Основное положение теории промежуточного активированного комплекса. Теория переходного состояния (активированного комплекса). Теории химической кинетики

Эне ргия актива ции, разность между значениями средней энергии частиц (молекул, радикалов, ионов и др.), вступающих в элементарный акт химической реакции, и средней энергии всех частиц , находящихся в реагирующей системе. Для различных химических реакций Э. а. изменяется в широких пределах - от нескольких до 10 дж./ моль. Для одной и той же химической реакции значение Э. а. зависит от вида функций распределения молекул по энергиям их поступательного движения и внутренним степеням свободы (электронным, колебательным, вращательным).

В рамках представлений теории абсолютных скоростей реакций Э. а. - разность между значениями средней энергии активированных комплексов и средней энергии исходных молекул.

Представления об Э. а. возникли в 70-80-х гг. 19 в. в результате работ Я. Вант-Гоффа и С. Аррениуса, посвященных изучению влияния температуры на скорость химической реакции. Константа скорости реакции k связана с Э. а. (Е ) уравнение м Аррениуса:

k = k o e -E/RT

где R - газовая постоянная, Т - абсолютная температура в К, k o - постоянная, называемая предэкспоненциальным множителем константы скорости. Это уравнение, основанное на молекулярно-кинетической теории, позже было получено в статистической физике с учетом ряда упрощающих предположений, одно из которых - независимость Э. а. от температуры. Для практики и для теоретических расчетов в сравнительно узких температурных интервалах это предположение справедливо.

Э. а. можно найти по экспериментальным данным несколькими способами. Согласно одному из них, исследуют кинетику реакции при нескольких температурах (о методах см. в ст. Скорость химической реакции) и строят график в координатах In k - 1/T ; тангенс угла наклона прямой на этом графике, в соответствии с уравнением Аррениуса, равен Е. Для одностадийных обратимых реакций (см. Обратимые и необратимые реакции) Э. а. реакции в одном из направлений (прямом или обратном) можно вычислить, если известна Э. а. реакции в другом и температурная зависимость константы равновесия (из термодинамических данных). Для более точных расчетов следует учитывать зависимость Э. а. от температуры.

Э. а. сложных реакций представляет собой комбинацию Э. а. элементарных стадий. Иногда, помимо истинной Э. а., определяемой по уравнению Аррениуса, используют понятие "кажущейся" Э. а. Например, если константы скоростей гетерогенно-каталитических реакций определяют по изменению объемных концентраций исходных веществ и продуктов, то кажущаяся Э. а. отличается от истинной на величину тепловых эффектов, сопровождающих процессы адсорбции и десорбции реагирующих веществ на поверхности катализатора. В неравновесных системах, например плазмохимических (см. Плазмохимия), определение Э. а. является очень сложной задачей. В некоторых случаях, однако, возможно формальное применение уравнения Аррениуса.

Энергетическая диаграмма реакции.

Энергия активации ощутимо влияет на значение константы скорости реакции и ее зависимости от температуры: чем больше Е а, тем меньше константа скорости и тем значительнее влияет на нее изменение температуры.

Рис.5. Энергетическая диаграмма реакции А + В = С + Д
20. Катализ и катализаторы(классификация и механизм действия). Особенности каталитических реакций.

Химический катализ - ускорение химических реакций под действием малых количеств веществ (катализаторов). После полного цикла промежуточных химических взаимодействий катализатор восстанавливает свой химический состав.

Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный -- образует самостоятельную фазу , отделённую границей раздела от фазы, в которой находятся реагирующие вещества. Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al 2 O 3 , TiO 2 , ThO 2 , алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO.

Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных, существуют катализаторы окисления-восстановления; для них характерно присутствие переходного металла или его соединения (Со +3 , V 2 O 5 + , MoO 3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

Много реакций осуществлено при помощи катализаторов, которые действуют через координацию реагентов у атома или иона переходного металла (Ti, Rh, Ni). Такой катализ называется координационным.

Если катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получается оптически активный продукт.

В современной науке и технике часто применяют системы из нескольких катализаторов, каждый из которых ускоряет разные стадии реакции. Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня.

В биохимических реакциях роль катализаторов играют ферменты.

Различают гомогенный и гетерогенный катализ, но для любого из них основные закономерности сводятся к следующему:

1. Катализатор активно участвует в элементарном акте реакции, образуя либо промежуточные соединения с одним из участников реакции , либо активированный комплекс со всеми реагирующими веществами. После каждого элементарного акта он регенерируется и может вступать во взаимодействие с новыми молекулами реагирующих веществ.

2. Скорость каталитической реакции пропорциональна количеству катализатора.

3. Катализатор обладает избирательностью действия. Он может изменять скорость одной реакции и не влиять на скорость другой.

4. Катализатор дает реакции возможность протекать по другому пути, причем с большей скоростью, чем это происходит в отсутствии катализатора.

Скорость может возрастать за счет снижения энергии активации, увеличения предэкспоненциального множителя или за счет обоих факторов. Например, термическое разложение ацетальдегида СН 3 СНО СН 4 + СО катализируется парами йода, что вызывает снижение энергии активации на55 кДж/моль. Это снижение вызывает увеличение константы скорости примерно в 10000 раз.

5. Катализатор не влияет на положение термодинамического равновесия. Он в одинаковой степени изменяет скорость как прямой, так и обратной реакции.

6. При добавлении некоторых веществ, называемых промоторами, активность катализатора растет; добавление ингибиторов уменьшает скорость реакции.

Гомогенный катализ.

В гомогенном катализе катализатор представляет собой молекулу или ион, находящиеся в гомогенном растворе. В случае гомогенного катализа катализатор и все реагирующие вещества составляют одну общую фазу.
Примером гомогенного катализа является реакция термического разложения ацетальдегида СН 3 СОН СН 4 + СО, катализируемая парами йода. В отсутствие паров йода Е а =191.0 кДж/моль, в их присутствии Е а = 136.0 кДж/моль. Константа скорости возрастает в 10000 раз. Это происходит потому, что реакция протекает в две стадии:

СН 3 СОН + I 2 = CH 3 I + HI + СО

CH 3 I + HI = СН 4 + I 2

Энергия активации каждой стадии меньше, чем энергия активации некаталитической реакции.

К гомогенному катализу относятся многие кислотно-основные реакции, реакции комплексообразования , окислительно-восстановительные реакции, многочисленные реакции гидрирования, сульфедирования и др.

3. Кислотный и основный катализ

Кислоты и основания во многих реакциях выполняют функции катализатора, т.е., участвуя в реакции, сами не расходуются (реакции гидролиза, алкилирования, этерификации и др. Различают три типа кислотно-основноного катализа:

4. Гомогенно-каталитические реакции, катализируемые комплексными соединениями

Реакции восстановления, гидрирования, окисления, изомеризации, полимеризации в промышленных условиях осуществляются в присутствии катализаторов -- комплексных соединений (ионов металлов VIII группы таблицы Менделеева Fe, Со, Ni, Ru, а так же Си, Fg, Hg, Cr, Мn). Сущность каталитического действия заключается в том, что ионы металлов выступают как доноры или акцепторы электронов. Химическое взаимодействие между реагирующими молекулами, координированными около центрального иона металла, облегчается благодаря поляризации молекул и понижению энергии отдельных связей. Центральный ион металла является мостиком, облегчающими электронные переходы между реагирующими молекулами.

5. Ферментативный катализ

Ферменты являются наиболее удивительными катализаторами. С ними связано множество реакций в живых организмах, и поэтому их часто называют биологическими катализаторами. Ферментативный катализ -- явление более сложное, чем обычный катализ. Высокая организованность процессов ферментативного катализа определяется особенностью взаимодействия в живом организме, связанной с особым сочетанием молекулярного строения ферментов и субстратов , которыми в ферментативных реакциях называют реагирующие вещества.

6. Гетерогенный катализ

Гетерогенный катализ осуществляется на поверхности раздела фаз. Первой наблюдаемой гетерогенно-каталитической реакцией была осуществленная Пристли (1778) дегидратация этилового спирта на активной глине:

С 2 Н 5 ОН -- С 2 Н 4 + Н 2 O

На практике наиболее часто встречаются два типа гетерогенного катализа:

1) процессы, катализатор которых находится в твердой фазе, а реагирующие вещества -- в жидкой;

2) процессы, катализатор которых находится в твердой фазе, а реагирующие вещества -- в газовой. Реакция, как правило, происходит (а в некоторых многостадийных процессах начинается) на границе раздела фаз, т.е. на поверхности твердого тела -- катализатора.

61. Общая характеристика элементов II-А группы. Биологическая роль S-элементов II-A группы.

Элементы IIA группы имеют электронную формулу ns 2 . Все они являются металлами, сильными восстановителями, несколько менее активным, чем щелочные металлы. Для них характерна степень окисления +2 и pвалентность 2. При образовании ковалентной связи происходит s возбуждение электрона и sp-гибридизация АО. Элементы IIA группы можно разделить на три части: 1) щелочноземельные металлы Ca, Sr, Ba, Ra, основания которых являются щелочами, 2) Мg, основание которого мало растворимо в воде, 3) Ве, основание которого является амфотерным основанием. В природе элементы IIA группы находятся в виде солей: сульфатов, карбонатов, фосфатов, силикатов. Эти элементы получают электролизом расплавов их солей. Элементы IIA группы представляют собой легкие серебристые металлы, более твердые, чем щелочные металлы.

Химические свойства элементов

Элементы IIA группы - менее активные восстановители, чем щелочные металлы. Их восстановительные свойства увеличиваются от бериллия к радию. Кислород воздуха окисляет Ca, Sr, Ba, Ra при обычной температуре. Mg и Be покрыты оксидными пленками и окисляются кислородом только при нагревании:

2Ca + O 2 = 2CaO

2Mg + O 2 = 2MgO

Активные восстановители, металлы IIA группы, реагируют с неметаллами (например, с хлором), водой, кислотами:

Ca + Cl 2= CaCl 2

Ca+ 2H 2 O= Ca(OH) 2 + H 2 

Гидриды щелочноземельных металлов являются ионными солеобразными соединениями и взаимодействуют с водой и кислотами:

CaH 2 + 2H 2 O Ca(OH)2 + 2H 2

CaH 2 + 2HCl 2  CaCl2 + 2H 2

Оксиды щелочноземельных металлов Ca, Sr, Ba, Ra растворяются в воде c образованием щелочей. Оксид магния - мало растворим в воде и имеет только основные свойства. Нерастворимый в воде оксид бериллия имеет амфотерные свойства.

CaClCaO + 2HCl 2 + H 2 O

Гидроксиды Ca, Sr, Ba, Ra являются щелочами, гидроксид Mg - малорастворимый основной гидроксид, гидроксид Be - амфотерный гидроксид.

Карбонаты и сульфаты элементов IIA группы малорастворимы в воде. Карбонаты растворяются в кислотах:

СЖесткость воды (Ж) измеряется в миллимолях эквивалентов солей в 1 литре воды: Ж = 1000 э, где С э - молярная концентрация эквивалентов (нормальность) солей в воде.

Соли BaCl 2 и BaCO 3 ядовиты и используются в качестве инсектицидов. Магний является важным конструкционным материалом, является микроэлементом, входит в состав хлорофилла. Гашеная известь используется в строительстве. Соли кальция, например, CaSO 4 2H 2 O - гипс - используется для гипсования засоленных почв.

Биологическая роль.

Бериллий находится в растениях, а также в организмах животных. Содержание бериллия в живых организмах составляет 10-7 %, т. е. он является примесным ультрамикроэлементом. Биологическая роль бериллия изучена недостаточно. Соединения бериллия токсичны и вызывают ряд заболеваний (бериллиевый рахит, бериллиоз и т. д.). Особенно токсичны летучие соединения бериллия. Отрицательное влияние Ве2 + на физиологические процессы объясняется его химическими свойствами.

Магний формально относится к макроэлементам. Общее содержание его в организме – 0,027% (около 20 г). Топография магния в организме человека такова: в наибольшей степени магний концентрируется в дентине и эмали зубов, костной ткани. Накапливается он также в поджелудочной железе, скелетных мышцах, почках, мозге, печени и сердце. У взрослого человека суточная потребность в магнии составляет около 0,7 г. Ион Mg, так же как и ион K, является внутриклеточным катионом.

В биологических жидкостях и тканях организма магний находится как в виде акваиона, так и в связанном с белками состоянии в количестве которых образуется гидрофосфат-ион НРО2- и выделяется большое количество энергии, проходит при избытке Mg 2+ .

Кальций относится к макроэлементам. Общее содержание его в организме – 1,4%. Кальций содержится в каждой клетке человеческого организма. Основная масса кальция находится в костной и зубной тканях. В среднем взрослый человек в сутки должен потреблять 1 г кальция, хотя потребность в кальции составляет только 0,5 г. Кальций, вводимый с пищей, только на 50% всасывается в кишечнике. Сравнительно плохое всасывание является следствием образования в желудочно-кишечном тракте труднорастворимых фосфата кальция Са 3 (РO 4) 2 и кальциевых солей жирных кислот. В организме концентрация ионов Са регулируется гормонами.

В костях и зубах взрослого человека около 1 кг кальция находится в виде нерастворимого кристаллического минерала – гидроксилапатита Са 10 (РО 4) 6 (ОН) 2 , образование которого происходит при взаимодействии ионов Са с фосфат-ионами. В крови и лимфе кальций на–ходится как в ионизированном, так и в неионизированном состоянии – в соединениях с белками, углеводами и др. Механизм свертывания крови состоит из ряда эта–пов, зависящих от наличия ионизированного Са. Ионы Са принимают участие в передаче нервных импульсов, со–кращении мышц, регулировании работы сердечной мышцы.

Концентрация ионов Са внутри и вне клетки соответ–ственно составляет 10 -6 и (2,25-2,8) 10 -3 моль/л. По–скольку кальций практически не используется внутри клетки, он выступает в качестве строительного мате–риала в организме – в костях, зубах. Скелет – основ–ное хранилище кальция в организме.

Расчёты показывают, что для многих химических реакций, если они протекают по механизму непосредственного превращения молекул исходных веществ в продукты, энергии, сообщаемой молекулам при термической активации, недостаточно для преодоления энергетического барьера. Иными словами, при таком механизме энергия активации даже при очень высоких температурах настолько велика, что реакции не должны протекать с заметной скоростью. Тем не менее, химические реакции и в природе, и в промышленных и лабораторных установках идут и часто идут очень быстро. Следовательно, одной теории активных столкновений недостаточно для объяснения причин протекания и механизмов реакций.

В 1930-х г.г. Э.Вигнером, М.Поляни, Г.Эйрингом и М.Эвансом была создана теория, позволяющая объяснить протекание реакций при малых тепловых скоростях молекул. Она носит название теории переходного состояния (или теории абсолютных скоростей реакций). Основные положения этой теории:

1) Взаимодействие молекул не сразу приводит к образованию молекул продуктов. Вначале образуется т. н. “переходное состояние” или активированный комплекс.

2) Активированный комплекс представляет собой неустойчивое образование, в которое входят все атомы столкнувшихся и вступивших во взаимодействие молекул. Время жизни активированного комплекса очень мало; оно измеряется малыми (миллионными, десятимиллионными и т. д.) долями секунды. Расстояния между атомами в активированном ком­плек­се несколько больше, чем в обычных молекулах, поэтому для его образования требуется дополнительная энергия.

3) Энергия активации в связи с этим рассматривается как энергия, необходимая для образования активированного комплекса.

4) Через какое-то время после возникновения активированный комплекс распадается с образованием молекул продуктов; при этом выделяется энергия.

5) Выделяющаяся при распаде активированного комплекса энергия может полностью или частично затрачиваться на активацию других молекул исходных веществ.

Наглядное представление о протекании реакции во времени в соответствии с теорией переходного состояния может дать энергетический про­филь реакции, например, экзотермической(рис. 12.6).

По оси ординат откладывается энергия системы Е , а ось абсцисс - это так называемая координата реакции. Среднему запасу энергии теплового движения молекул исходных веществ соответствует уровень Е исх, энергии, запасаемой в активированном комплексе - уровень Е АК. Тогда разность Е АК - Е исх равна величине энергетического барьера, который должны преодолеть молекулы для того, чтобы вступить во взаимодействие энергия активации. Наглядное представление о нём даёт кривая, соединяющая уровни Е исх и Е АК. Высота энергетического барьера зависит от природы реагирующих веществ, энергии, необходимой для образования активированного комплекса (энергии активации), а также от средней энергии теплового движения молекул Е исх.



При повышении температуры уровень Е исх поднимается, величина энергетического барьера становится меньше и во взаимодействие может вступить большее число молекул. Это и служит причиной ускорения реакции с повышением температуры. При понижении температуры, наоборот, уровень Е исх опускается и величина энергетического барьера возрастает, что приводит к уменьшению скорости реакции.

При распаде активированного комплекса с образованием молекул продуктов выделяется энергия, которой соответствует разность Е АК - Е прод, где Е прод - средний запас энергии молекул продуктов. Часть этой выделяющейся энергии, равная разности Е АК - Е исх, пойдёт на активацию новых молекул исходных веществ, а избыток Е исх - Е прод выделится в окружающую среду в виде экзотермического теплового эффекта реакции DН r .

Для эндотермических реакцийэнергетический профиль выглядит несколько иначе (рис. 12.7). Видно, что в этом случае энергетический уровень Е исх ниже, чем уровень Е прод. В результате этого энергии Е АК - Е прод, выделяющейся при распаде активированного комплекса, недостаточно для того,

чтобы вызвать активацию новых молекул реагирующих веществ. Поэтому для продолжения реакции необходим подвод энергии извне, в виде эндотермического теплового эффекта.

Существование активированного комплекса подтверждается экспериментальными данными. Так, например, для одной из несложных модельных реакций взаимодействия атома водорода с молекулой водорода

Н 2 + Н ® Н + Н 2 ,

значение энергии активации близко к 36,8 кДж/моль. Если бы реакция шла через стадию полной диссоциации молекул Н 2 , а не через стадию образования активированного комплекса Н 2 ·Н, то потребовалась бы энергия активации 435,1 кДж/моль.

В основе теории переходного состояния используются следующие положения (постулаты теории).

    Столкновение частиц приводит к образованию связи между ними.

Неустойчивое состояние, в котором существуют связи между всеми частицами, называется переходным состоянием . Его также представляют как комплекс, временно образуемый взаимодействующими частицами, и называют активным комплексом .

Образование и распад активного комплекса происходит только в одном направлении (см. рис. 12 - 3).

    Порядок образования и распада комплекса таков. Взаимодействующие частицы движутся друг к другу до тех пор, пока между ними не возникнет дополнительная связь, образование которой приводит к ослаблению связи, уже существующей в одной из взаимодействующих молекул. Затем частицы начинают расходиться. Ослабленная ранее существовавшая связь исчезает, а возникшая при сближении частиц новая связь остается.

Рис. 12 - 3. Образование и распад активного комплекса.

Данный постулат запрещает распад активного комплекса на исходные частицы. Он может распадаться только с образованием продуктов реакции.

    Образование активного комплекса не приводит к нарушению распределения частиц по скоростям и энергиям Максвелла - Больцмана.

    Предполагается, что смещение электронных орбиталей в частицах при образовании активного комплекса происходит во много раз быстрее, чем движение атомных ядер.

Этот постулат теории переходного состояния называется принципом адиабатности . Он лежит в основе расчетов энергии взаимодействующих частиц, так как предполагает, что электроны всегда успевают принять наиболее устойчивую конфигурацию для задаваемого расстояния между центрами атомов.

Покажем, как могут быть использованы вышеприведенные постулаты для вывода основного уравнения теории переходного состояния.

Пусть протекает, как показано на рис. 12 - 3, реакция:

XY + Z = X + YZ .

Формально скорость этой реакции определяется уравнением:

. (12 - 26)

С другой стороны, скорость образования продуктов реакции определяется числом распадающихся в единицу времени активных комплексов по схеме:

X YZ  X + YZ.

Так как распад комплекса является мономолекулярной реакцией, то для ее скорости можно записать следующее выражение:

Используя уравнение (9 - 20), связывающее константу скорости необратимой реакции первого порядка со средним временем жизни превращаемого вещества , равенство (12 - 27) можно представить следующим образом:

. (12 - 28)

Сравнивая равенства (12 - 26) и (12 - 28), получим:

. (12 - 29)

Уравнение (12 - 29) является основным уравнением для расчета константы скорости реакции. Однако оно может получить окончательную форму, если выразить входящие в него величины через энергетические характеристики.

Среднее время жизни комплекса можно оценить, используя второй постулат теории.

Так как образование и распад комплекса происходят только в одном направлении, то его существование можно представить в виде одного колебательного цикла по новой связи. Энергия таких колебаний равна:

, (12 - 30)

где h - постоянная Планка.

Энергия, необходимая для возбуждения колебаний, равна кинетической составляющей сталкивающихся частиц. При движении частиц вдоль одной оси она равна:

, (12 - 31)

где  - постоянная Больцмана.

Из равенства кинетической энергии и энергии колебаний следует:

Частота колебаний представляет собой величину, обратную периоду одного колебания, а принимая во внимание, что комплекс существует только в течение одного колебательного цикла, имеем:

. (12 - 33)

При сохранении равновесного распределения скоростей и энергий частиц соотношение между концентрациями исходных веществ и активного комплекса определяется константой K # :

. (12 - 34)

Константа К # не является истинной константой равновесия, так как комплекс не распадается в обратном направлении (на исходные частицы). Однако соотношение между концентрациями зависит от энергии частиц в исходном состоянии и в состоянии активного комплекса. В этом случае можно воспользоваться уравнением изотермы химической реакции в следующей форме (см. часть I, стр. 77):

. (12 - 35)

Изменение энергии Гиббса для перехода из исходного состояния частиц в состояние активного комплекса (переходное состояние) G # определяется изменением энтальпии H # и изменением энтропии S # :

Следовательно, константа К # может быть представлена следующим образом:

. (12 - 36)

Таким образом, уравнение для константы скорости реакции приобретает вид:

. (12 - 37)

Величина , содержащая энтропию активацииS # , соответствует стерическому множителю В теории активных столкновений. Энтальпия активации H # в теории переходного состояния соответствует энергии активации. Для ее расчета необходимо знать энергию системы в исходном состоянии и энергию активированного комплекса.

Для расчета изменения энергии системы при переходе из исходного состояния в переходное необходимо найти зависимость энергии системы от расстояний между атомами. В рассматривавшемся случае образования активного комплекса из исходной молекулы XY и частицы Z независимыми переменными служат расстояния между центрами атомов в паре X и Y, которые обозначим r XY , и расстояние между центрами атомов Y и Z, которое обозначим r YZ . Энергия системы является функцией этих переменных:

В системе трех координат эта зависимость передается поверхностью. Для представления зависимости энергии от расстояний r XY и r YZ на плоскости используется такой же метод, что и при построении топографических карт, а именно: проводятся равноотстоящие друг от друга плоскости, перпендикулярные оси энергии, а линии пересечения этих плоскостей с поверхностью наносятся на плоскость чертежа. На рис. 12 - 4 показан пример построения энергетической диаграммы по этому методу.

Рис. 12 - 4 . Энергетическая диа­грамма трехатомной системы.

Для построения диаграммы рассчитывают потенциальную энергию системы для различных сочетаний расстояний r XY и r YZ . При этом используется четвертый постулат теории (принцип адиабатности), в соответствии с которым расчеты проводятся для систем с равновесными электронными конфигурациями. Молекула XY имеет минимум энергии при расстоянии между атомами, равном длине связи. Увеличение или уменьшение этого расстояния приводит к возрастанию энергии в отдельной молекуле. То же относится и к молекуле YZ. Следовательно, на диаграмме должны быть две области с пониженными значениями энергии А и В (их образно называют долинами). Области А и В отделены друг от друга участком небольшого подъема энергии С (его образно называют перевалом).

На типичной энергетической диаграмме (рис. 12 - 4) имеется несколько особых точек. Первая из них a отвечает исходному состоянию системы (состоянию до начала реакции). В этом состоянии расстояние между центрами атомов X и Y должно быть равно нормальной длине связи в устойчивом состоянии молекулы XY. Расстояние между центрами атомов Y и Z должно быть очень большим, так как частица Z еще не вступила во взаимодействие с молекулой XY. Еще одна характерная точка b отражает конечное состояние системы (состояние после реакции). Ей соответствует расстояние между центрами атомов Y и Z, равное длине связи во вновь образовавшейся молекуле, и большое расстояние между отделившейся частицей X и атомом Y. Третьей важнейшей точкой на энергетической диаграмме является точка перевала с . Именно в точке перевала существует полностью сформировавшийся активный комплекс.

Из изложенного следует, что химическое превращение согласно теории переходного состояния представляет собой переход из точки а в точку b через точку с . Такой переход происходит при минимальных значениях энергии (на энергетической диаграмме ему соответствует движение из точки а по дну долины А до перевала с , а затем спуск в долину В и движение до точки b ). Он называется путем реакции и показан пунктирной линией.

Если разрезать пространственную энергетическую диаграмму по пути реакции перпендикулярно плоскости r XY - r YZ , то в разрезе получится линия, длина которой соответствует длине пути реакции, а ордината - энергии системы. Назовем линию в этих координатах профилем пути реакции (рис. 12 - 5).

Рис. 12 - 5 . Энергетический профиль пути реакции.

Разность между энергией системы в переходном состоянии и энергией в исходном состоянии Е 1 , как показано на рис. 12 - 5, представляет собой классическую энергию активации прямой реакции. Разность энергий в состоянии активного комплекса и конечном состоянии Е −1 , равна энергии активации обратной реакции. Разность между энергиями активации прямой и обратной реакций соответствует тепловому эффекту реакции Н.

Таким образом, энергия активации в теории переходного состояния имеет четкую трактовку как величина энергетического барьера, равная разности энергий в переходном и исходном состояниях .

Как уже неоднократно отмечалось, все расчеты потенциальной энергии системы возможны лишь в том случае, когда электроны имеют равновесные конфигурации. В ходе реакции принцип адиабатности нарушается. Поэтому расчетное значение энергии оказывается завышенным. Для учета расхождения между расчетными и реальными значениями энергии в состоянии активного комплекса вводится поправочный коэффициент, который называется трансмиссионным коэффициентом . С введением этой поправки основное уравнение теории переходного состояния принимает окончательный вид:

. (12 - 38)

Теория переходного состояния применима не только к химическим превращениям, но и к другим кинетическим процессам: диффузии, вязкому течению, электрической проводимости растворов. Предполагается, что движение частиц в жидкости связано с преодолением энергетического барьера, величина которого равна энергии активации.

Теория столкновений непригодна для сложных молекул потому, что она предполагает существование молекул в виде идеальных упругих сферических частиц. Однако для сложных молекул, помимо поступательной энергии, должны быть учтены другие виды молекулярной энергии, например, вращательная и колебательная. По теории столкновений невозможно существование реакций, в которых должны столкнуться три и более молекулы. Кроме того, реакции разложения типа АВ = А + В трудно объяснить этой теорией.

Для преодоления указанных затруднений Х. Эйринг в 1935г. предложил теорию активированного комплекса. Всякая химическая реакция или любой другой молекулярный процесс, протекающий во времени(диффузия, вязкое течение и т.д.), состоит в непрерывном изменении расстояний между ядрами атомов. При этом конфигурация ядер, отвечающая начальному состоянию, через некоторую промежуточную конфигурацию – активированный комплекс или переходное состояние – превращается в конечную конфигурацию. Предполагается, что активированный комплекс образуется как промежуточное состояние во всех химических реакциях . Он рассматривается, как молекула, которая существует лишь временно и разрушается при определенной скорости. Этот комплекс образуется из таких взаимодействующих молекул, энергия которых достаточна для того, чтобы они смогли близко подойти друг к другу по схеме: реагенты активированный комплекс продукты. Активированный комплекс имеет промежуточную структуру между реагентами и продуктами. Энергия активации реакции есть дополнительная энергия, которую должны приобрести реагирующие молекулы, чтобы образовать активированный комплекс, необходимый для протекания реакции.

Энергия активации всегда представляет поглощенную энергию, независимо от того, является ли общее изменение ее для реакции положительным (эндотермическая реакция) или отрицательным (экзотермическая реакция). Это схематично показано на рис. 6.

Ход реакции
превращение
активация
E
-DH (+DH)

Рисунок 6. Энергетическая схема образования активированного комплекса.

Активация – сообщение молекулам такого количества энергии, что при их эффективном превращении происходит образование веществ в активированном состоянии.

Превращение – образование из веществ, находящихся в активированном состоянии, продуктов реакции.

Если система не может перейти через этот энергетический барьер в ней не могут произойти химические превращения. Значит эта система химически неактивна и нуждается в некоторой дополнительной энергии для активации. Количество этой дополнительной энергии зависит от того, какой энергией уже обладает система.

Энергия исходной системы не может быть меньше ее нулевой энергии (т.е. при 0 0 К). Для активации любой системы достаточно сообщить ей дополнительную энергию. Эта энергия называется истинной энергией активации.

Истинной энергией активации элементарного химического акта называется минимальная энергия, которой должна обладать исходная система сверх совей нулевой энергии (т.е. при 0 0 К), чтобы в ней могли произойти химические превращения. Разность истинной энергии активации обратной и прямой реакций равна тепловому эффекту реакции при абсолютном нуле.

Теория активированного комплекса или переходного состояния основана на том, что элементарный акт взаимодействия молекул состоит в постепенной перестройке химических связей, при котором начальная конфигурация атомов в исходных молекулах переходит в конечную у продуктов реакции при непрерывном изменении межатомных расстояний.

Количественную теорию, основанную на этих представлениях, с использованием математического аппарата статистической термодинамики, так называемую теорию абсолютных скоростей реакций, предложили Г.Эйринг и М. Поляни и (1935).

Рассмотрим механизм реакцию

Согласно теории активированного комплекса при сближении атома А с молекулой ВС ослабляется связь В-С и возникает связь А-В. Процесс завершается образованием молекулы АВ и атома С, для чего система должна пройти через активированный комплекс АВС , когда атом В в одинаковой степени принадлежит молекулам ВС и АВ:

Качественные представления об элементарном акте как о сложном процессе перестройки химических связей при сближении молекул, а также представления о поверхности потенциальной энергии и координате реакции называют теорией активированного комплекса или переходного состояния .

Строгая количественная теория, основанная на этой физической модели механизма элементарного акта, должна состоять в теоретическом расчете энергетической поверхности реакции методами квантовой механики и в теоретической оценке на этой основе энергии активации и предэкспоненциального множителя. Сделать это пока не удается, из-за математических трудностей. Поэтому пользуются приближенной математической моделью, так называемой теорией абсолютных скоростей реакций.

Согласно этой теории, скорость любой химической реакции равна скорости перехода активированного комплекса через потенциальный барьер, т.е. скорости распада активированного комплекса в продукты реакции. При этом молекула активированного комплекса проходит путь d (рис. 8).

При выводе выражения для константы скорости в теории активированного комплекса элементарную реакцию рассматривают как одномерное поступательное движение по координате реакции в направлении продуктов реакции. При этом сделаны следующие длпущения:

1. В ходе химической реакции на вершине потенциального барьера образуется активированный комплекс (), состоящий из молекул исходного вещества и продуктов реакции.

2. Активированный комплекс на участке (рис.8) совершает одномерное поступательное движение в направлении продуктов реакции.

3. Движение по пути реакции может быть описано в терминах классической механики без учета квантовых эффектов.

4. Элементарная реакция происходит адиабатически, то есть без перехода на другую поверхность потенциальной энергии.


Таким образом, активированный комплекс рассматривается как обычная молекула, у которой одна колебательная степень свободы заменена на поступательную в направлении продуктов реакции.