Проекции точек находящихся в пространстве. Проецирование точки. Нахождение координат проекции точки на плоскость – решения примеров

Рассмотрим проекции точек на две плоскости, для чего возьмем две перпендикулярные плоскости (рис. 4), которые будем называть горизонтальной фронтальной и плоскостями. Линию пересечения данных плоскостей называют осью проекций. На рассмотренные плоскости спроецируем одну точку А с помощью плоской проекции. Для этого необходимо опустить из данной точки перпендикуляры Аа и A на рассмотренные плоскости.

Проекцию на горизонтальную плоскость называют горизонтальной проекцией точки А , а проекцию а? на фронтальную плоскость называют фронтальной проекцией .


Точки, которые подлежат проецированию, в начертательной геометрии принято обозначать с помощью больших латинских букв А, В, С . Для обозначения горизонтальных проекций точек применяют малые буквы а, b, с … Фронтальные проекции обозначают малыми буквами со штрихом вверху а?, b?, с?

Применяется также и обозначение точек римскими цифрами I, II,… а для их проекций – арабскими цифрами 1, 2… и 1?, 2?…

При повороте горизонтальной плоскости на 90° можно получить чертеж, в котором обе плоскости находятся в одной плоскости (рис. 5). Данная картина называется эпюром точки .


Через перпендикулярные прямые Аа и Аа? проведем плоскость (рис. 4). Полученная плоскость является перпендикулярной фронтальной и горизонтальной плоскостям, потому что содержит перпендикуляры к этим плоскостям. Следовательно, данная плоскость перпендикулярна линии пересечения плоскостей. Полученная прямая пересекает горизонтальную плоскость по прямой аа х, а фронтальную плоскость – по прямой а?а х. Прямые аах и а?а х являются перпендикулярными оси пересечения плоскостей. То есть Аааха? является прямоугольником.

При совмещении горизонтальной и фронтальной плоскостей проекции а и а? будут лежать на одном перпендикуляре к оси пересечения плоскостей, так как при вращении горизонтальной плоскости перпендикулярность отрезков аа х и а?а х не нарушится.

Получаем, что на эпюре проекции а и а? некоторой точки А всегда лежат на одном перпендикуляре к оси пересечения плоскостей.

Две проекции а и а? некоторой точки А могут однозначно определить ее положение в пространстве (рис. 4). Это подтверждается тем, что при построении перпендикуляра из проекции а к горизонтальной плоскости он пройдет через точку А. Точно так же перпендикуляр из проекции а? к фронтальной плоскости пройдет через точку А , т. е. точка А находится одновременно на двух определенных прямых. Точка А является их точкой пересечения, т. е. является определенной.

Рассмотрим прямоугольник Aaa х а? (рис. 5), для которого справедливы следующие утверждения:

1) Расстояние точки А от фронтальной плоскости равно расстоянию ее горизонтальной проекции а от оси пересечения плоскостей, т. е.

Аа? = аа х;

2) расстояние точки А от горизонтальной плоскости проекций равно расстоянию ее фронтальной проекции а? от оси пересечения плоскостей, т. е.

Аа = а?а х.

Иначе говоря, даже без самой точки на эпюре, используя только две ее проекции, можно узнать, на каком расстоянии от каждой из плоскостей проекций находится данная точка.

Пересечение двух плоскостей проекций разделяет пространство на четыре части, которые называют четвертями (рис. 6).

Ось пересечения плоскостей делит горизонтальную плоскость на две четверти – переднюю и заднюю, а фронтальную плоскость – на верхнюю и нижнюю четверти. Верхнюю часть фронтальной плоскости и переднюю часть горизонтальной плоскости рассматривают как границы первой четверти.


При получении эпюра вращается горизонтальная плоскость и совмещается с фронтальной плоскостью (рис. 7). В этом случае передняя часть горизонтальной плоскости совпадет с нижней частью фронтальной плоскости, а задняя часть горизонтальной плоскости – с верхней частью фронтальной плоскости.


На рисунках 8-11 показаны точки А, В, С, D, располагающиеся в различных четвертях пространства. Точка А расположена в первой четверти, точка В – во второй, точка С – в третьей и точка D – в четвертой.


При расположении точек в первой или четвертой четвертях их горизонтальные проекции находятся на передней части горизонтальной плоскости, а на эпюре они лягут ниже оси пересечения плоскостей. Когда точка расположена во второй или третьей четверти, ее горизонтальная проекция будет лежать на задней части горизонтальной плоскости, а на эпюре будет находиться выше оси пересечения плоскостей.


Фронтальные проекции точек, которые расположены в первой или второй четвертях, будут лежать на верхней части фронтальной плоскости, а на эпюре будут находиться выше оси пересечения плоскостей. Когда точка расположена в третьей или четвертой четверти, ее фронтальная проекция – ниже оси пересечения плоскостей.

Чаще всего при реальных построениях фигуру располагают в первой четверти пространства.

В некоторых частных случаях точка (Е ) может лежать на горизонтальной плоскости (рис. 12). В этом случае ее горизонтальная проекция е и сама точка будут совпадать. Фронтальная проекция такой точки будет находиться на оси пересечения плоскостей.

В случае, когда точка К лежит на фронтальной плоскости (рис. 13), ее горизонтальная проекция k лежит на оси пересечения плоскостей, а фронтальная k? показывает фактическое местонахождение этой точки.


Для подобных точек признаком того, что она лежит на одной из плоскостей проекций, служит то, что одна ее проекция находится на оси пересечения плоскостей.

Если точка лежит на оси пересечения плоскостей проекций, она и обе ее проекции совпадают.

Когда точка не лежит на плоскостях проекций, она называется точкой общего положения . В дальнейшем, если нет особых отметок, рассматриваемая точка является точкой общего положения.

2. Отсутствие оси проекций

Для пояснения получения на модели проекций точки на перпендикулярные плоскости проекций (рис. 4) необходимо взять кусок плотной бумаги в форме удлиненного прямоугольника. Его нужно согнуть между проекциями. Линия сгиба будет изображать ось пересечения плоскостей. Если после этого согнутый кусок бумаги вновь расправить, получим эпюр, похожий на тот, что изображен на рисунке.

Совмещая две плоскости проекций с плоскостью чертежа, можно не показывать линию сгиба, т. е. не проводить на эпюре ось пересечения плоскостей.

При построениях на эпюре всегда следует располагать проекции а и а? точки А на одной вертикальной прямой (рис. 14), которая перпендикулярна оси пересечения плоскостей. Поэтому, даже если положение оси пересечения плоскостей остается неопределенным, но ее направление определено, ось пересечения плоскостей может находиться на эпюре только перпендикулярно прямой аа? .


Если на эпюре точки нет оси проекций, как на первом рисунке 14 а, можно представить положение этой точки в пространстве. Для этого проведем в любом месте перпендикулярно прямой аа? ось проекции, как на втором рисунке (рис. 14) и согнем чертеж по этой оси. Если восстановить перпендикуляры в точках а и а? до их пересечения, можно получить точку А . При изменении положения оси проекций получаются различные положения точки относительно плоскостей проекций, но неопределенность положения оси проекций не влияет на взаимное расположение нескольких точек или фигур в пространстве.

3. Проекции точки на три плоскости проекций

Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, когда двух проекций оказывается недостаточно. Тогда применяют построение третьей проекции.

Третью плоскость проекции проводят так, чтобы она была перпендикулярна одновременно обеим плоскостям проекций (рис. 15). Третью плоскость принято называть профильной .

В таких построениях общую прямую горизонтальной и фронтальной плоскостей называют осью х , общую прямую горизонтальной и профильной плоскостей – осью у , а общую прямую фронтальной и профильной плоскостей – осью z . Точка О , которая принадлежит всем трем плоскостям, называется точкой начала координат.


На рисунке 15а показана точка А и три ее проекции. Проекцию на профильную плоскость (а?? ) называют профильной проекцией и обозначают а?? .

Для получения эпюра точки А, которая состоит из трех проекций а, а а , необходимо разрезать трехгранник, образующийся всеми плоскостями, вдоль оси у (рис. 15б) и совместить все эти плоскости с плоскостью фронтальной проекции. Горизонтальную плоскость необходимо вращать около оси х , а профильную плоскость – около оси z в направлении, указанном на рисунке 15 стрелкой.

На рисунке 16 изображено положение проекций а, а? и а?? точки А , полученное в результате совмещения всех трех плоскостей с плоскостью чертежа.

В результате разреза ось у встречается на эпюре в двух различных местах. На горизонтальной плоскости (рис. 16) она принимает вертикальное положение (перпендикулярно оси х ), а на профильной плоскости – горизонтальное (перпендикулярно оси z ).


На рисунке 16 три проекции а, а? и а?? точки А имеют на эпюре строго определенное положение и подчинены однозначным условиям:

а и а? всегда должны располагаться на одной вертикальной прямой, перпендикулярной оси х ;

а? и а?? всегда должны располагаться на одной горизонтальной прямой, перпендикулярной оси z ;

3) при проведении через горизонтальную проекцию а горизонтальной прямой, а через профильную проекцию а?? – вертикальной прямой построенные прямые обязательно пересекутся на биссектрисе угла между осями проекций, так как фигура Оа у а 0 а н – квадрат.

При выполнении построения трех проекций точки нужно проверять выполняемость всех трех условий для каждой точки.

4. Координаты точки

Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами . Каждой координате соответствует расстояние точки от какой-нибудь плоскости проекций.

Расстояние определяемой точки А до профильной плоскости является координатой х , при этом х = а?А (рис. 15), расстояние до фронтальной плоскости – координатой у, причем у = а?А , а расстояние до горизонтальной плоскости – координатой z , при этом z = aA .

На рисунке 15 точка А занимает ширину прямоугольного параллелепипеда, и измерения этого параллелепипеда соответствуют координатам этой точки, т. е., каждая из координат представлена на рисунке 15 четыре раза, т. е.:

х = а?А = Оа х = а у а = a z a?;

y = а?А = Оа y = а x а = а z а?;

z = aA = Oa z = а x а? = а y а?.

На эпюре (рис. 16) координаты х и z встречаются по три раза:

х = а z а?= Оа x = а y а,

z = а x a? = Oa z = а y а?.

Все отрезки, которые соответствуют координате х (или z ), являются параллельными между собой. Координата у два раза представлена осью, расположенной вертикально:

y = Оа у = а х а

и два раза – расположенной горизонтально:

у = Оа у = а z а?.

Данное различие появилось из-за того, что ось у присутствует на эпюре в двух различных положениях.

Следует учесть, что положение каждой проекции определяется на эпюре только двумя координатами, а именно:

1) горизонтальной – координатами х и у ,

2) фронтальной – координатами x и z ,

3) профильной – координатами у и z .

Используя координаты х, у и z , можно построить проекции точки на эпюре.

Если точка А задается координатами, их запись определяется так: А (х; у; z ).

При построении проекций точки А нужно проверять выполняемость следующих условий:

1) горизонтальная и фронтальная проекции а и а? х х ;

2) фронтальная и профильная проекции а? и а? должны располагаться на одном перпендикуляре к оси z , так как имеют общую координату z ;

3) горизонтальная проекция а так же удалена от оси х , как и профильная проекция а удалена от оси z , так как проекции а? и а? имеют общую координату у .

В случае, если точка лежит в любой из плоскостей проекций, то одна из ее координат равна нулю.

Когда точка лежит на оси проекций, две ее координаты равны нулю.

Если точка лежит в начале координат, все три ее координаты равны нулю.

Точка, как математическое понятие, не имеет размеров. Очевидно, если объект проецирования является нульмерным объектом, то говорить о его проецировании бессмысленно.

Рис.9 Рис.10

В геометрии под точкой целесообразно принимать физический объект, имеющий линейные измерения. Условно за точку можно принять шарик с бесконечно малым радиусом. При такой трактовке понятия точки можно говорить о ее проекциях.

При построении ортогональных проекций точки следует руководствоваться первым инвариантным свойством ортогонального проецирования: ортогональная проекция точки есть точка.

Положение точки в пространстве определяется тремя координатами: X, Y, Z, показывающие величины расстояний, на которые точка удалена от плоскостей проекций. Чтобы определить эти расстояния, достаточно определить точки встречи этих прямых с плоскостями проекций и измерить соответствующие величины, которые укажут соответственно значения абсциссы X , ординаты Y и аппликаты Z точки (рис. 10).

Проекцией точки является основание перпендикуляра, опущенного из точки на соответствующую плоскость проекций. Горизонтальной проекцией точки а называют прямоугольную проекцию точки на горизонтальной плоскости проекций, фронтальной проекцией а / – соответственно на фронтальной плоскости проекций и профильной а // – на профильной плоскости проекций.

Прямые Аа, Аa / и Аa // называются проецирующими прямыми. При этом прямую Аа, проецирующую точку А на горизонтальную плоскость проекций, называют горизонтально- проецирующей прямой, Аa / и Аa // - соответственно: фронтально и профильно-проецирущими прямыми.

Две проецирующие прямые, проходящие через точку А определяют плоскость, которую принято называть проецирующей.

При преобразовании пространственного макета, фронтальная проекция точки А – а / остается на месте, как принадлежащая плоскости, которая не менят своего положения при рассматриваемом преобразовании. Горизонтальная проекция – а вместе с горизонтальной плоскостью проекции повернется понаправлению движения часовой стрелки и расположится на одном перепендикуляре к оси Х с фронтальной проекцией. Профильная проекция - a // будет вращаться вместе с профильной плоскостью и к концу преобразования займет положение, указанное на рисунке 10. При этом - a // будет принадлежать перпендикуляру к оси Z , проведенному из точки а / и будет удалена от оси Z на такое же расстояние, на какое горизонтальная проекция а удалена от оси Х . Поэтому связь между горизонтально и профильной проекциями точки может быть установлена с помощью двух ортогональных отрезков аа y и а y a // и сопрягающей их дуги окружности с центром в точке пересечения осей (О – начало координат). Отмеченной связью пользуются для нахождения недостающей проекции (при двух заданных). Положение профильной (горизонтальной) проекции по заданным горизонтальной (профильной) и фронтальной проекциям может быть найдено с помощью прямой, проведенной под углом 45 0 из начала координат к оси Y (эту биссектрису называют прямой k – постоянной Монжа). Первый из указанных способов предпочтителен, как более точный.


Из этого следует:

1. Точка в пространстве удалена:

от горизонтальной плоскости H Z,

от фронтальной плоскости V на величину заданной координаты Y,

от профильной плоскости W на величину координаты.X.

2. Две проекции любой точки принадлежат одному перпендикуляру (одной линии связи):

горизонтальная и фронтальная – перпендикуляру к оси X,

горизонтальная и профильная – перпендикуляру к оси Y,

фронтальная и профильная – перпендикуляру к оси Z.

3. Положение точки в пространстве вполне определяется положением ее двух ортогональных проекций. Из этого следует – по двум любым заданным ортогональным проекциям точки всегда иожно построить недостающую ее третью проекцию.


Если точка имеет три определенные координаты, то такую точку называют точкой общего положения. Если у точки одна или две координаты имеют нулевое значение, то такую точку называют точкой частного положения.

Рис. 11 Рис. 12

На рисунке 11 дан пространственный чертеж точек частного положения, на рисунке 12 – комплексных чертеж (эпюр) этих точек. Точка А принадлежит фронтальной плоскости проекций, точка В – горизонтальной плоскости проекций, точка С – профильной плоскости проекций и точка D – оси абсцисс (Х ).

В этой статье мы найдем ответы на вопросы о том, как создать проекцию точки на плоскость и как определить координаты этой проекции. Опираться в теоретической части будем на понятие проецирования. Дадим определения терминам, сопроводим информацию иллюстрациями. Закрепим полученные знания при решении примеров.

Проецирование, виды проецирования

Для удобства рассмотрения пространственных фигур используют чертежи с изображением этих фигур.

Определение 1

Проекция фигуры на плоскость – чертеж пространственной фигуры.

Очевидно, что для построения проекции существует ряд используемых правил.

Определение 2

Проецирование – процесс построения чертежа пространственной фигуры на плоскости с использованием правил построения.

Плоскость проекции - это плоскость, в которой строится изображение.

Использование тех или иных правил определяет тип проецирования: центральное или параллельное .

Частным случаем параллельного проецирования является перпендикулярное проецирование или ортогональное: в геометрии в основном используют именно его. По этой причине в речи само прилагательное «перпендикулярное» часто опускают: в геометрии говорят просто «проекция фигуры» и подразумевают под этим построение проекции методом перпендикулярного проецирования. В частных случаях, конечно, может быть оговорено иное.

Отметим тот факт, что проекция фигуры на плоскость по сути есть проекция всех точек этой фигуры. Поэтому, чтобы иметь возможность изучать пространственную фигуру на чертеже, необходимо получить базовый навык проецировать точку на плоскость. О чем и будем говорить ниже.

Напомним, что чаще всего в геометрии, говоря о проекции на плоскость, имеют в виду применение перпендикулярной проекции.

Произведем построения, которые дадут нам возможность получить определение проекции точки на плоскость.

Допустим, задано трехмерное пространство, а в нем - плоскость α и точка М 1 , не принадлежащая плоскости α . Начертим через заданную точку М 1 прямую а перпендикулярно заданной плоскости α . Точку пересечения прямой a и плоскости α обозначим как H 1 , она по построению будет служить основанием перпендикуляра, опущенного из точки М 1 на плоскость α .

В случае, если задана точка М 2 , принадлежащая заданной плоскости α , то М 2 будет служить проекцией самой себя на плоскость α .

Определение 3

– это либо сама точка (если она принадлежит заданной плоскости), либо основание перпендикуляра, опущенного из заданной точки на заданную плоскость.

Нахождение координат проекции точки на плоскость, примеры

Пускай в трехмерном пространстве заданы: прямоугольная система координат O x y z , плоскость α , точка М 1 (x 1 , y 1 , z 1) . Необходимо найти координаты проекции точки М 1 на заданную плоскость.

Решение очевидным образом следует из данного выше определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость α как Н 1 . Согласно определению, H 1 является точкой пересечения данной плоскости α и прямой a , проведенной через точку М 1 (перпендикулярной плоскости). Т.е. необходимые нам координаты проекции точки М 1 – это координаты точки пересечения прямой a и плоскости α .

Таким образом, для нахождения координат проекции точки на плоскость необходимо:

Получить уравнение плоскости α (в случае, если оно не задано). Здесь вам поможет статья о видах уравнений плоскости;

Определить уравнение прямой a , проходящей через точку М 1 и перпендикулярной плоскости α (изучите тему об уравнении прямой, проходящей через заданную точку перпендикулярно к заданной плоскости);

Найти координаты точки пересечения прямой a и плоскости α (статья – нахождение координат точки пересечения плоскости и прямой). Полученные данные и будут являться нужными нам координатами проекции точки М 1 на плоскость α .

Рассмотрим теорию на практических примерах.

Пример 1

Определите координаты проекции точки М 1 (- 2 , 4 , 4) на плоскость 2 х – 3 y + z - 2 = 0 .

Решение

Как мы видим, уравнение плоскости нам задано, т.е. составлять его необходимости нет.

Запишем канонические уравнения прямой a , проходящей через точку М 1 и перпендикулярной заданной плоскости. В этих целях определим координаты направляющего вектора прямой a . Поскольку прямая а перпендикулярна заданной плоскости, то направляющий вектор прямой a – это нормальный вектор плоскости 2 х – 3 y + z - 2 = 0 . Таким образом, a → = (2 , - 3 , 1) – направляющий вектор прямой a .

Теперь составим канонические уравнения прямой в пространстве, проходящей через точку М 1 (- 2 , 4 , 4) и имеющей направляющий вектор a → = (2 , - 3 , 1) :

x + 2 2 = y - 4 - 3 = z - 4 1

Для нахождения искомых координат следующим шагом определим координаты точки пересечения прямой x + 2 2 = y - 4 - 3 = z - 4 1 и плоскости 2 х - 3 y + z - 2 = 0 . В этих целях переходим от канонических уравнений к уравнениям двух пересекающихся плоскостей:

x + 2 2 = y - 4 - 3 = z - 4 1 ⇔ - 3 · (x + 2) = 2 · (y - 4) 1 · (x + 2) = 2 · (z - 4) 1 · (y - 4) = - 3 · (z + 4) ⇔ 3 x + 2 y - 2 = 0 x - 2 z + 10 = 0

Составим систему уравнений:

3 x + 2 y - 2 = 0 x - 2 z + 10 = 0 2 x - 3 y + z - 2 = 0 ⇔ 3 x + 2 y = 2 x - 2 z = - 10 2 x - 3 y + z = 2

И решим ее, используя метод Крамера:

∆ = 3 2 0 1 0 - 2 2 - 3 1 = - 28 ∆ x = 2 2 0 - 10 0 - 2 2 - 3 1 = 0 ⇒ x = ∆ x ∆ = 0 - 28 = 0 ∆ y = 3 2 0 1 - 10 - 2 2 2 1 = - 28 ⇒ y = ∆ y ∆ = - 28 - 28 = 1 ∆ z = 3 2 2 1 0 - 10 2 - 3 2 = - 140 ⇒ z = ∆ z ∆ = - 140 - 28 = 5

Таким образом, искомые координаты заданной точки М 1 на заданную плоскость α будут: (0 , 1 , 5) .

Ответ: (0 , 1 , 5) .

Пример 2

В прямоугольной системе координат O x y z трехмерного пространства даны точки А (0 , 0 , 2) ; В (2 , - 1 , 0) ; С (4 , 1 , 1) и М 1 (-1, -2, 5). Необходимо найти координаты проекции М 1 на плоскость А В С

Решение

В первую очередь запишем уравнение плоскости, проходящей через три заданные точки:

x - 0 y - 0 z - 0 2 - 0 - 1 - 0 0 - 2 4 - 0 1 - 0 1 - 2 = 0 ⇔ x y z - 2 2 - 1 - 2 4 1 - 1 = 0 ⇔ ⇔ 3 x - 6 y + 6 z - 12 = 0 ⇔ x - 2 y + 2 z - 4 = 0

Запишем параметрические уравнения прямой a , которая будет проходить через точку М 1 перпендикулярно плоскости А В С. Плоскость х – 2 y + 2 z – 4 = 0 имеет нормальный вектор с координатами (1 , - 2 , 2) , т.е. вектор a → = (1 , - 2 , 2) – направляющий вектор прямой a .

Теперь, имея координаты точки прямой М 1 и координаты направляющего вектора этой прямой, запишем параметрические уравнения прямой в пространстве:

Затем определим координаты точки пересечения плоскости х – 2 y + 2 z – 4 = 0 и прямой

x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ

Для этого в уравнение плоскости подставим:

x = - 1 + λ , y = - 2 - 2 · λ , z = 5 + 2 · λ

Теперь по параметрическим уравнениям x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ найдем значения переменных x , y и z при λ = - 1: x = - 1 + (- 1) y = - 2 - 2 · (- 1) z = 5 + 2 · (- 1) ⇔ x = - 2 y = 0 z = 3

Таким образом, проекция точки М 1 на плоскость А В С будет иметь координаты (- 2 , 0 , 3) .

Ответ: (- 2 , 0 , 3) .

Отдельно остановимся на вопросе нахождения координат проекции точки на координатные плоскости и плоскости, которые параллельны координатным плоскостям.

Пусть задана точки М 1 (x 1 , y 1 , z 1) и координатные плоскости O x y , О x z и O y z . Координатами проекции этой точки на данные плоскости будут соответственно: (x 1 , y 1 , 0) , (x 1 , 0 , z 1) и (0 , y 1 , z 1) . Рассмотрим также плоскости, параллельные заданным координатным плоскостям:

C z + D = 0 ⇔ z = - D C , B y + D = 0 ⇔ y = - D B

И проекциями заданной точки М 1 на эти плоскости будут точки с координатами x 1 , y 1 , - D C , x 1 , - D B , z 1 и - D A , y 1 , z 1 .

Продемонстрируем, как был получен этот результат.

В качестве примера определим проекцию точки М 1 (x 1 , y 1 , z 1) на плоскость A x + D = 0 . Остальные случаи – по аналогии.

Заданная плоскость параллельна координатной плоскости O y z и i → = (1 , 0 , 0) является ее нормальным вектором. Этот же вектор служит направляющим вектором прямой, перпендикулярной к плоскости O y z . Тогда параметрические уравнения прямой, проведенной через точку M 1 и перпендикулярной заданной плоскости, будут иметь вид:

x = x 1 + λ y = y 1 z = z 1

Найдем координаты точки пересечения этой прямой и заданной плоскости. Подставим сначала в уравнение А x + D = 0 равенства: x = x 1 + λ , y = y 1 , z = z 1 и получим: A · (x 1 + λ) + D = 0 ⇒ λ = - D A - x 1

Затем вычислим искомые координаты, используя параметрические уравнения прямой при λ = - D A - x 1:

x = x 1 + - D A - x 1 y = y 1 z = z 1 ⇔ x = - D A y = y 1 z = z 1

Т.е., проекцией точки М 1 (x 1 , y 1 , z 1) на плоскость будет являться точка с координатами - D A , y 1 , z 1 .

Пример 2

Необходимо определить координаты проекции точки М 1 (- 6 , 0 , 1 2) на координатную плоскость O x y и на плоскость 2 y - 3 = 0 .

Решение

Координатной плоскости O x y будет соответствовать неполное общее уравнение плоскости z = 0 . Проекция точки М 1 на плоскость z = 0 будет иметь координаты (- 6 , 0 , 0) .

Уравнение плоскости 2 y - 3 = 0 возможно записать как y = 3 2 2 . Теперь просто записать координаты проекции точки M 1 (- 6 , 0 , 1 2) на плоскость y = 3 2 2:

6 , 3 2 2 , 1 2

Ответ: (- 6 , 0 , 0) и - 6 , 3 2 2 , 1 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Изучение свойств фигур в пространстве и на плоскости невозможно без знания расстояний между точкой и такими геометрическими объектами, как прямая и плоскость. В данной статье покажем, как находить эти расстояния, рассматривая проекцию точки на плоскость и на прямую.

Уравнение прямой для двумерного и трехмерного пространств

Расчет расстояний точки до прямой и плоскости осуществляется с использованием ее проекции на эти объекты. Чтобы уметь находить эти проекции, следует знать, в каком виде задаются уравнения для прямых и плоскостей. Начнем с первых.

Прямая представляет собой совокупность точек, каждую из которых можно получить из предыдущей с помощью переноса на параллельные друг другу вектора. Например, имеется точка M и N. Соединяющий их вектор MN¯ переводит M в N. Имеется также третья точка P. Если вектор MP¯ или NP¯ параллелен MN¯, тогда все три точки на одной прямой лежат и образуют ее.

В зависимости от размерности пространства уравнение, задающее прямую, может изменять свою форму. Так, всем известная линейная зависимость координаты y от x в пространстве описывает плоскость, которая параллельна третьей оси z. В связи с этим в данной статье будем рассматривать только векторное уравнение для прямой. Оно имеет одинаковый вид для плоскости и трехмерного пространства.

В пространстве прямую можно задать следующим выражением:

(x; y; z) = (x 0 ; y 0 ; z 0) + α*(a; b; c)

Здесь значения координат с нулевыми индексами соответствуют принадлежащей прямой некоторой точки, u¯(a; b; c) - координаты направляющего вектора, который лежит на данной прямой, α - произвольное действительное число, изменяя которое можно получить все точки прямой. Это уравнение называется векторным.

Часто приведенное уравнение записывают в раскрытом виде:

Аналогичным образом можно записать уравнение для прямой, находящейся в плоскости, то есть в двумерном пространстве:

(x; y) = (x 0 ; y 0) + α*(a; b);

Уравнение плоскости

Чтобы уметь находить расстояние от точки до плоскостей проекций, необходимо знать, как задается плоскость. Так же, как и прямую, ее можно представить несколькими способами. Здесь рассмотрим один единственный: общее уравнение.

Предположим, что точка M(x 0 ; y 0 ; z 0) плоскости принадлежит, а вектор n¯(A; B; C) ей перпендикулярен, тогда для всех точек (x; y; z) плоскости справедливым будет равенство:

A*x + B*y + C*z + D = 0, где D = -1*(A*x 0 + B*y 0 + C*z 0)

Следует запомнить, что в этом общем уравнении плоскости коэффициенты A, B и C являются координатами нормального к плоскости вектора.

Расчет расстояний по координатам

Перед тем как переходить к рассмотрению проекций на плоскость точки и на прямую, следует напомнить, как следует рассчитывать расстояние между двумя известными точками.

Пусть имеются две пространственные точки:

A 1 (x 1 ; y 1 ; z 1) и A 2 (x 2 ; y 2 ; z 2)

Тогда дистанция между ними вычисляется по формуле:

A 1 A 2 = √((x 2 -x 1) 2 +(y 2 -y 1) 2 +(z 2 -z 1) 2)

С помощью этого выражения также определяют длину вектора A 1 A 2 ¯.

Для случая на плоскости, когда две точки заданы всего парой координат, можно записать аналогичное равенство без присутствия в нем члена с z:

A 1 A 2 = √((x 2 -x 1) 2 +(y 2 -y 1) 2)

Теперь рассмотрим различные случаи проекции на плоскости точки на прямую и на плоскость в пространстве.

Точка, прямая и расстояние между ними

Предположим, что имеется некоторая точка и прямая:

P 2 (x 1 ; y 1);

(x; y) = (x 0 ; y 0) + α*(a; b)

Расстояние между этими геометрическими объектами будет соответствовать длине вектора, начало которого лежит в точке P 2 , а конец находится в такой точке P на указанной прямой, для которой вектор P 2 P ¯ этой прямой перпендикулярен. Точка P называется проекцией точки P 2 на рассматриваемую прямую.

Ниже приведен рисунок, на котором изображена точка P 2 , ее расстояние d до прямой, а также вектор направляющий v 1 ¯. Также на прямой выбрана произвольная точка P 1 и от нее до P 2 проведен вектор. Точка P здесь совпадает с местом, где перпендикуляр пересекает прямую.

Видно, что оранжевые и красные стрелки образуют параллелограмм, сторонами которого являются вектора P 1 P 2 ¯ и v 1 ¯, а высотой - d. Из геометрии известно, что для нахождения высоты параллелограмма следует разделить его площадь на длину основания, на которое опущен перпендикуляр. Поскольку площадь параллелограмма вычисляется как векторное произведение его сторон, то получаем формулу для расчета d:

d = ||/|v 1 ¯|

Все вектора и координаты точек в этом выражении известны, поэтому можно им пользоваться без выполнения каких-либо преобразований.

Решить эту задачу можно было бы иначе. Для этого следует записать два уравнения:

  • скалярное произведение P 2 P ¯ на v 1 ¯ должно равняться нулю, поскольку эти вектора взаимно перпендикулярны;
  • координаты точки P должны удовлетворять уравнению прямой.

Этих уравнений достаточно, чтобы найти координаты P, а затем и длину d по формуле, приведенной в предыдущем пункте.

Задача на нахождение дистанции между прямой и точкой

Покажем, как использовать данные теоретические сведения для решения конкретной задачи. Допустим, известны следующая точка и прямая:

(x; y) = (3; 1) - α*(0; 2)

Необходимо найти точки проекции на прямую на плоскости, а также расстояние от M до прямой.

Обозначим проекцию, которую следует найти, точкой M 1 (x 1 ; y 1). Решим эту задачу двумя способами, описанными в предыдущем пункте.

Способ 1. Направляющий вектор v 1 ¯ координаты имеет (0; 2). Чтобы построить параллелограмм, выберем принадлежащую прямой какую-нибудь точку. Например, точку с координатами (3; 1). Тогда вектор второй стороны параллелограмма будет иметь координаты:

(5; -3) - (3; 1) = (2; -4)

Теперь следует вычислить произведение векторов, задающих стороны параллелограмма:

Подставляем это значение в формулу, получаем расстояние d от M до прямой:

Способ 2. Теперь найдем другим способом не только расстояние, но и координаты проекции M на прямую, как это требует условие задачи. Как было сказано выше, для решения задачи необходимо составить систему уравнений. Она примет вид:

(x 1 -5)*0+(y 1 +3)*2 = 0;

(x 1 ; y 1) = (3; 1)-α*(0; 2)

Решаем эту систему:

Проекция исходной точки координаты имеет M 1 (3; -3). Тогда искомое расстояние равно:

d = |MM 1 ¯| = √(4+0) = 2

Как видим, оба способа решения дали одинаковый результат, что говорит о правильности выполненных математических операций.

Проекция точки на плоскость

Теперь рассмотрим, что представляет собой проекция точки, заданной в пространстве, на некоторую плоскость. Несложно догадаться, что этой проекцией также является точка, которая вместе с исходной образует перпендикулярный плоскости вектор.

Предположим, что проекция на плоскость точки М координаты имеет следующие:

Сама плоскость описывается уравнением:

A*x + B*y + C*z + D = 0

Исходя из этих данных, мы можем составить уравнение прямой, пересекающей плоскость под прямым углом и проходящей через M и M 1:

(x; y; z) = (x 0 ; y 0 ; z 0) + α*(A; B; C)

Здесь переменные с нулевыми индексами - координаты точки M. Рассчитать положение на плоскости точки M 1 можно исходя из того, что ее координаты должны удовлетворять обоим записанным уравнениям. Если этих уравнений при решении задачи будет недостаточно, то можно использовать условие параллельности MM 1 ¯ и вектора направляющего для заданной плоскости.

Очевидно, что проекция точки, принадлежащей плоскости, совпадает сама с собой, а соответствующее расстояние равно нулю.

Задача с точкой и плоскостью

Пусть дана точка M(1; -1; 3) и плоскость, которая описывается следующим общим уравнением:

Следует вычислить координаты проекции на плоскость точки и рассчитать расстояние между этими геометрическими объектами.

Для начала построим уравнение прямой, проходящей через М и перпендикулярной указанной плоскости. Оно имеет вид:

(x; y; z) = (1; -1; 3) + α*(-1; 3; -2)

Обозначим точку, где эта прямая пересекает плоскость, M 1 . Равенства для плоскости и прямой должны выполняться, если в них подставить координаты M 1 . Записывая в явном виде уравнение прямой, получаем следующие четыре равенства:

X 1 + 3*y 1 -2*z 1 + 4 = 0;

y 1 = -1 + 3*α;

Из последнего равенства получим параметр α, затем подставим его в предпоследнее и во второе выражение, получаем:

y 1 = -1 + 3*(3-z 1)/2 = -3/2*z 1 + 3,5;

x 1 = 1 - (3-z 1)/2 = 1/2*z 1 - 1/2

Выражение для y 1 и x 1 подставим в уравнение для плоскости, имеем:

1*(1/2*z 1 - 1/2) + 3*(-3/2*z 1 + 3,5) -2*z 1 + 4 = 0

Откуда получаем:

y 1 = -3/2*15/7 + 3,5 = 2/7;

x 1 = 1/2*15/7 - 1/2 = 4/7

Мы определили, что проекция точки M на заданную плоскость соответствует координатам (4/7; 2/7; 15/7).

Теперь рассчитаем расстояние |MM 1 ¯|. Координаты соответствующего вектора равны:

MM 1 ¯(-3/7; 9/7; -6/7)

Искомое расстояние равно:

d = |MM 1 ¯| = √126/7 ≈ 1,6

Три точки проекции

Во время изготовления чертежей часто приходится получать проекции сечений на взаимно перпендикулярные три плоскости. Поэтому полезно рассмотреть, чему будут равны проекции некоторой точки M с координатами (x 0 ; y 0 ; z 0) на три координатные плоскости.

Не сложно показать, что плоскость xy описывается уравнением z = 0, плоскость xz соответствует выражению y = 0, а оставшаяся плоскость yz обозначается равенством x = 0. Нетрудно догадаться, что проекции точки на 3 плоскости будут равны:

для x = 0: (0; y 0 ; z 0);

для y = 0: (x 0 ; 0 ; z 0);

для z = 0: (x 0 ; y 0 ; 0)

Где важно знать проекции точки и ее расстояния до плоскостей?

Определение положения проекции точек на заданную плоскость важно при нахождении таких величин, как площадь поверхности и объем для наклонных призм и пирамид. Например, расстояние от вершины пирамиды до плоскости основания является высотой. Последняя входит в формулу для объема этой фигуры.

Рассмотренные формулы и методики определения проекций и расстояний от точки до прямой и плоскости являются достаточно простыми. Важно лишь запомнить соответствующие формы уравнений плоскости и прямой, а также иметь хорошее пространственное воображение, чтобы успешно их применять.

Для построения изображений ряда деталей необходимо уметь находить проекции отдельных точек. Например, трудно вычертить вид сверху детали, приведенной на рис. 139, не строя горизонтальных проекций точек А, В, С, D, Е, F и др.

Задача нахождения проекций точек по одной, заданной на поверхности предмета, решается следующим образом. Сначала находят проекции поверхности, на которой расположена точка. Затем, проведя линию связи к проекции, где поверхность изображается линией, находят вторую проекцию точки. Третья проекция лежит на пересечении линий связи.

Рассмотрим пример.

Даны три проекции детали (рис. 140, а). Задана горизонтальная проекция а точки А, лежащей на видимой поверхности. Нужно найти остальные проекции этой точки.

Прежде всего надо провести вспомогательную прямую. Если даны два вида, то место вспомогательной прямой на чертеже выбирают произвольно, правее вида сверху, так чтобы вид слева оказался на нужном расстоянии от главного вида (рис. 141).

Если три вида уже построены (рис. 142, а), то место вспомогательной прямой произвольно выбирать нельзя; нужно найти точку, через которую она пройдет. Для этого достаточно продолжить до взаимного пересечения горизонтальную и профильную проекции оси симметрии и через полученную точку k (рис. 142, б) провести под углом 45° отрезок прямой, который и будет вспомогательной прямой.

Если осей симметрии нет, то продолжают до пересечения в точке k 1 горизонтальную и профильную проекции любой грани, проецирующейся в виде отрезков прямой (рис. 142, б).

Проведя вспомогательную прямую, приступают к построению проекций точки (см. рис. 140, б).

Фронтальная а" и профильная а" проекции точки А должны располагаться на соответствующих проекциях поверхности, которой принадлежит точка А. Находят эти проекции. На рис. 140, б они выделены цветом. Проводят линии связи, как указано стрелками. В местах пересечения линий связи с проекциями поверхности находятся искомые проекции а" и а".

Построение проекций точек В, С, D показано на рис. 140, в линиями связи со стрелками. Заданные проекции точек цветные. Линии связи проводят к той проекции, на которой поверхность изображается в виде линии, а не в виде фигуры. Поэтому сначала находят фронтальную проекцию с" точки С. Профильная проекция с точки С определяется пересечением линий связи.

Если поверхность ни на одной проекции не изображается линией, то для построения проекций точек надо применять вспомогательную плоскость. Например, дана фронтальная проекция d точки А, лежащей на поверхности конуса (рис. 143, а). Через точку параллельно основанию проводят вспомогательную плоскость, которая пересечет конус по окружности; ее фронтальная проекция - отрезок прямой, а горизонтальная - окружность диаметром, равным длине этого отрезка (рис. 143, б). Проведя к этой окружности из точки а" линию связи, получают горизонтальную проекцию а точки А.

Профильную проекцию а" точки А находят обычным способом на пересечении линий связи.

Таким же приемом можно найти проекции точки, лежащей, например, на поверхности пирамиды или шара. При пересечении пирамиды плоскостью, параллельной основанию и проходящей через заданную точку, образуется фигура, подобная основанию. На проекциях этой фигуры лежат проекции заданной точки.

Ответьте на вопросы


1. Под каким углом проводят вспомогательную прямую?

2. Где проводят вспомогательную прямую, если заданы виды спереди и сверху, а надо построить вид слева?

3. Как определить место вспомогательной прямой при наличии трех видов?

4. В чем заключается способ построения проекций точки по одной заданной, если одна из поверхностей предмета изображается линией?

5. Для каких геометрических тел и в каких случаях проекции точки, заданной на их поверхности, находят, пользуясь вспомогательной плоскостью?

Задания к § 20

Упражнение 68


Запишите в рабочей тетради, каким проекциям точек, обозначенных на видах цифрами, соответствуют точки, обозначенные на наглядном изображении буквами в примере, указанном Вам преподавателем (рис. 144, а-г).

Упражнение 69


На рис. 145, а-б буквами обозначено лишь по одной проекции некоторых из вершин. Найдите в примере, указанном Вам преподавателем, остальные проекции этих вершин и обозначьте их буквами. Постройте в одном из примеров недостающие проекции точек, заданных на ребрах предмета (рис. 145, г и д). Выделите цветом проекции ребер, на" которых находятся точки. Задание выполните на прозрачной бумаге, наложив ее на страницу учебника. Перечерчивать рис. 145 не надо.

Упражнение 70


Найдите недостающие проекции точек, заданных одной проекцией на видимых поверхностях предмета (рис. 146). Обозначьте их буквами. Заданные проекции точек выделите цветом. Решить задание Вам поможет наглядное изображение. Задание можно выполнить как в рабочей тетради, так и на прозрачной бумаге, наложив ее на страницу учебника. В последнем случае перечерчивать рис. 146 не надо.

Упражнение 71


В примере, указанном Вам преподавателем, перечертите три вида (рис. 147). Постройте недостающие проекции точек, заданных на видимых поверхностях предмета. Заданные проекции точек выделите цветом. Обозначьте буквами все проекции точек. Для построения проекций точек воспользуйтесь вспомогательной прямой. Выполните технический рисунок и нанесите на нем заданные точки.