Оптоволоконный кабель. Виды и устройство. Установка и применение. Как устроен оптоволоконный кабель


Коммутационный или оптический шнур представляет собой отрезок волоконно оптического кабеля, который имеет на обоих концах коннекторы различного вида. При построении ВОЛС сегодня почти невозможно осуществлять передачу данных без использования оптических шнуров.

Для чего предназначены?

Они используются для соединения двух распределительных устройств или соединения распределительного устройства с активным оборудованием. Можно сказать, что такие шнуры являются главным средством, предназначенным для соединения оптоволокон при построении ВОЛС. Если соединение в патч-кордах осуществляется благодаря имеющимся на концах разъемам, то соединять между собой обычные отрезки оптоволоконного кабеля необходимо с применением специального оборудования, коим является сварочный аппарат для оптоволокна .

Типы оптических шнуров

Сегодня можно выделить такие типы оптоволокон:

  • симплексные (с одним волокном);
  • дуплексные (с двумя волокнами);
  • одномодовые;
  • многомодовые.

Волокна дуплексных или симплексных патч-кордов защищены вторичным покрытием из полимерного материала диаметром 0,09 см. Кабель имеет высокую прочность благодаря наличию в нем кевларовых нитей. Оба конца патч-корда снабжаются оптическими разъемами (коннекторами), которые имеют пластмассовые хвостики, предотвращающие выпадение разъема. Дуплексные патч-корды используются для распределительных панелей, которые размещаются в оптических кроссах или на сетевом оборудовании.

Для получения соединительного или переходного патч-корда отрезок кабеля с обеих сторон снабжается оптическими коннекторами, которые могут быть разных типов: SC, FC, ST, LC. В зависимости от типа коннектора, который располагается на конце патч-корда, определяется предназначение этого коммутационного шнура. Например, соединительный шнур обладает одинаковыми типами коннекторов на концах отрезка кабеля. А переходный патч-корд снабжен коннекторами, имеющими различный тип.

Наиболее универсальным для построения оптоволоконной сети считается коммутационный шнур с коннектором ST. Без этого шнура практически невозможно построить сеть, которая будет передавать данные.

Основные характеристики оптических шнуров

Итак, можно сказать, что такой шнур является мини-кабелем, который имеет на обоих концах специальные оптические коннекторы. Функция этого изделия заключается в обеспечении надежного соединения в кроссе, который может устанавливаться в напольный шкаф 42U , между сетевыми устройствами и распределяющим оптическим узлом.

Коммутационные шнуры могут быть выполнены в стандартных размерах: 2,3,5,7,10,15,20 метров. Однако по желанию заказчика оптические шнуры изготавливаются нестандартной длины, именно такой, которая потребуется для конкретного случая. Коммутационные шнуры могут иметь на концах коннекторы, которые относятся к разным типам. Также изготавливаются монтажные шнуры, которые выполняются в виде отрезка волоконно-оптического кабеля со специальным буферным слоем, равным 0,9 мм. С одного края такой шнур имеет оптический разъем, который предназначается для оконцовывания волокон оптоволоконного кабеля путем осуществления работ по сварке. А для этого потребуется специальный аппарат для сварки оптоволокна , который будет обеспечивать надежное и качественное соединение в месте сварного участка.

Волоконно-оптические линии связи (ВОЛС) давно занимают одну из лидирующих позиций на рынке телекоммуникаций. Имея ряд преимуществ перед другими способами передачи информации (витая пара, коаксиальный кабель, беспроводная связь…), ВОЛС широко используются в телекоммуникационных сетях разных уровней, а также в промышленности, энергетике, медицине, системах безопасности, высокопроизводительных вычислительных системах и во многих других областях.

Передача информации в ВОЛС осуществляется по оптическому волокну (optical fiber). Для того чтобы грамотно подойти к вопросу использования ВОЛС, важно хорошо понимать, что из себя представляет оптическое волокно как среда передачи данных, каковы его основные свойства и характеристики, какие бывают разновидности оптических волокон. Именно этим базовым вопросам теории волоконно-оптической связи и посвящена данная статья.

Структура оптического волокна

Оптическое волокно (оптоволокно) - это волновод с круглым поперечным сечением очень малого диаметра (сравним с толщиной человеческого волоса), по которому передается электромагнитное излучение оптического диапазона. Длины волн оптического излучения занимают область электромагнитного спектра от 100 нм до 1 мм, однако в ВОЛС обычно используется ближний инфракрасный (ИК) диапазон (760-1600 нм) и реже - видимый (380-760 нм). Оптическое волокно состоит из сердцевины (ядра) и оптической оболочки, изготовленных из материалов, прозрачных для оптического излучения (рис. 1).

Рис. 1. Конструкция оптического волокна

Свет распространяется по оптоволокну благодаря явлению полного внутреннего отражения. Показатель преломления сердцевины, обычно имеющий величину от 1,4 до 1,5, всегда немного больше, чем показатель преломления оптической оболочки (разница порядка 1%). Поэтому световые волны, распространяющиеся в сердцевине под углом, не превышающим некоторое критическое значение, претерпевают полное внутреннее отражение от оптической оболочки (рис. 2). Это следует из закона преломления Снеллиуса. Путем многократных переотражений от оболочки эти волны распространяются по оптическому волокну.

Рис. 2. Полное внутреннее отражение в оптическом волокне

На первых метрах оптической линии связи часть световых волн гасят друг друга вследствие явления интерференции. Световые волны, которые продолжают распространяться в оптоволокне на значительные расстояния, называются пространственными модами оптического излучения. Понятие моды описывается математически при помощи уравнений Максвелла для электромагнитных волн, однако в случае оптического излучения под модами удобно понимать траектории распространения разрешенных световых волн (обозначены черными линиями на рис. 2). Понятие моды является одним из основных в теории волоконно-оптической связи.

Основные характеристики оптического волокна

Способность оптического волокна передавать информационный сигнал описывается при помощи ряда геометрических и оптических параметров и характеристик, из которых наиболее важными являются затухание и дисперсия .

1. Геометрические параметры.

Помимо соотношения диаметров сердцевины и оболочки, большое значение для процесса передачи сигнала имеют и другие геометрические параметры оптоволокна, например:

  • некруглость (эллиптичность) сердцевины и оболочки, определяемая как разность максимального и минимального диаметров сердцевины (оболочки), деленная на номинальный радиус, выражается в процентах;
  • неконцентричность сердцевины и оболочки - расстояние между центрами сердцевины и оболочки (рис. 3).

Рис 3. Некруглость и неконцентричность сердцевины и оболочки

Геометрические параметры стандартизированы для разных типов оптического волокна. Благодаря совершенствованию технологии производства значения некруглости и неконцентричности удается свести к минимуму, так что влияние неточности геометрии оптоволокна на его оптические свойства оказывается несущественным.

(NA) - это синус максимального угла падения луча света на торец волокна, при котором выполняется условие полного внутреннего отражения (рис. 4). Этот параметр определяет количество мод, распространяющихся в оптическом волокне. Также величина числовой апертуры влияет на точность, с которой должна производиться стыковка оптических волокон друг с другом и с другими компонентами линии.

Рис 4. Числовая апертура

3. Профиль показателя преломления.

Профиль показателя преломления - это зависимость показателя преломления сердцевины от ее поперечного радиуса. Если показатель преломления остается одинаковым во всех точках поперечного сечения сердцевины, такой профиль называется ступенчатым . Среди других профилей наибольшее распространение получил градиентный профиль, при котором показатель преломления плавно увеличивается от оболочки к оси (рис. 5). Помимо этих двух основных, встречаются и более сложные профили.

Рис. 5. Профили показателя преломления

4. Затухание (потери).

Затухание - это уменьшение мощности оптического излучения по мере распространения по оптическому волокну (измеряется в дБ/км). Затухание возникает вследствие различных физических процессов, происходящих в материале, из которого изготавливается оптоволокно. Основными механизмами возникновения потерь в оптическом волокне являются поглощение и рассеяние.

а) Поглощение . В результате взаимодействия оптического излучения с частицами (атомами, ионами…) материала сердцевины часть оптической мощности выделяется в виде тепла. Различают собственное поглощение , связанное со свойствами самого материала, и примесное поглощение , возникающее из-за взаимодействия световой волны с различными включениями, содержащимися в материале сердцевины (гидроксильные группы OH - , ионы металлов…).

б) Рассеяние света, то есть отклонение от исходной траектории распространения, происходит на различных неоднородностях показателя преломления, геометрические размеры которых меньше или сравнимы с длиной волны излучения. Такие неоднородности являются следствием как наличия дефектов структуры волокна (рассеяние Ми ), так и свойствами аморфного (некристаллического) вещества, из которого изготавливается волокно (рэлеевское рассеяние ). Рэлеевское рассеяние является фундаментальным свойством материала и определяет нижний предел затухания оптического волокна. Существуют и другие виды рассеяния (Бриллюэна-Мандельштама, Рамана) , которые проявляются при уровнях мощности излучения, превышающих те, которые обычно используются в телекоммуникациях.

Величина коэффициента затухания имеют сложную зависимость от длины волны излучения. Пример такой спектральной зависимости приведен на рис. 6. Область длин волн с низким затуханием называется окном прозрачности оптического волокна. Таких окон может быть несколько, и именно на этих длинах волн обычно осуществляется передача информационного сигнала.

Рис. 6. Спектральная зависимость коэффициента затухания

Потери мощности в волокне обуславливаются также различными внешними факторами. Так, механические воздействия (изгибы, растяжения, поперечные нагрузки) могут приводить к нарушению условия полного внутреннего отражения на границе сердцевины и оболочки и выходу части излучения из сердцевины. Определенное влияние на величину затухания оказывают условия окружающей среды (температура, влажность, радиационный фон…).

Поскольку приемник оптического излучения имеет некоторый порог чувствительности (минимальную мощность, которую должен иметь сигнал для корректного приема данных), затухание служит ограничивающим фактором для дальности передачи информации по оптическому волокну.

5.Дисперсионные свойства.

Помимо расстояния, на которое передается излучение по оптическому волокну, важным параметром является скорость передачи информации. Распространяясь по волокну, оптические импульсы уширяются во времени. При высокой частоте следования импульсов на определенном расстоянии от источника излучения может возникнуть ситуация, когда импульсы начнут перекрываться во времени (то есть следующий импульс придет на выход оптического волокна раньше, чем закончится предыдущий). Это явление носит название межсимвольной интерференции (англ. ISI - InterSymbol Interference, см. рис. 7). Приемник обработает полученный сигнал с ошибками.

Рис. 7. Перекрывание импульсов, вызывающее межсимвольную интерференцию: а) входной сигнал; б) сигнал, прошедший некоторое расстояние L1 по оптическому волокну; в) сигнал, прошедший расстояние L2> L1.

Уширение импульса, или дисперсия , обуславливается зависимостью фазовой скорости распространения света от длины волны излучения, а также другими механизмами (табл. 1).

Таблица 1. Виды дисперсии в оптическом волокне.

Название Краткое описание Параметр
1. Хроматическая дисперсия Любой источник излучает не одну длину волны, а спектр незначительно отличающихся длин волн, которые распространяются с разной скоростью.

Коэффициент хроматической дисперсии, пс/(нм*км).

Может быть положительным (спектральные составляющие с большей длиной волны двигаются быстрее) и отрицательным (наоборот). Существует длина волны с нулевой дисперсией.

а) Материальная хроматическая дисперсия Связана со свойствами материала (зависимость показателя преломления от длины волны излучения)
б) Волноводная хроматическая дисперсия Связана с наличием волноводной структуры (профиль показателя преломления)
2. Межмодовая дисперсия Моды распространяются по разным траекториям, поэтому возникает задержка во времени их распространения.

Ширина полосы пропускания ( bandwidth), МГц*км .

Эта величина определяет максимальную частоту следования импульсов, при которой не происходит межсимвольной интерференции (сигнал передается без существенных искажений). Пропускная способность канала (Мбит/с) может численно отличаться от ширины полосы пропускания (МГц*км) в зависимости от способа кодирования информации.

3. Поляризационная модовая дисперсия, PMD Мода имеет две взаимно перпендикулярные составляющие (поляризационные моды), которые могут распространяться с различными скоростями.

Коэффициент PMD, пс/√км .

Временная задержка из-за PMD, нормируемая на 1 км.

Таким образом, дисперсия в оптическом волокне отрицательно сказывается как на дальности, так и на скорости передачи информации.

Разновидности и классификация оптических волокон

Рассмотренные свойства являются общими для всех оптических волокон. Однако описанные параметры и характеристики могут существенно отличаться и оказывать различное влияние на процесс передачи информации в зависимости от особенностей производства оптоволокна.

Фундаментальным является деление оптическим волокон по следующим критериям.

  1. Материал . Основным материалом для изготовления сердцевины и оболочки оптического волокна является кварцевое стекло различного состава. Однако используется большое количество других прозрачных материалов, в частности, полимерные соединения.
  2. Количество распространяющихся мод . В зависимости от геометрических размеров сердцевины и оболочки и величины показателя преломления в оптическом волокне может распространяться только одна (основная) или же большое количество пространственных мод. Поэтому все оптические волокна делят на два больших класса: одномодовые и многомодовые (рис. 8).

Рис. 8. Многомодовое и одномодовое волокно

На основании этих факторов можно выделить четыре основных класса оптических волокон, получивших распространение в телекоммуникациях:

  1. (POF).
  2. (HCS).

Каждому из этих классов посвящена отдельная статья на нашем сайте. Внутри каждого из этих классов также существует своя классификация.

Производство оптических волокон

Процесс изготовления оптического волокна крайне сложен и требует большой точности. Технологический процесс проходит в два этапа: 1) создание заготовки, представляющей собой стержень из выбранного материала со сформированным профилем показателя преломления, и 2) вытягивание волокна в вытяжной башне, сопровождающееся покрытием защитной оболочкой. Существует большое количество различных технологий создания заготовки оптического волокна, разработка и совершенствование которых происходит постоянно.

Практическое использование оптического волокна в качестве среды передачи информации невозможно без дополнительного упрочнения и защиты. Волоконно-оптическим кабелем называется конструкция, включающая в себя одно или множество оптических волокон, а также различные защитные покрытия, несущие и упрочняющие элементы, влагозащитные материалы. По причине большого разнообразия областей применения оптоволокна производители выпускают огромное количество самых разных волоконно-оптических кабелей, отличающихся конструкцией, размерами, используемыми материалами и стоимостью (рис. 9).

Рис.9. Волоконно-оптические кабели

В современном мире необходимо качественно и быстро передавать информацию. Сегодня нет более совершенного и эффективного способа передачи данных, чем оптоволоконный кабель. Если кто-то думает, что это уникальная разработка, то он глубоко ошибается. Первые оптические волокна появились еще в конце прошлого столетия, и до сих пор ведутся работы по развитию этой технологии.

На сегодняшний день мы уже имеем передающий материал, уникальный по свойствам. Его применение получило широкую популярность. Информация в наше время имеет большое значение. С помощью нее мы общаемся, развиваем экономику и быт. Скорость передачи информации при этом должна быть высокой для того, чтобы обеспечить необходимый темп современной жизни. Поэтому сейчас многие интернет провайдеры внедряют оптоволоконный кабель.

Этот тип проводника предназначен только на передачу импульса света, несущего часть информации. Поэтому его применяют для передачи информативных данных, а не для подключения питания. Оптоволоконный кабель дает возможность повысить скорость в несколько раз, в сравнении с проводами из металла. При эксплуатации он не имеет побочных явлений, ухудшения качества на расстоянии, перегрева провода. Достоинством кабеля на основе оптических волокон является невозможность влияния на передаваемый сигнал, поэтому ему не нужен экран, блуждающие токи на него не действуют.

Классификация

Оптоволоконный кабель имеет большие отличия от витой пары, исходя из области применения и места монтажа. Выделяют основные виды кабелей на основе оптического волокна:

  • Для внутреннего монтажа.
  • Установки в кабельные каналы, без брони.
  • Установки в кабельные каналы, бронированный.
  • Укладки в грунт.
  • Подвесной, не имеющий троса.
  • Подвесной, с тросом.
  • Для подводного монтажа.

Устройство

Самое простое устройство имеет оптоволоконный кабель для внутреннего монтажа, а также кабель обычного исполнения, не имеющего брони. Наиболее сложная конструкция у кабелей для подводного монтажа и для монтажа в грунт.

Кабель для внутреннего монтажа

Внутренние кабели делят на абонентские, для прокладки к потребителю, и распределительные для создания сети. Оптику проводят в кабельных каналах, лотках. Некоторые разновидности прокладывают по фасаду здания до распредкоробки, либо до самого абонента.

Устройство оптоволокна для внутренней прокладки состоит из оптического волокна, специального защитного покрытия, силовых элементов, например, троса. К кабелю, прокладываемому внутри зданий, предъявляются требования пожарной безопасности: стойкость к горению, низкое выделение дыма. Материал оболочки кабеля состоит из полиуретана, а не полиэтилена. Кабель должен быть легким, тонким и гибким. Многие исполнения оптоволоконного кабеля облегчены и защищены от влаги.

Внутри помещений кабель обычно прокладывается на небольшие расстояния, поэтому о затухании сигнала и влиянии на передачу информации речи не идет. В таких кабелях количество оптоволокна не более двенадцати. Существуют и гибридные оптоволоконные кабели, имеющие в составе витую пару.

Кабель без брони для кабельных каналов

Оптика без брони применяется для монтажа в кабельные каналы, при условии, что не будет механических воздействий снаружи. Такое исполнение кабеля применяется для тоннелей и коллекторов домов. Его укладывают в трубы из полиэтилена, вручную или специальной лебедкой. Особенностью такого исполнения кабеля является наличие гидрофобного наполнителя, гарантирующего нормальную эксплуатацию в кабельном канале, защищает от влаги.

Кабель с броней для кабельных каналов

Оптоволоконный кабель с броней применяется тогда, когда присутствуют нагрузки снаружи, например, на растяжение. Броня выполняется по-разному. Броня в виде ленты применяется, если нет воздействия агрессивных веществ, в, тоннелях и т.д. Конструкция брони состоит из стальной трубы (гофрированная, либо гладкая), с толщиной стенки 0,25 мм. Гофрирование выполняют тогда, когда это является одним слоем защиты кабеля. Оно защищает оптическое волокно от грызунов, увеличивает гибкость кабеля. При условиях с большим риском повреждений применяют броню из проволоки, например, на дне реки, или в грунте.

Кабель для укладки в грунт

Для монтажа кабеля в грунт применяют оптоволокно с броней из проволоки. Могут использоваться также кабели с ленточной броней, усиленные, но они не нашли широкого применения. Для прокладки оптоволокна в грунт задействуют кабелеукладчик. Если монтаж в грунт осуществляется в холодное время при температуре менее -10 градусов, то кабель заранее нагревают.

Для мокрого грунта применяют кабель с герметичным оптоволокном в металлической трубке, а броня из проволоки пропитывается водоотталкивающим составом. Специалисты делают расчеты по укладке кабеля. Они определяют допустимые растяжения, нагрузки на сдавливание и т. д. Иначе по истечении определенного времени оптические волокна повредятся, и кабель придет в негодность.

Броня оказывает влияние на величину допускаемой нагрузки на растяжение. Оптоволокно с броней из проволоки выдерживает нагрузку до 80 кН, с ленточной броней нагрузка может быть не более 2,7 кН.

Подвесной оптоволоконный кабель без брони

Такие кабели устанавливаются на опоры линий связи и питания. Так производить монтаж проще и удобнее, чем в грунт. При этом есть важное ограничение – во время монтажа температура не должна опускаться ниже -15 градусов. Сечение кабеля имеет круглую форму. Благодаря этому уменьшаются нагрузки от ветра на кабель. Расстояние между опорами должно быть не больше 100 метров. В конструкции есть силовой элемент в виде стеклопластика.

Благодаря силовому элементу кабель может выдержать большие нагрузки, направленные вдоль него. Силовые элементы в виде арамидных нитей применяют при расстояниях между столбами до 1000 метров. Достоинством арамидных нитей, кроме малой массы и прочности, являются диэлектрические свойства арамида. При ударе молнии в кабель, никаких повреждений не будет.

Сердечники подвесных кабелей бывают разными. По их типу кабели делят на:

  • Кабель с сердечником в виде профиля, оптоволокно устойчиво к сдавливанию и растяжению.
  • Кабель с модулями скрученного вида, оптические волокна проложены свободно, имеется устойчивость к растяжению.
  • С оптическим модулем, сердечник кроме оптоволокна ничего в составе не имеет. Недостаток такого исполнения – неудобно идентифицировать волокна. Преимущество – малый диаметр, низкая стоимость.
Оптоволоконный кабель с тросом

Тросовое оптоволокно является самонесущим. Такие кабели применяются для прокладки по воздуху. Трос бывает несущим или навивным. Есть модели кабеля, в котором оптоволокно находится внутри молниезащитного троса. Кабель, усиленный профильным сердечником, обладает достаточной эффективностью. Трос состоит из стальной проволоки в оболочке. Эта оболочка соединена с оплеткой кабеля. Свободный объем заполнен гидрофобным веществом. Такие кабели прокладывают с расстоянием между столбами не более 70 метров. Ограничением кабеля является невозможность прокладки на линию электропитания.

Кабели с тросом для грозовой защиты устанавливаются на высоковольтных линиях с фиксацией на заземление. Тросовый кабель используется при рисках его повреждения животными, либо на большие дистанции.

Оптоволоконный кабель для укладки под водой

Такой тип оптоволокна обособлен от остальных, потому что его укладка проходит в особых условиях. Все подводные кабели имеют броню, конструкция которой зависит от глубины прокладки и рельефа дна водоема.

Некоторые виды подводного оптоволокна по исполнению брони с:

  • Одинарной броней.
  • Усиленной броней.
  • Усиленной двойной броней.
  • Без брони.

1› Изоляция из полиэтилена.
2› Майларовое покрытие.
3› Двойная броня из проволоки.
4› Гидроизоляция алюминиевая.
5› Поликарбонат.
6› Центральная трубка.
7› Заполнитель гидрофобный.
8› Оптоволокно.

Размер брони не зависит от глубины прокладки. Армирование защищает кабель только от обитателей водоема, якорей, судов.

Сварка оптоволокна

Для сварки используется сварочный аппарат специального типа. В его составе содержится микроскоп, зажимы для фиксации волокон, дуговая сварка, камера термоусадки для нагрева гильз, микропроцессор для управления и контроля.

Краткий техпроцесс сварки оптоволокна:

  • Снятие оболочки стриппером.
  • Подготовка к сварке. На концы надеваются гильзы. Концы волокон обезжириваются спиртом. Конец волокна скалывается специальным приспособлением под определенным углом. Волокна укладываются в аппарат.
  • Сварка. Волокна выравниваются. При автоматическом управлении положение волокон устанавливается автоматически. После подтверждения сварщика, волокна свариваются аппаратом. При ручном управлении все операции проводятся вручную специалистом. При сварке волокна плавятся дугой электрического тока, совмещаются. Затем свариваемое место прогревается во избежание внутренних напряжений.
  • Проверка качества. Автомат сварки проводит анализ картинки места сварки по микроскопу, определяет оценку работы. Точный результат получают рефлектометром, который выявляет неоднородность и затухание на линии сварки.
  • Обработка и защита свариваемого места. Надетая гильза сдвигается на сварку и закладывается в печь для термоусадки на одну минуту. После этого гильза остывает, ложится в защитную пластину муфты, накладывается запасное оптическое волокно.
Достоинства оптоволоконного кабеля

Основным достоинством оптоволокна является повышенная скорость передачи информации, практически нет затухания сигнала (очень низкое), а также, безопасность передачи данных.

  • Невозможно подключиться к оптической линии без санкций. При любом включении в сеть оптические волокна повредятся.
  • Электробезопасность. Она повышает популярность и область применения таких кабелей. Их все больше используют в промышленности при опасности взрывов на производстве.
  • Имеет хорошую защиту от помех природного происхождения, электрооборудования и т.д.

Пока вы читаете эти строки, терабайты данных курсируют по всему миру, запертые в стеклянных нитях, протянутых по дну океана. Напоминает магию, но это всего лишь продвинутая технология. Оптическое волокно - технология, которой, человечество обязано естествоиспытателям XIX века. Наблюдая за лучами света на поверхности пруда, они предположили, что светом можно управлять, но претворить в жизнь ту гениальную идею удалось только совсем недавно с появлением сложнейших заводов и тщательным изучением оптических свойств материалов.

Запертый свет

По медной витой паре (как в вашем интернет-кабеле) во множестве движутся электроны. Ток предается по проводнику и несет с собой закодированную в последовательности импульсов - информацию. Нули и единицы - двоичный код, о котором слышали, пожалуй, все. Оптический проводник сигнала работает по тому же принципу, но с точки зрения физики, с ним все гораздо сложнее. Тут могла бы быть получасовая лекция о квантовой механике, и о том, как множество именитых физиков пришли в тупик, пытаясь понять природу света, но постараемся обойтись без пространных рассуждений.

Достаточно держать в уме то, что подобно электронам, фотоны или световые волны (на самом деле в нашем контексте это одно и то же), могут переносить закодированную информацию. Так, например, на аэродромах, в случаях отказа радиосвязи, передают сигналы самолетам при помощи направленных прожекторов. Но то примитивный метод, да и работает он лишь на расстоянии прямой видимости. В то же время, по оптоволокну свет передается на километры и далеко не по прямой траектории.


Чтобы добиться такого эффекта, можно было бы использовать зеркала. Собственно, с этого инженеры-испытатели и начали свои эксперименты. Они покрывали металлические трубы изнутри зеркальным слоем и направляли внутрь луч света. Но мало того, что подобные световоды стоили непомерно дорого. Свет многократно отражался от их стенок и постепенно затухал, терял силу и совершенно сходил на нет.

Зеркала не годились. Иначе и быть не могло. Даже самое дорогое зеркало не идеально. Его коэффициент отражения меньше 100% и после каждого падения на зеркальную поверхность световой луч теряет часть энергии, а в замкнутом объеме световода таких преломлений происходит неисчислимое множество.

Тут-то и пришло время вспомнить о пруде и тех давних исследованиях, что основывались на наблюдении за поведением света в воде. Представьте, как луч закатного солнца падает на поверхность воды, преодолевает границу и направляется вниз, к дну пруда.


Те из читателей, кто помнит школьный курс физики, наверняка уже догадываются, что свет изменит направление своего движения. Часть света пройдет под воду, чуть изменив угол своего движения, а другая незначительная часть света отразится обратно в небо, потому, как «угол падения равен углу отражения». Если долгое время наблюдать за этим явлением, однажды, можно заметить, что свет, отраженный от зеркала под водой, под определенным углом так и не сумеет вырваться наружу - отразится от границы воды и воздуха полностью, лучше, чем от всякого зеркала. Дело не в воде как таковой, а в сочетании двух сред с различными оптическими свойствами - неодинаковыми коэффициентами преломления. Для создания световой ловушки достаточно минимального их различия.

Гибкие световоды


Материалы не столь уж важны. В физических опытах для детей, демонстрирующих этот эффект, часто используют воду и прозрачную пластмассовую трубку. Больше чем на пару метров в таком световоде световой луч не передать, но смотрится это красиво. По той же причине светильники и прочие декоративные изделия часто имеют в своей конструкции световоды из пластмасс. Но когда речь заходит о передаче информации на многие километры, требуются особые, сверхчистые материалы, с минимумом примесей и оптическими свойствами, близкими к идеальным.


В 1934 году американец Норман Р. Френч запатентовал стеклянный световод, который должен был обеспечить телефонную связь, но он толком не работал. Потребовалась масса времени, чтобы найти материал, который бы отвечал высочайшим требованиям к чистоте и прозрачности, изобрести оптическое волокно из диоксида кремния - чистейшего кварцевого стекла. Чтобы создать в прозрачном кремнии разность коэффициентов преломления, прибегают к хитрости. Центр прозрачной болванки, которая превратится в провод, оставляют чистым, в то время, как внешние слои насыщают германием - он изменяет оптические характеристики стекла.


В таком случае, болванку обычно спекают из двух заранее приготовленных стеклянных трубок, вставленных одна в другую. Но можно поступить и наоборот, насытив сердцевину стекловолокна германием. Более технологичным и высококачественным стекловолокно получается, когда стеклянные трубки наполняют изнутри газом и ждут, пока германий сам осядет на стекло тончайшим слоем. Затем трубку разогревают и растягивают до метровой длины. При этом полость внутри закрывается сама.


Получившийся стержень имеет сердцевину с одним коэффициентом преломления и оболочку с другими оптическими параметрами. Он то и послужит для изготовления оптического волокна. Пока тяжелая заготовка толщиной в руку ничем не напоминает провод, но кварцевое стекло хорошо растягивается.


Подготовленную болванку поднимают на высоту десятиметровой башни, закрепляют на вершине и равномерно нагревают до пор, пока по консистенции она не будет напоминать нугу. Тогда из стеклянной болванки под собственным весом начинает тянуться тончайшая нить. По пути вниз она остывает и приобретает гибкость. Это может показаться странным, но сверхтонкое стекло прекрасно гнется.


Готовое оптическое волокно, непрерывно поступающее вниз, окунают в ванну с жидким пластиком, образующим защитный слой на поверхности кварца, а затем сматывают. Так продолжается до тех пор, пока заготовка на вершине башни не будет полностью переработана в единую нить из сотни-другой километров оптического волокна.


Из него, в свою очередь, будут сплетены кабели, содержащие от пары, до пары сотен отдельных стеклянных волокон, упрочняющие вставки, экранирующие слои и защитные оболочки.
  1. Осевой стержень.
  2. Оптическое волокно.
  3. Пластиковая защита оптических волокон.
  4. Пленка с гидрофобным гелем.
  5. Полиэтиленовая оболочка.
  6. Армирование.
  7. Внешняя полиэтиленовая оболочка.

Связь со скоростью света

Описанный процесс сложен, трудозатратен, требует постройки заводов и специального обучения от их персонала, и, тем не менее, игра стоит свеч. Ведь скорость света - это непреодолимый предел, максимальная скорость, с которой информация может распространяться в принципе. Соперничать с оптическим волокном в скорости передачи информации могут, разве что, линии прямой оптической связи, но никак не медные проводники, на какие бы ухищрения не шли их создатели. Сравнения демонстрируют превосходство оптического волокна над остальными средствами передачи информации лучше всего.


Домашний интернет на постсоветском пространстве, зачастую, проводят по двужильной витой паре с проводниками толщиной в один - два миллиметра. Максимумом для нее, оказывается показатель в 100 мегабит в секунду. Этого достаточно для пары компьютеров, но, когда в квартире оказываются умный телевизор, NAS, раздающий торренты, домашний сервер, несколько смартфонов и умных девайсов из мира интернета вещей, не хватит и восьмижильного провода. Ограничения канала связи становятся очевидны. Как правило, в виде артефактов и заикающихся киногероев на экране телевизора, или лагов в онлайн-играх. Оптоволокно толщиной 9 микрон обладает в 30 раз большей пропускной способностью, не говоря уже о том, что таких жил в проводе может быть несколько.

При этом оно компактнее и весит значительно меньше обычных проводов, что оказывается решающим преимуществом, при прокладке магистральных линий связи и планировании городских коммуникаций.


Оптические кабели соединяют континенты, города и датацентры. В России первая такая линия, появилась в Москве. Первый подводный оптический кабель пролег между Санкт-Петербургом и датским Аберслундом. Затем оптоволокно протянулось между предприятиями, государственными учреждениями и банками. В крупных городах получила распространение схема, при которой оптические линии связи доводят до отдельных многоквартирных домов, и, тем не менее, для рядового потребителя оптическое волокно все еще остается экзотикой. Нам бы было интересно узнать, как много наших читателей использует его дома, потому что, по большинству квартир по-прежнему тянется старая-добрая витая пара.


Оптическое волокно не только дорогое и сложное в производстве. Еще дороже оказывается его квалифицированное обслуживание. Тут не обойтись без синей изоленты. При монтаже волокна кварца необходимо специальным образом сращивать, а линии оптоволоконной связи комплектовать дополнительным оборудованием.

Несмотря на то, что разность коэффициентов преломления в сердцевине и оболочке волокна в теории создает идеальный световод, запущенный по кварцевому проводу свет все равно затухает из-за примесей, содержащихся в стекле. Увы, избавиться от них полностью практически невозможно. Десятка молекул воды на километр оптического волокна уже достаточно, чтобы внести в сигнал ошибки и снизить расстояние, на которое его можно передать.


С подобной проблемой сталкиваются инженеры-электрики и в случае с обычными проводами. Расстояние, на которое можно без проблем отправить сигнал по проводу они называют дистанцией регенерации.

Для стандартного телефонного кабеля она равняется километру, у экранированного кабеля - пяти. Оптоволоконная жила удерживает свет на расстоянии до нескольких сотен километров, но, в конце концов, сигнал все равно приходится усиливать, регенерировать. На классических линиях связи устанавливаются сравнительно дешевые и простые усилители. Для оптоволоконных – требуются сложные и высокотехничные агрегаты в которых используются редкоземельные металлы и инфракрасные лазеры.

В линию связи врезают небольшой участок специально подготовленного стекловолокна. Оно дополнительно насыщенно атомами эрбия, редкоземельного элемента используемого, помимо прочего, в атомной промышленности. Атомы эрбия в этом участке волокна находятся в возбужденном состоянии из-за дополнительной накачки светом. Проще говоря, их подсвечивают специально настроенным лазером. Сигнал, проходящий такую область кабеля, усиливается примерно в два раза, поскольку атомы эрбия в ответ на воздействие излучают свет той же волны, что и входящий сигнал, а значит, сохраняют закодированную в нем информацию. После усилителя оптический сигнал может пройти еще около ста километров, прежде чем процедуру потребуется повторить.


Такие системы требуют обученных специалистов для обслуживания и постоянного присмотра, так что экономическая выгода от прокладки индивидуальных оптических линий для конкретных абонентов остается сомнительной в большинстве стран мира. И все же, все мы используем стекловолокно для передачи сообщений. Весь современный интернет базируется на этой технологии и именно благодаря ей стали возможны интернет трансляции в сверхвысоком разрешении, видеостриминг, онлайн игры с минимальной задержкой, мгновенная связь с практически любой точкой планеты и даже мобильный интернет. Да, базовые станции сотовой связи также связывает стекловолокно.


Несмотря на то, что ученые ищут новые пути построения коммуникационных сетей, мы не получим ничего более практичного еще очень долго. Экспериментальные технологии позволяют поднять информационную емкость стекловолокна в два-три раза, все более толстые многожильные стеклянные кабели ложатся на морское дно между континентами, однако принципиальные ограничения, накладываемые скоростью света, запертого в кварцевой жиле, преодолеть вряд ли удастся. Выходом видится отказ от кварца и связанных с ним ограничений, передача информации с помощью лазеров, но она возможна только по прямой. Следовательно, передатчики придется разместить в космосе или хотя бы в верхних слоях атмосферы. Подобные эксперименты в последние годы привлекли внимание крупнейших корпораций, но это уже совсем другая история.