимые и неопределимые стержневые конструкции (балки, фермы, рамы) на силовое воздействие, определять перемещения и температурное воздействие. Перед нами эпюра продольных усилий для фермы, изображённой на рис. 2. Ординаты графика совпадают с полученными вручную результатами.

Рисунок 9

Порядок работы в программе Полюс

  • На панели инструментов (слева) выбираем элемент «опора». Размещаем помещаем элементы на свободное поле кликом левой кнопки мыши. Чтобы указать точные координаты опор, переходим в режим редактирования, нажав на значок курсора на панели инструментов.
  • Двойной клик по опоре. Во всплывающем окне «свойства узла» задаём точные координаты в метрах. Положительное направление осей координат - вправо и вверх соответственно. Если узел не будет использоваться в качестве опоры, установите флажок «не связан с землёй». Здесь же можно задать приходящие в опору нагрузки в виде точечной силы или момента, а также перемещения. Правило знаков такое же. Удобно разместить крайнюю левую опору в начале координат (точка 0, 0).
  • Далее размещаем узлы фермы. Выбираем элемент «свободный узел», кликаем по свободному полю, точные координаты прописываем для каждого узла в отдельности.
  • На панели инструментов выбираем «стержень ». Кликаем на начальном узле, отпускаем кнопку мышки. Затем кликаем на конечном узле. По умолчанию стержень имеет шарниры на двух концах и единичную жёсткость. Переходим в режим редактирования, двойным кликом по стержню открываем всплывающее окно, при необходимости изменяем граничные условия стержня (жёсткая связь, шарнир, подвижный шарнир для опорного конца) и его характеристики.
  • Для загружения ферм используем инструмент «сила», нагрузка прикладывается в узлах. Для сил, прикладываемых не строго вертикально или горизонтально, устанавливаем параметр «под углом», после чего вводим угол наклона к горизонтали. Альтернативно можно сразу ввести значение проекций силы на ортогональные оси.
  • Программа считает результат автоматически. На панели задач (вверху) можно переключать режимы отображения внутренних усилий (M, Q, N), а также опорных реакций (R). Результатом будет эпюра внутренних усилий в заданной конструкции.

В качестве примера рассчитаем сложную раскосную ферму, рассмотренную в методе моментной точки (рис. 6). Примем размеры и нагрузки: d = 3м, h = 6м, P = 100Н. По выведенной ранее формуле значение усилия в верхнем поясе фермы будет равно:

O(7−9) = -8d∙P/h = -8∙3м∙100Н/6м = -400 Н (сжатие)

Эпюра продольных усилий, полученная в Полюсе:

Рисунок 10

Значения совпадают, конструкция смоделирована верно .

Список литературы

  1. Дарков А. В., Шапошников Н. Н. - Строительная механика: учебник для строительных специализированных вузов - М.: Высшая школа, 1986.
  2. Рабинович И. М. - Основы строительной механики стержневых систем - М.: 1960.

Ферма — это система обычно прямолинейных стержней, которые соединяются между собой узлами. Это геометрически неизменяемая конструкция с шарнирными узлами (рассматриваются как шарнирные в первом приближении, так как жесткость узлов влияет на работу конструкции несущественно).

За счет того, что стержни испытывают только растяжение либо сжатие, материал фермы используется более полно, чем в сплошной балке. Это делает такую систему экономичной по затратам материала, но трудоемки в изготовлении, поэтому при проектировании нужно учитывать, что целесообразность использования ферм растет прямо пропорционально ее пролёту.

Фермы широко используются в промышленно-гражданском строительстве. Их применяют во многих строительных отраслях: покрытие зданий, мосты, опоры под линии электропередач, транспортные эстакады, грузоподъёмные краны и т.д.


Устройство конструкции

Основные элементы ферм — это пояса, из которых состоит контур фермы, а также решетка, состоящая из стоек и раскосов. Эти элементы соединяются в узлах путем примыкания или узловыми фасонками. Расстояние между опорами называется пролётом. Пояса ферм обычно работают на продольные усилия и изгибающие моменты (как и сплошные балки); решетка фермы принимает на себя в основном поперечную силу как и стенка в балке.

По расположению стержней фермы подразделяются на плоские (если все в одной плоскости) и пространственные. Плоские фермы способны воспринимать нагрузку только относительно собственной плоскости. поэтому их необходимо закреплять из своей плоскости с помощью связей или других элементов. Пространственные же фермы создаются, чтобы воспринимать нагрузку в любом направлении, так как создают жесткую пространственную систему.

Классификация по поясам и решеткам

Для разных видов нагрузок применяются различные виды ферм. Их классификаций множество, в зависимости от разных признаков.

Рассмотрим типы по очертанию пояса :

а — сегментные; б — полигональные; в — трапецеидальные; г — с параллельным расположением поясов; д — и — треугольные

Пояса фермы должны соответствовать статической нагрузке и виду нагрузки, которая определяет эпюру изгибающих моментов.

Очертания поясов во многом определяет экономичность фермы. По количеству используемой стали наиболее эффективна сегментная ферма, но она же является самой сложной в изготовлении.

По типу системы решетки фермы бывают :

а — треугольные; б — треугольные с дополнительными стойками; в — раскосные с восходящими раскосами; г — раскосные с нисходящими раскосами; д — шпренгельные; е — крестовые;

ж — перекрестные; з — ромбические; и — полураскосные

Особенности расчета и проектирования трубчатых ферм

Для производства использует сталь, толщиной 1,5 — 5 мм. Профиль может быть круглый или квадратный.

Трубчатый профиль для сжатых стержней наиболее эффективен с точки зрения расхода стали за счет благоприятного распределения материала относительно центра тяжести. При одинаковой площади сечения он имеет наибольший радиус инерции по сравнению с другими видами проката. Это позволяет проектировать стержни наименьшей гибкости и уменьшить расход стали на 20%. Также существенным преимуществом труб считается их обтекаемость. Благодаря этому давление ветра на такие фермы меньше. Трубы легко чистить и красить. все это делает трубчатый профиль выгодным для использования в фермах.

При проектировании ферм нужно стараться центрировать элементы в узлах по осям. Это делается, чтобы избежать дополнительных напряжений. Узловые сопряжения ферм из труб должны обеспечивать герметичное соединение (необходимо предотвратить возникновение коррозии во внутренней полости фермы).

Наиболее рациональными для трубчатых ферм являются бесфасоночные узлы с примыканием стержней решетки прямо к поясам. Выполняются такие узлы с помощью специальной фигурной резки концов, что позволяет минимализировать затрату труда и материала. Центрируют стержни по геометрическим осям. При отсутствии механизма для такой резки сплющивают концы решетки.

Такие узлы допустимы не для всех видов стали (только низкоуглеродистая или другая с высокой пластичностью). Если трубы решетки и поясов одинакового диаметра, то целесообразно соединять их на кольце.

Расчет стропильных ферм в зависимости от угла наклона крыши

Возведение при угле наклона крыши 22-30 градусов

Угол наклона крыши считается оптимальным для двускатной крыши 20-45 градусов, для односкатной 20-30 градусов.

Конструкция покрытий зданий состоит обычно из поставленных рядом стропильных ферм. Если они связаны между собой только прогонами, то система образуется изменяемая и может потерять устойчивость.

Чтобы обеспечить неизменяемость конструкции, проектировщики предусматривают несколько пространственных блоков из соседних ферм, которые скрепляются связями в плоскостях поясов и вертикальными поперечными связями. К таким жестким блокам крепятся другие фермы с помощью горизонтальных элементов, что и обеспечивает устойчивость конструкции.

Для расчета покрытия здания необходимо определиться с углом наклона кровли. Этот параметр зависит от нескольких факторов:

  • вид стропильной системы
  • кровельный пирог
  • обрешетка
  • материал кровли

Если угол наклона значительный, то использую фермы треугольного типа. Но они имеют некоторые недостатки. Это сложный опорный узел для которого необходимо шарнирное сопряжение, что делает всю конструкцию менее жесткой в поперечном направлении.

Сбор нагрузок

Обычно нагрузка, действующая на конструкцию, прикладывается в местах узлов, к которым крепятся элементы поперечных конструкций (например, навесной потолок или прогоны кровли). Для каждого вида нагрузки желательно определять усилия в стержнях отдельно. Виды нагрузок для стропильных ферм:

  • постоянная (собственная масса конструкции и всей поддерживаемой системы);
  • временная (нагрузка от подвесного оборудования, полезная нагрузка);
  • кратковременная (атмосферная, включающая снег и ветер);

Для определения постоянной расчетной нагрузки следует сначала найти грузовую площать, с которой она будет собираться.

Формула для определения нагрузки на кровлю:

F = (g + g1/cos a)*b ,

где g — собственная масса фермы и ее связей, горизонтальной проекции, g1 — масса кровли, а — угол наклона верхнего пояса относительно горизонта, b — расстояние между фермами

Исходя из этой формулы, чем больше угол наклона, тем меньше нагрузка, действующая на кровлю. Однако, следует учитывать, что увеличение угла влечет за собой и значительное повышение цены за счет увеличения объёма строительных материалов.

Также при проектировании крыши учитывается регион строительства . Если предполагается значительная ветровая нагрузка, то угол наклона закладывают минимальный и крышу делают односкатной.

Снег — нагрузка временная и загружает ферму только частично. Загружение половины фермы может быть очень невыгодным для средних расковов.

Полная снеговая нагрузка на кровлю рассчитывается по формуле :

Sр – расчетное значение снегового веса на 1 м2 горизонтальной поверхности;

μ – расчетный коэффициент, для учета наклона кровли (согласно СНиПу, равняется единице, если угол наклона меньше 25 градусов и 0.7, если угол от 25 до 60 градусов)

Давление ветра считается значимым только для вертикальных поверхностей и поверхностей, если их угол наклона к горизонту больше 30 градусов (актуально для мачт, башен и крутых стропильных ферм). Ветровая нагрузка как и остальные сводится к узловой.

Определение усилий

При проектирование трубчатых стропильных ферм следует учитывать их повышенную жесткость на изгиб и значительное влияние жесткости соединений в узлах. Поэтому для трубчатых профилей расчет ферм по шарнирной схеме допускается при отношении высоты сечения к длине не более 1/10 для конструкции, которые будут эксплуатироваться при расчетной температуре ниже -40 градусов.

В других случаях необходим расчет на изгибающие моменты в стержнях, возникающие из-за жесткости узлов. При этом можно осевые усилия вычислять по шарнирной схеме, а дополнительные моменты находить приближенно.

Инструкция для расчета стропильной фермы

  • определяется расчетная нагрузка (с использованием СНиП «Нагрузки и воздействия»)
  • находятся усилия в стержнях фермы (следует определиться с расчетной схемой)
  • вычисляется расчетная длина стержня (равняется произведению коэффициента приведения длины (0,8) на расстояние между центрами узлов)
  • проверка сжатых стержней на гибкость
  • задавшись гибкостью стержней, подобрать сечение по площади

При предварительном подборе для поясов значение гибкости принимается от 60 до 80, для решетки 100-120.

Подводим итоги

При грамотном проектировании стропильной системы можно значительно сократить количество используемого материала и сделать строительство кровли значительно дешевле. Для правильного расчета необходимо знать регион строительства, определиться с типом профиля, исходя из назначения и вида объекта. Применив правильную методику для нахождения расчетных данных, можно достигнуть оптимального соотношения между ценой возведения конструкции и ее эксплуатационными характеристиками.

Навесы на металлическом каркасе облегчают быт. Они защитят автомобиль от непогоды, прикроют летнюю веранду, беседку. Заменят крышу мастерской или козырек над подъездом. Обратившись к профессионалам, вы получите какой угодно навес. Но многие и сами справятся с работой по монтажу. Правда, понадобится точный расчет фермы из профильной трубы. Не обойтись и без соответствующего оборудования, материалов. Конечно, также нужны навыки сварки и резки.

Каркасный материал

Основа навесов – сталь, полимеры, дерево, алюминий, железобетон. Но, чаще каркас составляют металлические фермы из профильной трубы. Этот материал полый, сравнительно легкий, но прочный. В разрезе имеет вид:

  • прямоугольника;
  • квадрата;
  • овала (а также полу- и плоскоовальной фигуры);
  • многогранника.

Сваривая из профильной трубы фермы, чаще выбирают квадратное или прямоугольное сечение. Эти профили легче в обработке.

Разнообразие трубных профилей

Допустимые нагрузки зависят от толщины стенок, марки металла, метода изготовления. Материалом зачастую служат качественные конструкционные стали (1-3пс/сп, 1-2пс(сп)). Для особых нужд используют низколегированные сплавы и оцинковку.

Длина профильных труб обычно составляет от 6 м на малых сечениях до 12 м – на больших. Минимальные параметры от 10×10×1 мм и 15×15×1,5 мм. С увеличением толщины стенок прочность профилей возрастает. Например, на сечениях 50×50×1,5 мм, 100×100×3 мм и свыше. Изделия максимальных размеров (300×300×12 мм и более) применимы скорее для промышленных сооружений.

Что касается параметров элементов каркасов, есть следующие рекомендации:

  • для малогабаритных навесов (до 4,5 м шириной) применяется трубный материал сечением 40×20×2 мм;
  • если ширина до 5,5 м, рекомендованы параметры 40×40×2 мм;
  • для навесов более значительных размеров советуют брать трубы 40×40×3 мм, 60×30×2 мм.

Что такое ферма

Фермой называют стержневую систему, основу строительной конструкции. Состоит она из прямолинейных элементов, соединяемых в узлах. Например, рассматривается конструкция фермы из профильной трубы, в которой отсутствует расцентровка стержней и нет внеузловых нагрузок. Тогда в ее составных частях возникнут лишь усилия растяжения и сжатия. Механика этой системы позволяет ей сохранять геометрическую неизменность при замене жестко крепящихся узлов на шарнирные.

Ферма состоит из следующих элементов:

  • верхний пояс;
  • нижний пояс;
  • стойка, перпендикулярная к оси;
  • подкос (или раскос), наклонный к оси;
  • вспомогательный опорный раскос (шпренгель).

Система решетки быть треугольной, раскосной, полураскосной, крестовой. Для соединения используются косынки, парные материалы, клепки, сварные швы.

Варианты крепления в узлах

Изготовление ферм из профильной трубы подразумевает сборку пояса с определенными очертаниями. По типу они бывают:

  • сегментные;
  • полигональные;
  • двускатные (или трапецеидальные);
  • с параллельными поясами;
  • треугольные (д-и);
  • с поднятым ломаным нижним поясом;
  • односкатные;
  • консоль.

Одни системы проще в монтаже, другие экономичнее по расходу материалов, третьи легче по устройству опорных узлов.

Основы расчета фермы

Влияние угла наклона

Выбор конструкции ферм навесов из профильной трубы связан с уклоном проектируемого сооружения. Есть три возможных варианта:

  • от 6°до 15°;
  • от 15° до 22°;
  • от 22° до 35°.

При минимальном угле (6°-15°) рекомендуются трапециевидные очертания поясов. Для снижения веса допускается высота в 1/7 либо 1/9 общей длины пролета. Проектируя пологий навес сложной геометрической формы, надо приподнять его в средней части над опорами. Воспользуйтесь фермами Полонсо, рекомендуемыми многими специалистами. Они представляют собой систему из двух соединенных затяжкой треугольников. Если нужно высокое сооружение, лучше выбрать многоугольную конструкцию с приподнятым нижним поясом.

Когда угол уклона превышает 20°, высота должна составлять 1/7 часть от общей длины пролета. Последний достигать 20 м. Для повышения конструкции нижний пояс делается ломаным. Тогда увеличение составит до 0,23 длины пролета. Для вычисления нужных параметров пользуются табличными данными.

Таблица определения уклона стропильной системы

При уклоне свыше 22° расчеты ведутся по специальным программам. Навесы такого рода чаще используются для кровли из шифера, металла и подобных материалов. Здесь применяют треугольные фермы из профильной трубы при их высоте в 1/5 от всей длины пролета.

Чем больше угол наклона, тем меньше на навесе будет скапливаться осадков, тяжелого снега. Несущая способность системы возрастает с повышением ее высоты. Для дополнительной прочности предусматривают добавочные ребра жесткости.

Параметры базовых углов

Чтобы понять, как рассчитать ферму из профильной трубы, обязательно выяснить параметры базовых узлов. Например, размеры пролета обычно должны быть указаны в техническом задании. Число панелей, их габариты назначаются предварительно. Вычислим оптимальную высоту (Н) в середине пролета.

  • Если пояса параллельные, полигональные, трапецеидальные, Н=1/8×L, где L – длина фермы. Верхний пояс должен иметь уклон около 1/8×L либо 1/12×L.
  • Для треугольного типа, в среднем, Н=1/4×L или Н=1/5×L.

Раскосы решетки должны иметь наклон примерно 45° (в пределах 35°-50°).

Воспользуйтесь готовым типовым проектом, тогда не придется делать расчет

Чтобы навес был надежным и долго прослужил, его проект требует точных вычислений. Уже после расчета закупаются материалы, в дальнейшем монтируется каркас. Есть более затратный путь – приобрести готовые модули и собрать сооружение на месте. Другой вариант сложнее – заняться подсчетами самостоятельно. Тогда понадобятся данные из спецсправочников по СНиП 2.01.07-85 (воздействия, нагрузки), а также СНиП П-23-81 (данные по стальным конструкциям). Нужно сделать следующее.

  1. Определиться со схемой блоков в соответствии с функциями навеса, углом наклона, материалом стержней.
  2. Выбрать параметры. Учесть зависимость между высотой и минимальным весом кровли, ее материалом и типом, уклоном.
  3. Рассчитать панельные размеры сооружения согласно удаленности отдельных частей, ответственных за передачу нагрузок. Определяется расстояние между соседними узлами, обычно равное ширине панели. Если размер пролета свыше 36 м, вычисляется строительный подъем – обратный погашаемый изгиб, воздействующий из-за нагрузок на конструкцию.

Среди способов расчета статически определимых ферм одним из простейших считается вырезание узлов (участков, где стержни соединены шарнирно). Другие варианты – метод Риттера, метод замены стержней Геннеберга. А также графическое решение путем составления диаграммы Максвелла-Кремоны. В современных компьютерных программах чаще применяется метод вырезания узлов.

Для человека, владеющего знаниями по механике и сопромату высчитать все это не так сложно. Остальным же стоит учесть, что от точности расчетов и величины погрешностей зависит срок службы и безопасность навеса. Возможно, лучше обратиться к специалистам. Или выбрать вариант из готовых проектных решений, куда просто подставить свои значения. Когда понятно, какого вида нужна стропильная ферма из профильной трубы, чертеж для нее наверняка найдется в интернете.

Значимые факторы выбора участка

Если навес относится к дому или другому зданию, на него потребоваться официальное разрешение, о чем тоже придется позаботиться.

Сначала выбирается участок, где будет располагаться сооружение. Что при этом учитывается?

  1. Постоянные нагрузки (фиксированный вес обрешетки, кровли и прочих материалов).
  2. Переменные нагрузки (воздействия климатических факторов: ветер, осадки, в том числе снег).
  3. Особый тип нагрузок (есть ли сейсмическая активность в регионе, штормы, ураганы и подобное).

Также важны характеристики грунта, влияния стоящих рядом зданий. Проектировщик должен учесть все значимые факторы и уточняющие коэффициенты, которые вносятся в алгоритм расчета. Если планируется провести вычисления своими силами, воспользуйтесь программами 3D Max, Аркон, Автокад или подобными. Есть вариант расчета в онлайн-версиях строительных калькуляторов. Обязательно выяснить для намеченного проекта рекомендуемый шаг между несущими опорами, обрешеткой. А также параметры материалов и их количество.

Пример программного расчета для навеса, крытого поликарбонатом

Последовательность работ

Сборку каркаса из металлических профилей должен проводить только специалист по сварочным работам. Это ответственное дело требует знаний и умелого обращения с инструментом. Надо не только понимать, как сварить ферму из профильной трубы. Важно, какие узлы правильнее собрать на земле, и лишь потом поднимать на опоры. Если сооружение тяжелое, для монтажа потребоваться техника.

Обычно процесс монтажа проходит в такой последовательности:

  1. Выполняется разметка участка. Устанавливаются закладные детали, вертикальные опоры. Нередко в ямы сразу помещают металлические трубы, а потом бетонируют. Вертикальность установки проверяется отвесом. Для контроля параллельности натягивается шнур или нить между крайними стойками, остальные выставляются по полученной линии.
  2. Продольные трубы сваркой фиксируют к опорам.
  3. На земле сваривают узлы и элементы ферм. С помощью раскосов и перемычек соединяют пояса конструкции. Потом блоки следует поднять на нужную высоту. Их приваривают к продольным трубам по участкам размещения вертикальных опор. Между фермами по скату вваривают продольные перемычки для дальнейшего крепления кровельного материала. В них проделывают отверстия под крепеж.
  4. Тщательно зачищаются все соединительные участки. Особенно верхние грани каркаса, куда в дальнейшем ляжет кровля. Поверхность профилей очищается, обезжиривается, обрабатывается грунтовкой и окрашивается.

Воспользовавшись готовым проектом, вы быстрее приступите к сборке навеса

Специалисты советуют выполнять столь ответственные работы только при наличии соответствующего опыта. Мало знать в теории, как правильно сварить ферму из профильной трубы. Сделав что-то неправильно, проигнорировав нюансы, домашний мастер рискует. Навес сложится и рухнет. Пострадает все, что под ним будет – авто или люди. Поэтому возьмите знания на вооружение!

Видео: как сварить ферму из профильной трубы

Металлические фермы из профильной трубы – металлоконструкции, сборка которых производится посредством решетчатых металлических стержней. Их изготовление представляет собой достаточно сложный и трудоемкий процесс, но результат обычно оправдывает ожидания. Немаловажным достоинством можно назвать и экономичность полученной конструкции. В процессе производства зачастую применяют парный металл и косынки в качестве соединяющих металлических деталей. Дальнейший процесс сборки основан на клепке или сварке.

Преимущества металлоконструкций

Металлическая ферма имеет немало преимуществ. С их помощью можно с легкостью перекрыть пролет любой длины. Однако следует понимать, что правильный монтаж предполагает первичный грамотный расчет фермы из профильной трубы. В этом случае можно будет быть уверенным в качестве созданной металлической конструкции. Также стоит придерживаться намеченных планов, чертежа и разметки, чтобы изделие получилось в соответствии с требованиями.

На этом преимущества изделия не заканчиваются. Можно выделить и следующие достоинства:

  1. Долговечность металлического изделия.
  2. Незначительный вес при сравнении с другими аналогичными конструкциями.
  3. Выносливость.
  4. Устойчивость к повреждениям и негативным окружающим факторам.
  5. Крепкие узлы, способствующие стойкости к любым типам нагрузок.
  6. Возможность сэкономить финансы посредством самостоятельной сборки, так как готовое металлическое изделие стоит недешево.
  7. Конструкционные особенности ферм

    Ферма из профильной трубы имеет характерные особенности, о которых следует помнить заранее. В основе деления можно выделить определенные параметры. Главным значением считают количество поясов. Можно выделить следующие виды:


    Второй важный параметр, без которого чертеж фермы создать не получится, это контуры и форма. В зависимости от последнего можно выделить прямые, двухскатные или односкатные, арочные фермы. По контуру также можно разделить металлические конструкции на несколько вариантов. Первый – это конструкции с параллельным поясом. Они считаются оптимальным решением для создания мягкой кровли. Металлическая опора предельно проста, а ее компоненты идентичны, по размерам решетка совпадает со стержнями, благодаря чему монтаж становится легкой работой.

    Второй вариант – односкатные металлические конструкции. В их основе жесткие узлы, обеспечивающие стойкость к внешним нагрузкам. Создание такой конструкции отличается экономичностью материала и соответственно небольшими расходами. Третий вид – полигональные фермы. Их отличает длительный по времени и достаточно сложный монтаж, а преимуществом становится способность выдерживать большой вес. Четвертый вариант – треугольные фермы из профильной трубы. Они используются, если планируется создание металлической фермы с большим углом наклона, но минусом станет наличие отходов после сооружения.

    Следующий важный параметр – угол наклона. В зависимости от него металлические фермы из профильных труб делятся на три основные группы. В первую группу попадают металлические конструкции с углом наклона в 22-30 градусов. При этом длина и высота изделия представлены соотношением 1:5. Среди достоинств такой металлоконструкции можно выделить незначительный вес. Чаще всего так создают металлические треугольные фермы.

    При этом может понадобиться использование раскосов, монтируемых сверху вниз, если высота пролетов превышает 14 метров. В верхнем поясе будет расположена панель длиной 150-250 см. Как результат получится конструкция с двумя поясами и четным количеством панелей. При условии, что пролет более 20 метров, следует монтировать подстропильную металлоконструкцию, связывая ее опорными колоннами.

    Ко второй группе относят фермы из квадратных труб или из профтруб и других разновидностей, если угол наклона составляет 15-22 градуса. Соотношение высоты и длины между собой достигает 1:7. Максимальная длина каркаса не должна превышать 20 метров. Если необходимо увеличить высоту, требуются дополнительные процедуры, к примеру, создается ломаный пояс.

    К третьей группе относят металлоконструкции с углом наклона менее 15 градусов. В этих проектах применяют трапециевидную стропильную систему. Они имеют дополнительно короткие стойки. Это позволяет повысить противодействие продольному прогибу. Если монтируется односкатная крыша, угол наклона которой достигает 6-10 градусов, необходимо продумать ассиметричную форму. Деление пролета может варьироваться в зависимости от особенностей конструкции, и может достигать семи, восьми или девяти частей.

    Отдельно выделяют ферму Полонсо, монтируемую своими руками. Она представлена двумя треугольными фермами, которые соединены затяжкой. Это позволяет исключить установки длинных раскосов, которые должны были бы располагаться в средних панелях. Как результат, вес конструкции будет оптимальным.

    Как правильно рассчитать навес?

    Расчет и изготовление ферм из профильной трубы должно быть основано на основных требованиях, которые прописаны в СНиП. При расчете важно составление и чертежа изделия, без которого последующий монтаж будет невозможен. Первоначально следует подготовить схему, где будут указаны основные зависимости между уклоном кровли и длиной конструкции в целом. В частности, следует учесть следующее:

    1. Контура поясов опоры. Они помогут определить назначение металлоконструкции, угол наклона и тип кровли.
    2. При подборе необходимо следовать принципу экономии, если требования не предполагают противоположного.
    3. Расчет размеров производится с учетом нагрузок на конструкцию. Важно помнить о том, что углы стропил могут отличаться, но панель должна соответствовать им.
    4. Последний расчет касается промежутка между узлами. Чаще всего его выбирают так, чтобы он соответствовал ширине панели.

    Следует помнить о том, что увеличение высоты своими руками будет приводить к повышению несущей способности. В таком случае снежный покров не будет удерживаться на кровле. Чтобы дополнительно усилить металлоконструкцию, придется монтировать ребра жесткости. Чтобы определить габариты фермы, стоит руководствоваться такими данными:

  • конструкции шириной до 4,5 метров монтируют из деталей габаритам 40х20х2 мм;
  • изделия шириной 5,5 метров создаются из составляющих размером 40х40х2 мм;
  • если ширина конструкции будет превышать 5,5 метров, оптимально выбрать детали 40х40х3 мм или 60х30х2 мм.

Далее необходимо рассчитать шаг, для этого учитывают расстояние от одной до следующей опоры навеса. Зачастую оно стандартно и достигает 1,7 метров. Если нарушить это негласное правило, прочность конструкции может несколько нарушиться. После того, как все требуемые параметры рассчитаны, необходимо получить схему конструкции. Для этого используют программу, чтобы добиться требуемой прочности. Большинство программ имеют аналогичные названию процессу, который выполняют. Можно выбрать программу «Расчет фермы», «Расчет ферм 1.0» и другие похожие.

Обязательно учитывайте при расчете стоимость одной тонны металла в закупке, а также стоимость изготовление самой металлоконструкции, то есть расходы на сварку, обработку антикоррозийным составом и монтаж. Теперь осталось разобраться с тем, как сварить ферму из профильной трубы.

Чтобы сварка ферм была качественной, необходимо следовать ряду рекомендаций. Среди них выделяют следующие:


Чтобы конструкция получилась в соответствии с требованиями, важно придерживаться и определенного алгоритма работы. Первоначально выполняют разметку участка. Для этого монтируют вертикальные опоры и закладные детали. При необходимости металлические профильные трубы можно сразу разместить в ямах и забетонировать. Установку вертикальных опор выверяют отвесом, а, чтобы проконтролировать параллельность, натягивают шнур.