Микробная теория пастера в биологии. Внимание! лживая теория инфекционных заболеваний в официальной медицине. почему на самом деле люди болеют (с физической точки зрения) и кто такие бактерии


Вакцинация

Вспоминая горячие дебаты по вопросам эволюции и витализма, мы не должны забывать, что интерес людей к теоретической биологии возник в результате усиленных занятий медициной, настойчивого изучения функциональных нарушений в организме. Как бы быстро ни развивалась биологическая наука в теоретическом отношении, как бы далеко она ни отошла от повседневных нужд практики, все равно рано или поздно она должна была вернуться к запросам медицины.
Изучение теории отнюдь не является чем-то отвлеченным и неоправданным, так как внедрение достижений теоретической науки позволяет практике быстро двигаться вперед. И хотя прикладная наука может развиваться чисто эмпирически, без теории это развитие идет гораздо медленнее и неувереннее.
В качестве примера вспомним историю изучения инфекционных заболеваний. Вплоть до начала XIX в. врачи, по сути дела, были совершено беспомощны во время эпидемий чумы или других инфекционных болезней, время от времени вспыхивавших на нашей планете. К заболеваниям, от которых страдало человечество, относится и оспа. Трагично было то, что она распространялась, как настоящее стихийное бедствие, каждый третий из заболевших погибал, а выжившие на всю жизнь оставались обезображенными: покрытые рябинами лица отталкивали даже близких.
Однако было замечено, что перенесенное заболевание обеспечивало иммунитет при следующей вспышке. Поэтому многие считали более целесообразным не избегать заболевания, а перенести его, но в очень слабой форме, которая не была бы опасна для жизни и не обезображивала больного. В этом случае человек был бы гарантирован от повторных заболеваний. В таких странах, как Турция и Китай, уже давно пытались заражать людей содержимым пустул от больных легкой формой оспы. Риск был велик, так как порой болезнь протекала в очень тяжелой форме. В начале XVIII в. подобные прививки проводились и в Англии, но трудно сказать, приносили ли они больше пользы или вреда. Занимаясь практической врачебной деятельностью, англичанин Эдуард Дженнер (1749–1823) изучал известные в народной медицине предохранительные свойства коровьей оспы: люди, переболевшие ею, становятся иммунными как к коровьей, так и к человеческой оспе. После долгих и тщательных наблюдений 14 мая 1796 г. Дженнер впервые провел прививку коровьей оспы восьмилетнему мальчику, использовав материал, взятый от женщины, болевшей коровьей оспой. Прививка сопровождалась недомоганием. А два месяца спустя мальчик был инфицирован гноем из пустулы больного натуральной оспой - и остался здоровым. В 1798 г., после многократного повторения этого опыта, Дженнер опубликовал результаты своей работы. Он предложил назвать новый метод вакцинацией (от латинского vaccinia - коровья оспа).
Страх перед оспой был так велик, что метод Дженнера приняли с восторгом, а сопротивление наиболее консервативных было быстро сломлено. Вакцинация распространилась по всей Европе, и болезнь отступила. В странах с высокоразвитой медициной врачи уже не чувствовали себя беспомощными в борьбе с оспой. В истории человечества это был первый случай быстрой и радикальной победы над опасной болезнью.
Но дальнейшие успехи могла принести только разработка теории. В то время никто не знал возбудителей инфекционных болезней, на использование в целях вакцинации легких форм рассчитывать не приходилось. Перед биологами встала задача научиться «изготавливать» свои собственные «варианты» легких форм болезни, но для этого требовалось знать гораздо больше, чем было известно во времена Дженнера.

Микробная теория болезней

Бактериология

Нельзя надеяться, что когда-нибудь удастся полностью изолировать людей от болезнетворных микробов. Рано или поздно человек подвергается риску заражения. Как же лечить больного? Безусловно, у организма есть какие-то свои средства борьбы с микробами: ведь, как известно, иногда больной выздоравливает и без оказания ему помощи. Выдающемуся русскому биологу Илье Ильичу Мечникову (1845–1916) удалось показать на примере такую «антибактериальную борьбу» организма. Он показал, что лейкоциты выполняют функцию защиты от патогенных агентов, проникших в организм животных и человека: выходят из кровеносных сосудов и устремляются к месту внедрения инфекции, где развертывается настоящая битва белых кровяных телец с бактериями. Клетки, осуществляющие защитную роль в организме, Мечников назвал фагоцитами.
Кроме того, выздоровление от многих болезней сопровождается выработкой иммунитета (невосприимчивости), хотя никаких видимых изменений и не обнаруживается. Это можно было бы довольно логично объяснить тем, что в организме переболевшего образуются антитела, обладающие способностью убивать либо нейтрализовать внедрившиеся микробы. Такое представление объясняет и действие вакцинации; в организме вакцинируемого образуются антитела, активные в отношении как микроба коровьей оспы, так и очень похожего на него микроба натуральной оспы. Теперь победа обеспечена, но уже не над самой болезнью, а над вызывающим ее микробом.
Пастер наметил пути борьбы с сибирской язвой, смертельной болезнью, которая уничтожала стада домашних животных. Он нашел возбудителя заболевания и доказал его принадлежность к особому виду бактерий. Пастер нагревал препарат из бактерий, чтобы уничтожить их способность вызывать болезнь (патогенность). Введение в организм животного ослабленных (аттенуированных) бактерий приводило к образованию антител, способных противостоять исходным патогенным бактериям.
В 1881 г. Пастер поставил чрезвычайно показательный опыт. Для эксперимента было взято стадо овец, одной части которых ввели ослабленных бактерий сибирской язвы, а другая осталась непривитой. Через некоторое время всех овец заразили патогенными штаммами. У привитых овец не было обнаружено каких-либо признаков заболевания; непривитые овцы заболели сибирской язвой и погибли.
Сходные методы применял Пастер для борьбы с куриной холерой и, что особенно показательно, с одной из самых ужасных болезней - бешенством (или водобоязнью), передающимся человеку от зараженных диких или домашних животных.
Успех микробной теории Пастера возродил интерес к бактериям. Немецкий ботаник Фердинанд Юлиус Кон (1828–1898) изучал под микроскопом растительные клетки. Он показал, например, что протоплазмы растительной и животной клеток, в сущности, идентичны. В 60-х годах XIX столетия он обратился к изучению бактерий. Крупнейшей заслугой Кона было установление растительной природы бактерий. Он впервые четко отделил бактерии от простейших и попытался систематизировать бактерии по родам и видам. Это позволяет считать Кона основоположником современной бактериологии.
Кон первым заметил дарование молодого немецкого врача Роберта Коха (1843–1910). В 1876 г. Кох выделил бактерию, вызывающую сибирскую язву, и научился ее выращивать. Поддержка Кона, ознакомившегося с работой Коха, сыграла важную роль в жизни великого микробиолога. Кох культивировал бактерии на твердой среде - желатине (который позднее был заменен агаром, добываемым из морских водорослей), а не в жидкости, наливаемой в пробирки. Это техническое усовершенствование дало массу преимуществ. В жидкой среде бактерии различных видов легко смешиваются, и трудно установить, какая именно вызывает ту или иную болезнь. Если культуру нанести в виде мазка на твердую среду, отдельные бактерии, многократно делясь, образуют колонии новых клеток, строго фиксированные в своем положении. Даже если исходная культура состоит из смеси различных видов бактерий, каждая колония является чистой культурой клеток, что позволяет совершенно точно определить вид болезнетворных микробов. Сначала Кох наливал среду на плоский кусок стекла, но его ассистент Юлиус Рихард Петри (1852–1921) заменил стекло двумя плоскими мелкими стеклянными чашками, одна из которых служила крышкой. Чашки Петри и сейчас широко применяются в бактериологии. Используя разработанный метод выделения чистых микробных культур, Кох и его сотрудники выделили возбудителей многих болезней, в том числе туберкулеза (1882).

Насекомые

Факторы питания

На протяжении последней трети прошлого века микробная теория владела умами большинства врачей, но находились и такие, которые придерживались иного мнения. Немецкий патолог Вирхов - самый знаменитый противник пастеровской теории - считал, что болезни вызываются скорее расстройством в самом организме, чем внешними агентами. Заслугой Вирхова было то, что за несколько десятков лет работы в берлинском муниципалитете и национальных законодательных органах он добился таких серьезных улучшений в области гигиены, как очистка питьевой воды и создание эффективной системы обеззараживания сточных вод. В этой области очень много сделал и другой ученый - Петтенкофер. Он и Вирхов могут считаться основателями современной социальной гигиены (изучение профилактики заболеваний в человеческом обществе).
Подобные мероприятия, препятствующие распространению эпидемий, безусловно, были не менее важны, чем непосредственное воздействие на самих микробов.
Естественно, что забота о чистоте, которую проповедовал еще Гиппократ, сохранила свое значение и тогда, когда всем стала понятна роль микробов. Остались в силе и советы Гиппократа относительно необходимости полноценного и разнообразного питания, причем выяснилось их значение не только для поддержания здоровья вообще, но и как специфического метода профилактики некоторых заболеваний. Мысль о том, что неполноценное питание может быть причиной заболевания, считалась «старомодной» - ученые были увлечены микробами, - но ее подтверждали достаточно веские доказательства.
В эпоху великих географических открытий люди проводили долгие месяцы на борту кораблей, питаясь только теми продуктами, которые могли хорошо сохраняться, так как использование искусственного холода было еще не известно. Страшным бичом моряков была цинга. Шотландский врач Джеймс Линд (1716–1794) обратил внимание на то, что заболевания встречаются не только на борту кораблей, но и в осажденных городах и тюрьмах - повсюду, где питание однообразно. Может быть, болезнь вызывает отсутствие какого-либо продукта в пище? Линд попробовал разнообразить пищевой рацион моряков, больных цингой, и вскоре выявил целительное действие цитрусовых. Великий английский мореплаватель Джемс Кук (1728–1779) ввел цитрусовые в рацион экипажа своих тихоокеанских экспедиций в 70-х годах XVIII в. В результате от цинги умер только один человек. В 1795 г., во время войны с Францией, морякам британского флота начали давать лимонный сок, и не было отмечено ни одного случая заболевания цингой.
Однако такие чисто эмпирические достижения при отсутствии необходимых теоретических обоснований внедрялись очень медленно. В XIX в. главные открытия в области питания относились к выявлению роли белка. Было установлено, что одни белки, «полноценные», присутствуя в пищевом рационе, могут поддерживать жизнь, другие, «неполноценные», вроде желатина, не в состоянии делать этого. Объяснение пришло, лишь когда лучше узнали природу молекулы белка. В 1820 г., обработав кислотой сложную молекулу желатина, выделили из нее простую молекулу, которую назвали глицином. Глицин принадлежит к классу аминокислот. Вначале предположили, что он и служит строительным блоком для белков, подобно тому как простой сахар, глюкоза, - кирпичиком, из которого строится крахмал. Однако к концу XIX в. выяснилась несостоятельность этой теории. Из самых различных белков были получены другие простые молекулы - все они, различаясь только деталями, принадлежали к классу аминокислот. Молекула белка оказалась построенной не из одной, а из целого ряда аминокислот. К 1900 г. были известны десятки различных аминокислотных «строительных блоков». Теперь уже не казалось невероятным, что белки различаются соотношением содержащихся в них аминокислот. Первым ученым, показавшим, что тот или иной белок может не иметь одной или нескольких аминокислот, играющих существенную роль в жизнедеятельности организма, был английский биохимик Фредерик Гауленд Гопкинс (1861–1947). В 1903 г. он открыл новую аминокислоту - триптофан - и разработал методы ее выявления. Зеин - белок, выделенный из кукурузы, - давал отрицательную реакцию и, следовательно, не содержал триптофана. Он оказался неполноценным белком, так как, будучи единственным белком в рационе, не обеспечивал жизнедеятельности организма. Но уже небольшая добавка триптофана позволяла продлить жизнь подопытных животных.
Последующие опыты, поставленные в первом десятилетии XX в., ясно показали, что некоторые аминокислоты синтезируются в организме млекопитающих из веществ, обычно находящихся в тканях. Однако часть аминокислот обязательно должна поступать с пищей. Отсутствие одной или нескольких таких «незаменимых» аминокислот и делает белок неполноценным, приводя к заболеванию, а иногда и смерти. Так было введено понятие о добавочных питательных факторах - соединениях, которые не могут синтезироваться в организме животных и человека и для обеспечения нормальной жизнедеятельности обязательно должны входить в пищу.
Строго говоря, аминокислоты не являются серьезной медицинской проблемой для специалистов диетологов. Нехватка аминокислот обычно возникает только при искусственном и однообразном питании. Естественная пища, даже если она не очень богата, доставляет организму достаточное разнообразие аминокислот.
Раз такая болезнь, как цинга, излечивается лимонным соком, разумно предположить, что лимонный сок снабжает организм каким-то недостающим пищевым фактором. Маловероятно, что им является аминокислота. И действительно, все известные биологам XIX в. составные части лимонного сока, взятые вместе или в отдельности, не могли вылечить цинги. Этим пищевым фактором должно было быть вещество, необходимое лишь в очень малых количествах и химически отличное от обычных компонентов пищи.
Обнаружить загадочное вещество оказалось не так уж трудно. После разработки учения о существенно важных для жизни аминокислотах были выявлены более тонкие пищевые факторы, нужные организму лишь в ничтожных количествах, но произошло это не в процессе изучения цинги.

Витамины

В 1886 г. голландского врача Кристиана Эйкмана (1858–1930) послали на Яву для борьбы с болезнью бери-бери. Были основания думать, что эта болезнь возникает в результате неправильного питания. Японские моряки сильно страдали от бери-бери и перестали болеть, лишь когда в 80-х годах XIX столетия в их пищевой рацион, состоявший почти исключительно из риса и рыбы, ввели молоко и мясо. Эйкман, однако, будучи в плену микробной теории Пастера, был убежден, что бери-бери - бактериальная болезнь. Он привез с собой кур, надеясь заразить их микробами. Но все его попытки успеха не имели. Правда, в 1896 г. куры неожиданно заболели болезнью, похожей на бери-бери. Выясняя обстоятельства заболевания, ученый обнаружил, что именно перед вспышкой болезни кур кормили шлифованным рисом с больничного склада продуктов. Когда их перевели на прежний корм, наступило выздоровление. Постепенно Эйкман убедился, что эту болезнь можно вызывать и излечивать простым изменением рациона.
Вначале ученый не оценил истинного значения полученных данных. Он предположил, что в зернах риса содержится какой-то токсин, который нейтрализуется чем-то содержащимся в оболочке зерна, а так как при обдирке риса оболочку удаляют, то в шлифованном рисе остаются ненейтрализованные токсины. Но зачем создавать гипотезу о наличии двух неизвестных веществ, токсина и антитоксина, когда гораздо проще предположить, что существует какой-то пищевой фактор, нужный в ничтожных количествах? Такого мнения придерживались Гопкинс и американский биохимик Казимир Функ (род. в 1884 г.). Они высказали мысль, что не только бери-бери, но и такие заболевания, как цинга, пеллагра и рахит, объясняются отсутствием в пище ничтожнейших количеств определенных веществ.
Еще находясь под впечатлением, что эти вещества принадлежат к классу аминов, Функ предложил в 1912 г. называть их витаминами (амины жизни). Название привилось и сохранилось поныне, хотя с тех пор и выяснилось, что они никакого отношения к аминам не имеют.
Витаминная гипотеза Гопкинса - Функа была полностью сформулирована, и первая треть XX в. показала, что различные заболевания могут излечиваться назначением разумного рациона и режима питания. Например, американский врач Джозеф Гольдбергер (1874–1929) обнаружил (1915), что болезнь пеллагра, распространенная в южных штатах США, отнюдь не микробного происхождения. В самом деле, она вызывалась отсутствием какого-то витамина и исчезала, как только к рациону больных добавляли молоко. Вначале о витаминах было известно лишь то, что они способны предупреждать и лечить определенные заболевания. В 1913 г. американский биохимик Элмер Вернон Макколлум (род. в 1879 г.) предложил называть витамины буквами алфавита; так появились витамины A, B, C и D, а потом к ним добавили и витамины Е и К. Выяснилось, что пища, содержащая витамин В, в действительности содержит более одного фактора, способного воздействовать более чем на один симптомокомплекс. Биологи заговорили о витаминах B1, B2 и т. д.
Оказалось, что именно отсутствие витамина B1 вызывало бери-бери, а отсутствие витамина B2 - пеллагру. Отсутствие витамина С приводило к цинге (наличием небольших количеств витамина С в соке цитрусовых и объясняется их целительное действие, позволившее Линду вылечить цингу), отсутствие витамина D - к рахиту. Нехватка витамина A влияла на зрение и вызывала куриную слепоту. Недостаток витамина В12 вызывал злокачественное малокровие. Таковы основные болезни, обусловливаемые витаминной недостаточностью. По мере накопления знаний о витаминах все эти болезни перестали быть серьезной медицинской проблемой. Уже с 30-х годов XX столетия стали выделять витамины в чистом виде и осуществлять их синтез.



Инфекционные заболевания вызываются микроорганизмами, которые попадают в тело человека извне.

В середине XIX века среди медиков разгорелся спор о происхождении инфекционных заболеваний. Представители одного лагеря защищали старую точку зрению, что причина заболевания — нарушение равновесия в организме, возможно обостренное внешними воздействиями. Им противостояла группа ученых, отстаивавших революционное представление, согласно которому инфекционные заболевания возникают в результате внедрения в тело микроорганизмов.

Новое течение возглавлял французский ученый Луи Пастер. В своих исследованиях он шел не таким путем, как все. В 1854 году он был профессором химии в Лилле, где деятельность университета была направлена в основном на помощь местной промышленности. Пастер изучал процесс брожения, который, безусловно, очень важен для получения вина. Он пришел к заключению, что брожение вызвано микробами, которые питаются сахаром, содержащимся в виноградном соке, и производят в качестве побочного продукта своей жизнедеятельности спирт. Пастеру стало ясно, что брожение — это биохимический процесс, а не просто химический, как считали многие, и этот процесс невозможен без микроорганизмов, а именно дрожжей.

Пастер также обнаружил, что нагревание способствует более длительному хранению вина. Оно убивает микробов, которые в противном случае запустили бы дальнейшие реакции, приводящие к порче вина. Этот принцип лег в основу пастеризации , до сих пор применяющейся в молочной промышленности большинства стран мира для предохранения молока от скисания.

Подобно многим своим современникам, Пастер предчувствовал, что между процессом брожения и болезнетворным процессом в организме человека должно быть нечто общее. В конце XIX века представление о том что, заболевание, подобно брожению, вызывается микроорганизмами, уже имело немало сторонников, и количество доказательств в пользу этой точки зрения все возрастало. Пастер смог показать, что болезнь, нанесшая огромный ущерб шелковичным червям во Франции, имела бактериальное происхождение. В 1860-е годы английский хирург Джозеф Листер (Joseph Lister, 1827-1912), разделявший представления Пастера, с их помощью продемонстрировал преимущества антисептической хирургии, а немецкий бактериолог Роберт Кох (Robert Koch, 1843-1910) добился успеха в обосновании бактериального происхождения сибирской язвы — болезни крупных животных (которой иногда болеет и человек). Пастер показал, что сибирская язва может передаваться даже с сильно разбавленной кровью, но не передается с кровью, пропущенной через фильтр (процесс фильтрования приводит к удалению бактерий). Вскоре он обнаружил, что микробы вызывают и ряд других заболеваний, включая родильную лихорадку (послеродовой сепсис), которая в то время была основной причиной смертности среди женщин. Пастер даже навлек на себя гнев медиков, установив, что врачи сами распространяют это заболевание, переходя от одной роженицы к другой.

Впоследствии Пастер, изучая холеру домашней птицы, обнаружил (почти случайно), что после длительного выдерживания вирулентность микроорганизмов снижается. Такие ослабленные микроорганизмы стали использоваться в качестве вакцины. Затем последовало создание вакцины против сибирской язвы, а также против бешенства — эта вакцина принесла Пастеру известность. Еще до смерти Пастера в 1895 году микробная теория инфекционных заболеваний была признана в научных и медицинских кругах.

Луи ПАСТЕР
Louis Pasteur, 1822-95

Французский химик и микробиолог, родился в небольшой деревне в семье кожевника. Изучал химию парижской Высшей нормальной школе и в 1847 году получил докторскую степень. Первые научные работы Пастера посвящены оптическим свойствам материалов. В 1854 году, после непродолжительной работы в университетах Дижона и Страсбурга, Пастер получил должность профессора химии в Лилльском университете, где занимался исследованием брожения. В 1867 году переехал в Сорбонну, где занимал должность профессора химии, а с 1888 года и до конца жизни возглавлял Институт Пастера в Париже.
Наиболее важное достижение Пастера в области химии — это открытие оптических изомеров: химических соединений-двойников, имеющих одинаковую формулу, но вращающих плоскость поляризованного света в противоположных направлениях. Микробиологические работы и эксперименты в области брожения и гниения внесли огромный вклад в борьбу с болезнями: Пастер первый сделал овцам прививку против сибирской язвы, а человеку против бешенства.

БАКТЕРИИ
обширная группа одноклеточных микроорганизмов, характеризующихся отсутствием окруженного оболочкой клеточного ядра. Вместе с тем генетический материал бактерии (дезоксирибонуклеиновая кислота, или ДНК) занимает в клетке вполне определенное место - зону, называемую нуклеоидом. Организмы с таким строением клеток называются прокариотами ("доядерными") в отличие от всех остальных - эукариот ("истинно ядерных"), ДНК которых находится в окруженном оболочкой ядре. Бактерии, ранее считавшиеся микроскопическими растениями, сейчас выделены в самостоятельное царство Monera - одно из пяти в нынешней системе классификации наряду с растениями, животными, грибами и протистами.

Ископаемые свидетельства. Вероятно, бактерии - древнейшая известная группа организмов. Слоистые каменные структуры - строматолиты, - датируемые в ряде случаев началом археозоя (архея), т.е. возникшие 3,5 млрд. лет назад, - результат жизнедеятельности бактерий, обычно фотосинтезирующих, т.н. сине-зеленых водорослей. Подобные структуры (пропитанные карбонатами бактериальные пленки) образуются и сейчас, главным образом у побережья Австралии, Багамских островов, в Калифорнийском и Персидском заливах, однако они относительно редки и не достигают крупных размеров, потому что ими питаются растительноядные организмы, например брюхоногие моллюски. В наши дни строматолиты растут в основном там, где эти животные отсутствуют из-за высокой солености воды или по другим причинам, однако до появления в ходе эволюции растительноядных форм они могли достигать огромных размеров, составляя существенный элемент океанического мелководья, сравнимый с современными коралловыми рифами. В некоторых древних горных породах обнаружены крохотные обугленные сферы, которые также считаются остатками бактерий. Первые ядерные, т.е. эукариотические, клетки произошли от бактерий примерно 1,4 млрд. лет назад.
Экология. Бактерий много в почве, на дне озер и океанов - повсюду, где накапливается органическое вещество. Они живут в холоде, когда столбик термометра чуть превышает нулевую отметку, и в горячих кислотных источниках с температурой выше 90° С. Некоторые бактерии переносят очень высокую соленость среды; в частности, это единственные организмы, обнаруженные в Мертвом море. В атмосфере они присутствуют в каплях воды, и их обилие там обычно коррелирует с запыленностью воздуха. Так, в городах дождевая вода содержит гораздо больше бактерий, чем в сельской местности. В холодном воздухе высокогорий и полярных областей их мало, тем не менее они встречаются даже в нижнем слое стратосферы на высоте 8 км. Густо заселен бактериями (обычно безвредными) пищеварительный тракт животных. Эксперименты показали, что для жизнедеятельности большинства видов они не обязательны, хотя и могут синтезировать некоторые витамины. Однако у жвачных (коров, антилоп, овец) и многих термитов они участвуют в переваривании растительной пищи. Кроме того, иммунная система животного, выращенного в стерильных условиях, не развивается нормально из-за отсутствия стимуляции бактериями. Нормальная бактериальная "флора" кишечника важна также для подавления попадающих туда вредных микроорганизмов.

СТРОЕНИЕ И ЖИЗНЕДЕЯТЕЛЬНОСТЬ БАКТЕРИЙ


Бактерии гораздо мельче клеток многоклеточных растений и животных. Толщина их обычно составляет 0,5-2,0 мкм, а длина - 1,0-8,0 мкм. Разглядеть некоторые формы едва позволяет разрешающая способность стандартных световых микроскопов (примерно 0,3 мкм), но известны и виды длиной более 10 мкм и шириной, также выходящей за указанные рамки, а ряд очень тонких бактерий может превышать в длину 50 мкм. На поверхности, соответствующей поставленной карандашом точке, уместится четверть миллиона средних по величине представителей этого царства.
Строение. По особенностям морфологии выделяют следующие группы бактерий: кокки (более или менее сферические), бациллы (палочки или цилиндры с закругленными концами), спириллы (жесткие спирали) и спирохеты (тонкие и гибкие волосовидные формы). Некоторые авторы склонны объединять две последние группы в одну - спириллы. Прокариоты отличаются от эукариот главным образом отсутствием оформленного ядра и наличием в типичном случае всего одной хромосомы - очень длинной кольцевой молекулы ДНК, прикрепленной в одной точке к клеточной мембране. У прокариот нет и окруженных мембранами внутриклеточных органелл, называемых митохондриями и хлоропластами. У эукариот митохондрии вырабатывают энергию в процессе дыхания, а в хлоропластах идет фотосинтез (см. также КЛЕТКА). У прокариот вся клетка целиком (и в первую очередь - клеточная мембрана) берет на себя функцию митохондрии, а у фотосинтезирующих форм - заодно и хлоропласта. Как и у эукариот, внутри бактерии находятся мелкие нуклеопротеиновые структуры - рибосомы, необходимые для синтеза белка, но они не связаны с какими-либо мембранами. За очень немногими исключениями, бактерии не способны синтезировать стеролы - важные компоненты мембран эукариотической клетки. Снаружи от клеточной мембраны большинство бактерий одето клеточной стенкой, несколько напоминающей целлюлозную стенку растительных клеток, но состоящей из других полимеров (в их состав входят не только углеводы, но и аминокислоты и специфические для бактерий вещества). Эта оболочка не дает бактериальной клетке лопнуть, когда в нее за счет осмоса поступает вода. Поверх клеточной стенки часто находится защитная слизистая капсула. Многие бактерии снабжены жгутиками, с помощью которых они активно плавают. Жгутики бактерий устроены проще и несколько иначе, чем аналогичные структуры эукариот.


"ТИПИЧНАЯ" БАКТЕРИАЛЬНАЯ КЛЕТКА и ее основные структуры.


Сенсорные функции и поведение. Многие бактерии обладают химическими рецепторами, которые регистрируют изменения кислотности среды и концентрацию различных веществ, например сахаров, аминокислот, кислорода и диоксида углерода. Для каждого вещества существует свой тип таких "вкусовых" рецепторов, и утрата какого-то из них в результате мутации приводит к частичной "вкусовой слепоте". Многие подвижные бактерии реагируют также на колебания температуры, а фотосинтезирующие виды - на изменения освещенности. Некоторые бактерии воспринимают направление силовых линий магнитного поля, в том числе магнитного поля Земли, с помощью присутствующих в их клетках частичек магнетита (магнитного железняка - Fe3O4). В воде бактерии используют эту свою способность для того, чтобы плыть вдоль силовых линий в поисках благоприятной среды. Условные рефлексы у бактерий неизвестны, но определенного рода примитивная память у них есть. Плавая, они сравнивают воспринимаемую интенсивность стимула с ее прежним значением, т.е. определяют, стала она больше или меньше, и, исходя из этого, сохраняют направление движения или изменяют его.
Размножение и генетика. Бактерии размножаются бесполым путем: ДНК в их клетке реплицируется (удваивается), клетка делится надвое, и каждая дочерняя клетка получает по одной копии родительской ДНК. Бактериальная ДНК может передаваться и между неделящимися клетками. При этом их слияния (как у эукариот) не происходит, число особей не увеличивается, и обычно в другую клетку переносится лишь небольшая часть генома (полного набора генов), в отличие от "настоящего" полового процесса, при котором потомок получает по полному комплекту генов от каждого родителя. Такой перенос ДНК может осуществляться тремя путями. При трансформации бактерия поглощает из окружающей среды "голую" ДНК, попавшую туда при разрушении других бактерий или сознательно "подсунутую" экспериментатором. Процесс называется трансформацией, поскольку на ранних стадиях его изучения основное внимание уделялось превращению (трансформации) таким путем безвредных организмов в вирулентные. Фрагменты ДНК могут также переноситься от бактерии к бактерии особыми вирусами - бактериофагами. Это называется трансдукцией. Известен также процесс, напоминающий оплодотворение и называемый конъюгацией: бактерии соединяются друг с другом временными трубчатыми выростами (копуляционными фимбриями), через которые ДНК переходит из "мужской" клетки в "женскую". Иногда в бактерии присутствуют очень мелкие добавочные хромосомы - плазмиды, которые также могут переноситься от особи к особи. Если при этом плазмиды содержат гены, обусловливающие резистентность к антибиотикам, говорят об инфекционной резистентности. Она важна с медицинской точки зрения, поскольку может распространяться между различными видами и даже родами бактерий, в результате чего вся бактериальная флора, скажем кишечника, становится устойчивой к действию определенных лекарственных препаратов.

МЕТАБОЛИЗМ


Отчасти в силу мелких размеров бактерий интенсивность их метаболизма гораздо выше, чем у эукариот. При самых благоприятных условиях некоторые бактерии могут удваивать свою общую массу и численность примерно каждые 20 мин. Это объясняется тем, что ряд их важнейших ферментных систем функционирует с очень высокой скоростью. Так, кролику для синтеза белковой молекулы требуются считанные минуты, а бактерии - секунды. Однако в естественной среде, например в почве, большинство бактерий находится "на голодном пайке", поэтому если их клетки и делятся, то не каждые 20 мин, а раз в несколько дней.
Питание. Бактерии бывают автотрофами и гетеротрофами. Автотрофы ("сами себя питающие") не нуждаются в веществах, произведенных другими организмами. В качестве главного или единственного источника углерода они используют его диоксид (CO2). Включая CO2 и другие неорганические вещества, в частности аммиак (NH3), нитраты (NO-3) и различные соединения серы, в сложные химические реакции, они синтезируют все необходимые им биохимические продукты. Гетеротрофы ("питающиеся другим") используют в качестве основного источника углерода (некоторым видам нужен и CO2) органические (углеродсодержащие) вещества, синтезированные другими организмами, в частности сахара. Окисляясь, эти соединения поставляют энергию и молекулы, необходимые для роста и жизнедеятельности клеток. В этом смысле гетеротрофные бактерии, к которым относится подавляющее большинство прокариот, сходны с человеком.
Главные источники энергии. Если для образования (синтеза) клеточных компонентов используется в основном световая энергия (фотоны), то процесс называется фотосинтезом, а способные к нему виды - фототрофами. Фототрофные бактерии делятся на фотогетеротрофов и фотоавтотрофов в зависимости от того, какие соединения - органические или неорганические - служат для них главным источником углерода. Фотоавтотрофные цианобактерии (сине-зеленые водоросли), как и зеленые растения, за счет световой энергии расщепляют молекулы воды (H2O). При этом выделяется свободный кислород (1/2O2) и образуется водород (2H+), который, можно сказать, превращает диоксид углерода (CO2) в углеводы. У зеленых и пурпурных серных бактерий световая энергия используется для расщепления не воды, а других неорганических молекул, например сероводорода (H2S). В результате также образуется водород, восстанавливающий диоксид углерода, но кислород не выделяется. Такой фотосинтез называется аноксигенным. Фотогетеротрофные бактерии, например пурпурные несерные, используют световую энергию для получения водорода из органических веществ, в частности изопропанола, но его источником у них может служить и газообразный H2. Если основной источник энергии в клетке - окисление химических веществ, бактерии называются хемогетеротрофами или хемоавтотрофами в зависимости от того, какие молекулы служат главным источником углерода - органические или неорганические. У первых органика дает как энергию, так и углерод. Хемоавтотрофы получают энергию при окислении неорганических веществ, например водорода (до воды: 2H4 + O2 в 2H2O), железа (Fe2+ в Fe3+) или серы (2S + 3O2 + 2H2O в 2SO42- + 4H+), а углерод - из СO2. Эти организмы называют также хемолитотрофами, подчеркивая тем самым, что они "питаются" горными породами.
Дыхание. Клеточное дыхание - процесс высвобождения химической энергии, запасенной в "пищевых" молекулах, для ее дальнейшего использования в жизненно необходимых реакциях. Дыхание может быть аэробным и анаэробным. В первом случае для него необходим кислород. Он нужен для работы т.н. электронотранспортной системы: электроны переходят от одной молекулы к другой (при этом выделяется энергия) и в конечном итоге присоединяются к кислороду вместе с ионами водорода - образуется вода. Анаэробным организмам кислород не нужен, а для некоторых видов этой группы он даже ядовит. Высвобождающиеся в ходе дыхания электроны присоединяются к другим неорганическим акцепторам, например нитрату, сульфату или карбонату, или (при одной из форм такого дыхания - брожении) к определенной органической молекуле, в частности к глюкозе. См. также МЕТАБОЛИЗМ.

КЛАССИФИКАЦИЯ


У большинства организмов видом принято считать репродуктивно изолированную группу особей. В широком смысле это означает, что представители данного вида могут давать плодовитое потомство, спариваясь только с себе подобными, но не с особями других видов. Таким образом, гены конкретного вида, как правило, не выходят за его пределы. Однако у бактерий может происходить обмен генами между особями не только разных видов, но и разных родов, поэтому правомерно ли применять здесь привычные концепции эволюционного происхождения и родства, не вполне ясно. В связи с этой и другими трудностями общепринятой классификации бактерий пока не существует. Ниже приведен один из широко используемых ее вариантов.
ЦАРСТВО MONERA

Тип Gracilicutes (тонкостенные грамотрицательные бактерии)


Класс Scotobacteria (нефотосинтезирующие формы, например миксобактерии) Класс Anoxyphotobacteria (не выделяющие кислорода фотосинтезирующие формы, например пурпурные серные бактерии) Класс Oxyphotobacteria (выделяющие кислород фотосинтезирующие формы, например цианобактерии)


Тип Firmicutes (толстостенные грамположительные бактерии)


Класс Firmibacteria (формы с жесткой клеткой, например клостридии)
Класс Thallobacteria (разветвленные формы, например актиномицеты)


Тип Tenericutes (грамотрицательные бактерии без клеточной стенки)


Класс Mollicutes (формы с мягкой клеткой, например микоплазмы)


Тип Mendosicutes (бактерии с неполноценной клеточной стенкой)


Класс Archaebacteria (древние формы, например метанобразующие)


Домены. Недавние биохимические исследования показали, что все прокариоты четко разделяются на две категории: маленькую группу архебактерий (Archaebacteria - "древние бактерии") и всех остальных, называемых эубактериями (Eubacteria - "истинные бактерии"). Считается, что архебактерии по сравнению с эубактериями примитивнее и ближе к общему предку прокариот и эукариот. От прочих бактерий они отличаются несколькими существенными признаками, включая состав молекул рибосомной РНК (pРНК), участвующей в синтезе белка, химическую структуру липидов (жироподобных веществ) и присутствие в клеточной стенке вместо белково-углеводного полимера муреина некоторых других веществ. В приведенной выше системе классификации архебактерии считаются лишь одним из типов того же царства, которое объединяет и всех эубактерий. Однако, по мнению некоторых биологов, различия между архебактериями и эубактериями настолько глубоки, что правильнее рассматривать архебактерии в составе Monera как особое подцарство. В последнее время появилось еще более радикальное предложение. Молекулярный анализ выявил между двумя этими группами прокариот столь существенные различия в структуре генов, что присутствие их в рамках одного царства организмов некоторые считают нелогичным. В связи с этим предложено создать таксономическую категорию (таксон) еще более высокого ранга, назвав ее доменом, и разделить все живое на три домена - Eucarya (эукариоты), Archaea (архебактерии) и Bacteria (нынешние эубактерии).

ЭКОЛОГИЯ


Две важнейшие экологические функции бактерий - фиксация азота и минерализация органических остатков.
Азотфиксация. Связывание молекулярного азота (N2) с образованием аммиака (NH3) называется азотфиксацией, а окисление последнего до нитрита (NO-2) и нитрата (NO-3) - нитрификацией. Это жизненно важные для биосферы процессы, поскольку растениям необходим азот, но усваивать они могут лишь его связанные формы. В настоящее время примерно 90% (ок. 90 млн. т) годового количества такого "фиксированного" азота дают бактерии. Остальное количество производится химическими комбинатами или возникает при разрядах молний. Азот воздуха, составляющий ок. 80% атмосферы, связывается в основном грамотрицательным родом ризобиум (Rhizobium) и цианобактериями. Виды ризобиума вступают в симбиоз примерно с 14 000 видов бобовых растений (семейство Leguminosae), к которым относятся, например, клевер, люцерна, соя и горох. Эти бактерии живут в т.н. клубеньках - вздутиях, образующихся на корнях в их присутствии. Из растения бактерии получают органические вещества (питание), а взамен снабжают хозяина связанным азотом. За год таким способом фиксируется до 225 кг азота на гектар. В симбиоз с другими азотфиксирующими бактериями вступают и небобовые растения, например ольха. Цианобактерии фотосинтезируют, как зеленые растения, с выделением кислорода. Многие из них способны также фиксировать атмосферный азот, потребляемый затем растениями и в конечном итоге животными. Эти прокариоты служат важным источником связанного азота почвы в целом и рисовых чеков на Востоке в частности, а также главным его поставщиком для океанских экосистем.
Минерализация. Так называется разложение органических остатков до диоксида углерода (CO2), воды (H2O) и минеральных солей. С химической точки зрения, этот процесс эквивалентен горению, поэтому он требует большого количества кислорода. В верхнем слое почвы содержится от 100 000 до 1 млрд. бактерий на 1 г, т.е. примерно 2 т на гектар. Обычно все органические остатки, попав в землю, быстро окисляются бактериями и грибами. Более устойчиво к разложению буроватое органическое вещество, называемое гуминовой кислотой и образующееся в основном из содержащегося в древесине лигнина. Оно накапливается в почве и улучшает ее свойства.

БАКТЕРИИ И ПРОМЫШЛЕННОСТЬ


Учитывая разнообразие катализируемых бактериями химических реакций, неудивительно, что они широко используются в производстве, в ряде случаев с глубокой древности. Славу таких микроскопических помощников человека прокариоты делят с грибами, в первую очередь - дрожжами, которые обеспечивают большую часть процессов спиртового брожения, например при изготовлении вина и пива. Сейчас, когда стало возможным вводить в бактерии полезные гены, заставляя их синтезировать ценные вещества, например инсулин, промышленное применение этих живых лабораторий получило новый мощный стимул. См. также ГЕННАЯ ИНЖЕНЕРИЯ.
Пищевая промышленность. В настоящее время бактерии применяются этой отраслью в основном для производства сыров, других кисломолочных продуктов и уксуса. Главные химические реакции здесь - образование кислот. Так, при получении уксуса бактерии рода Acetobacter окисляют этиловый спирт, содержащийся в сидре или других жидкостях, до уксусной кислоты. Аналогичные процессы происходят при квашении капусты: анаэробные бактерии сбраживают содержащиеся в листьях этого растения сахара до молочной кислоты, а также уксусной кислоты и различных спиртов.
Выщелачивание руд. Бактерии применяются для выщелачивания бедных руд, т.е. переведения из них в раствор солей ценных металлов, в первую очередь меди (Cu) и урана (U). Пример - переработка халькопирита, или медного колчедана (CuFeS2). Кучи этой руды периодически поливают водой, в которой присутствуют хемолитотрофные бактерии рода Thiobacillus. В процессе своей жизнедеятельности они окисляют серу (S), образуя растворимые сульфаты меди и железа: CuFeS2 + 4O2 в CuSO4 + FeSO4. Такие технологии значительно упрощают получение из руд ценных металлов; в принципе, они эквивалентны процессам, протекающим в природе при выветривании горных пород.
Переработка отходов. Бактерии служат также для превращения отходов, например сточных вод, в менее опасные или даже полезные продукты. Сточные воды - одна из острых проблем современного человечества. Их полная минерализация требует огромных количеств кислорода, и в обычных водоемах, куда принято сбрасывать эти отходы, его для их "обезвреживания" уже не хватает. Решение заключается в дополнительной аэрации стоков в специальных бассейнах (аэротенках): в результате бактериям-минерализаторам хватает кислорода для полного разложения органики, и одним из конечных продуктов процесса в наиболее благоприятных случаях становится питьевая вода. Остающийся по ходу дела нерастворимый осадок можно подвергнуть анаэробному брожению. Чтобы такие водоочистные установки отнимали как можно меньше места и денег, необходимо хорошее знание бактериологии.
Другие пути использования. К другим важным областям промышленного применения бактерий относится, например, мочка льна, т.е. отделение его прядильных волокон от других частей растения, а также производство антибиотиков, в частности стрептомицина (бактериями рода Streptomyces).

БОРЬБА С БАКТЕРИЯМИ В ПРОМЫШЛЕННОСТИ


Бактерии приносят не только пользу; борьба с их массовым размножением, например в пищевых продуктах или в водных системах целлюлозно-бумажных предприятий, превратилась в целое направление деятельности. Пища портится под действием бактерий, грибов и собственных вызывающих автолиз ("самопереваривание") ферментов, если не инактивировать их нагреванием или другими способами. Поскольку главная причина порчи все-таки бактерии, разработка систем эффективного хранения продовольствия требует знания пределов выносливости этих микроорганизмов. Одна из наиболее распространенных технологий - пастеризация молока, убивающая бактерии, которые вызывают, например, туберкулез и бруцеллез. Молоко выдерживают при 61-63° С в течение 30 мин или при 72-73° С всего 15 с. Это не ухудшает вкуса продукта, но инактивирует болезнетворные бактерии. Пастеризовать можно также вино, пиво и фруктовые соки. Давно известна польза хранения пищевых продуктов на холоде. Низкие температуры не убивают бактерий, но не дают им расти и размножаться. Правда, при замораживании, например, до -25° С численность бактерий через несколько месяцев снижается, однако большое количество этих микроорганизмов все же выживает. При температуре чуть ниже нуля бактерии продолжают размножаться, но очень медленно. Их жизнеспособные культуры можно хранить почти бесконечно долго после лиофилизации (замораживания - высушивания) в среде, содержащей белок, например в сыворотке крови. К другим известным методам хранения пищевых продуктов относятся высушивание (вяление и копчение), добавка больших количеств соли или сахара, что физиологически эквивалентно обезвоживанию, и маринование, т.е. помещение в концентрированный раствор кислоты. При кислотности среды, соответствующей pH 4 и ниже, жизнедеятельность бактерий обычно сильно тормозится или прекращается.

БАКТЕРИИ И БОЛЕЗНИ

ИЗУЧЕНИЕ БАКТЕРИЙ


Многие бактерии нетрудно выращивать в т.н. культуральной среде, в состав которой могут входить мясной бульон, частично переваренный белок, соли, декстроза, цельная кровь, ее сыворотка и другие компоненты. Концентрация бактерий в таких условиях обычно достигает примерно миллиарда на кубический сантиметр, в результате чего среда становится мутной. Для изучения бактерий необходимо уметь получать их чистые культуры, или клоны, представляющие собой потомство одной-единственной клетки. Это нужно, например, для определения того, какой вид бактерии инфицировал больного и к какому антибиотику данный вид чувствителен. Микробиологические образцы, например, взятые из горла или ран мазки, пробы крови, воды или других материалов, сильно разводят и наносят на поверхность полутвердой среды: на ней из отдельных клеток развиваются округлые колонии. Отверждающим культуральную среду агентом обычно служит агар - полисахарид, получаемый из некоторых морских водорослей и почти ни одним видом бактерий не перевариваемый. Агаровые среды используют в виде "косячков", т.е. наклонных поверхностей, образующихся в стоящих под большим углом пробирках при застывании расплавленной культуральной среды, или в виде тонких слоев в стеклянных чашках Петри - плоских круглых сосудах, закрываемых такой же по форме, но чуть большей по диаметру крышкой. Обычно через сутки бактериальная клетка успевает размножиться настолько, что образует легко заметную невооруженным глазом колонию. Ее можно перенести на другую среду для дальнейшего изучения. Все культуральные среды должны быть перед началом выращивания бактерий стерильными, а в дальнейшем следует принимать меры против поселения на них нежелательных микроорганизмов. Чтобы рассмотреть выращенные таким способом бактерии, прокаливают на пламени тонкую проволочную петлю, прикасаются ею сначала к колонии или мазку, а затем - к капле воды, нанесенной на предметное стекло. Равномерно распределив взятый материал в этой воде, стекло высушивают и два-три раза быстро проводят над пламенем горелки (сторона с бактериями должна быть обращена вверх): в результате микроорганизмы, не повреждаясь, прочно прикрепляются к субстрату. На поверхность препарата капают краситель, затем стекло промывают в воде и вновь сушат. Теперь можно рассматривать образец под микроскопом. Чистые культуры бактерий идентифицируют главным образом по их биохимическим признакам, т.е. определяют, образуют ли они из определенных сахаров газ или кислоты, способны ли переваривать белок (разжижать желатину), нуждаются ли для роста в кислороде и т.д. Проверяют также, окрашиваются ли они специфическими красителями. Чувствительность к тем или иным лекарственным препаратам, например антибиотикам, можно выяснить, поместив на засеянную бактериями поверхность маленькие диски из фильтровальной бумаги, пропитанные данными веществами. Если какое-либо химическое соединение убивает бактерии, вокруг соответствующего диска образуется свободная от них зона.

Энциклопедия Кольера. - Открытое общество . 2000 .

Биология [Полный справочник для подготовки к ЕГЭ] Лернер Георгий Исаакович

4.2. Царство Бактерии. Особенности строения и жизнедеятельности, роль в природе. Бактерии – возбудители заболеваний растений, животных, человека. Профилактика заболеваний, вызываемых бактериями. Вирусы

Основные термины и понятия, проверяемые в экзаменационной работе: автотрофное питание, бактерии, болезнетворные бактерии, вирусы, гетеротрофное питание, нуклеоид, прокариоты, цианобактерии, эукариоты.

Бактерии. Бактерии – самые древние прокариотические одноклеточные организмы, наиболее широко распространенные в природе. Они играют в ней важнейшую роль редуцентов (разрушителей) органического вещества, фиксаторов азота. Примером могут служить клубеньковые бактерии, поселяющиеся на корнях бобовых растений. Они способны усваивать атмосферный азот и включать его в вещества, легко усваиваемые растениями. Среди различных видов бактерий много возбудителей заболеваний животных и человека. В медицине используются для получения антибиотиков (стрептомицина, тетрациклина, грамицидина), в пищевой промышленности для получения молочнокислых продуктов, спиртов. Бактерии также являются объектами генной инженерии. Их используют для получения нужных человеку ферментов и других важных веществ. Клетка бактерий покрыта плотной оболочкой, образованной полимерным углеводом муреином. Некоторые виды образуют при неблагоприятных условиях споры – слизистую капсулу, препятствующую высыханию клетки. Клеточная стенка может образовывать выросты, способствующие объединению бактерий в группы, а так же их конъюгации. Мембрана складчатая. У фотоавтотрофных бактерий на складках локализуются ферменты или фотосинтезирующие пигменты. Роль мембранных органелл выполняют мезосомы – наиболее крупные впячивания мембран. В цитоплазме находятся рибосомы и включения (крахмал, гликоген, жиры). Многие бактерии имеют жгутики. Ядер у бактерий нет. Наследственный материал содержится в нуклеоиде в виде кольцевой молекулы ДНК.

По форме выделяют следующие бактериальные клетки:

– кокки (сферические): диплококки, стрептококки, стафилококки;

– бациллы (палочковидные): одиночные, объединенные в цепи, бациллы с эндоспорами;

– спириллы (спиралевидные);

– вибрионы (в форме запятой);

– спирохеты.

По способу питания бактерии делятся на:

– автотрофов (фотоавтотрофы и хемоавтотрофы).

По способу использования кислорода бактерии делятся на: аэробные и анаэробные .

Размножаются бактерии с очень высокой скоростью, делением клетки пополам без образования веретена. Половой процесс у некоторых бактерий связан с обменом генетическим материалом при конъюгации. Распространяются спорами.

Болезнетворные бактерии : холерный вибрион, дифтерийная палочка, дизентерийная палочка и др.

Вирусы. Некоторые ученые относят вирусы к отдельному, пятому царству живой природы. Они были открыты в 1892 г. русским ученым Дмитрием Иосифовичем Ивановским. Вирусы являются неклеточной формой жизни, занимающей промежуточное положение между живой и неживой материей. Они чрезвычайно малы и состоят из белковой оболочки, под которой находится ДНК (или РНК). Белковая оболочка вируса образует капсид , выполняющий защитную, ферментативную и антигенную функции. Вирусы более сложного строения могут дополнительно включать углеводные и липидные фрагменты. Вирусы не способны к самостоятельному синтезу белка. Свойства живых организмов они проявляют, только находясь в клетках про– или эукариот и используя их обмен веществ для собственной репродукции.

Встречаются собственно вирусы и бактериофаги – вирусы бактерий. Чтобы попасть в бактериальную клетку, вирус (бактериофаг) должен прикрепиться к стенке хозяина, после чего вирусная нуклеиновая кислота «впрыскивается» в клетку, а белок остается на клеточной оболочке. ДНК, содержащие вирусы (оспа, герпес), используют обмен веществ клетки – хозяина для синтеза вирусных белков. РНК, содержащие вирусы (СПИД, грипп), инициируют либо синтез РНК вируса и его белка, либо благодаря ферментам синтезируют сначала ДНК, а затем уже РНК и белок вируса. Таким образом, геном вируса, встраиваясь в наследственный аппарат клетки – хозяина, изменяет его и направляет синтез вирусных компонентов. Вновь синтезированные вирусные частицы выходят из клетки хозяина и внедряются в другие, соседние клетки.

Защищаясь от вирусов, клетки вырабатывают защитный белок – интерферон, который подавляет синтез новых вирусных частиц. Интерферон используется для лечения и профилактики некоторых вирусных заболеваний. Организм человека сопротивляется действию вирусов, вырабатывая антитела. Однако к некоторым вирусам, таким как онкогенные или вирус СПИДа, специфических антител нет. Это обстоятельство осложняет создание вакцин.

Цианеи (именуемые не совсем правильно синезелеными водорослями ). Возникли свыше 3 млрд лет тому назад. Клетки с многослойными стенками, состоящими из нерастворимых полисахаридов. Встречаются одноклеточные и колониальные формы. Цианеи – фотосинтезирующие организмы. Хлорофилл у них находится на свободнолежащих в цитоплазме мембранах. Размножаются они делением или распадом колоний. Способны к спорообразованию. Широко распространены в биосфере. Способны очищать воду, разлагая продукты гниения. Вступают в симбиоз с грибами, образуя некоторые виды лишайников. Являются первопоселенцами на вулканических островах, скалах.

ПРИМЕРЫ ЗАДАНИЙ

А1. Основным отличием царства Бактерий от других царств организмов заключается в

1) отсутствии ДНК 3) наличие клеточной стенки

2) наличие нуклеотида 4) присутствии хлорофилла

А2. Не имеет оформленного ядра

1) амеба обыкновенная 3) гриб мукор

2) дрожжевая клетка 4) туберкулезная палочка

А3. В цитоплазме бактерий находятся

1) рибосомы, одна хромосома, включения

2) митохондрии, несколько хромосом

3) хлоропласты, аппарат Гольджи

4) ядро, митохондрии, лизосомы

А4. Укажите одно правильное утверждение

1) бактерии – эукариотические организмы

2) кариотип бактерий состоит из нескольких хромосом

3) все бактерии – автотрофные организмы

4) наследственный аппарат бактерий – нуклеоид

А5. При неблагоприятных условиях бактерии образуют

1) цисты 3) споры

2) колонии 4) зооспоры

А6. Бактерии, создающие органические вещества из неорганических путем фотосинтеза, называются

1) автотрофами 3) фототрофами

А7. Роль клубеньковых бактерий заключается в

1) разрушении органических соединений почвы

2) фиксации атмосферного азота и доставке его растениям

3) разрушении корневой системы растений

А8. Азотофиксирующие бактерии относятся к

А9. Бактерии возникли в

протерозое 3) архее

кайнозое 4) мезозое

А10. Общим свойством для всех прокариотических и эукариотических организмов является способность к

1) фотосинтезу

2) гетеротрофному питанию

3) обмену веществ

4) спорообразованию

Часть В

В1. Клетка бациллы отличается от клетки амебы

1) отсутствием митохондрий

2) наличием цитоплазмы

3) наличием рибосом

4) отсутствием ядра

5) наличием нуклеоида

6) наличием клеточной мембраны

Часть С

С1. Почему продукты хранят в холодильнике?

С2. В каких случаях и какие применяются методы борьбы с болезнетворными бактериями?

СЗ. Чем отличаются вирусы от бактерий?

С4. Почему азотобактерии образуют свои скопления – клубеньки именно на корнях?

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения (без иллюстраций) автора Волович Виталий Георгиевич

Профилактика и лечение заболеваний Наиболее характерными арктическими заболеваниями можно считать патологические состояния, возникающие в связи с общим воздействием холода (охлаждения) на организм. Они весьма разнообразны и варьируют от легких и сравнительно

Из книги Жизнеобеспечение экипажей летательных аппаратов после вынужденного приземления или приводнения [с иллюстрациями] автора Волович Виталий Георгиевич

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Профилактика и лечение заболеваний Климато-географические особенности тропических стран (постоянно высокие температуры и влажность воздуха, специфика флоры и фауны) создают крайне благоприятные условия для возникновения и развития различных тропических заболеваний

Из книги Полная энциклопедия фермера автора Гаврилов Алексей Сергеевич

Профилактика и лечение заболеваний Причины гибели экипажа летательного аппарата после приводнения бывают самые различные.Одни из них действуют немедленно после приводнения – утопление, нападение морских хищников. Время воздействия других исчисляется часами

Из книги Я познаю мир. Вирусы и болезни автора Чирков С. Н.

Профилактика и лечение заболеваний Наиболее реальную опасность в пустыне представляют заболевания, связанные с воздействием высоких температур. Это либо тепловые поражения, вызываемые перегревом организма, либо заболевания, возникшие в связи с обезвоживанием его и

Из книги Я познаю мир. Ботаника автора Касаткина Юлия Николаевна

2.2. Клетка – единица строения, жизнедеятельности, роста и развития организмов. Многообразие клеток. Сравнительная характеристика клеток растений, животных, бактерий, грибов Основные термины и понятия, проверяемые в экзаменационной работе: клетки бактерий, клетки грибов,

Из книги Самый полный справочник птицевода автора Слуцкий Игорь

4.3. Царство Грибы. Строение, жизнедеятельность, размножение. Использование грибов для получения продуктов питания и лекарств. Распознавание съедобных и ядовитых грибов. Лишайники, их разнообразие, особенности строения и жизнедеятельности. Роль в природе грибов и

Из книги автора

4.5. Многообразие растений. Признаки основных отделов, классов и семейств покрытосеменных растений. Роль растений в природе и жизни человека. Космическая роль растений на Земле Основные термины и понятия, проверяемые в экзаменационной работе: водоросли, голосеменные

Из книги автора

4.6. Царство Животные. Главные признаки подцарств одноклеточных и многоклеточных животных. Одноклеточные и беспозвоночные животные, их классификация, особенности строения и жизнедеятельности, роль в природе и жизни человека. Характеристика основных типов

Из книги автора

4.7. Хордовые животные, их классификация, особенности строения и жизнедеятельности, роль в природе и жизни человека. Характеристика основных классов хордовых. Поведение животных 4.7.1. Общая характеристика типа Хордовых Основные термины и понятия, проверяемые в

Из книги автора

5.6. Личная и общественная гигиена, здоровый образ жизни. Профилактика инфекционных заболеваний (вирусных, бактериальных, грибковых, вызываемых животными). Предупреждение травматизма, приемы оказания первой помощи. Психическое и физическое здоровье человека. Факторы

Из книги автора

Из книги автора

Вирусы человека и животных От каких только вирусов не страдает человек! Одни поражают респираторный тракт, размножаясь в носоглотке, трахее и бронхах, нередко добираясь до легких. Другие предпочитают селиться в кишечнике, вызывая диареи или, попросту, поносы.

Из книги автора

Мир на кончике иглы бактерии и вирусы Такие разные, такие похожие Растения, грибы, лишайники, бактерии, вирусы, простейшие – все они так сильно отличаются друг от друга, что на первый взгляд кажется – между ними нет ничего общего. Ну, по крайней мере, в одном эти организмы

Из книги автора

Профилактика заболеваний птиц Наряду со специальными методами профилактики различных заболеваний птицы необходимо проводить общие профилактические мероприятия: дезинфекцию, дезинсекцию, дератизацию и соблюдать правила

Из книги автора

Профилактика заболеваний птиц Заболевание птицы приводит к резкому снижению продуктивности, а во многих случаях к 100 %-ной гибели.Из инфекционных заболеваний чаще встречаются ньюкаслская болезнь, грипп, болезнь Марека, болезнь Гамборо, лейкоз, инфекционный

В настоящее время на Земле описано более 2,5 млн видов живых организмов. Однако реальное число видов на Земле в несколько раз больше, так как многие виды микроорганизмов, насекомых и др. не учтены. Кроме того, считается, что современный видовой состав - это лишь около 5% от видового разнообразия жизни за период ее существования на Земле.
Для упорядочения такого многообразия живых организмов служат систематика, классификация и таксономия.

Систематика - раздел биологии, занимающийся описанием, обозначением и классификацией существующих и вымерших организмов по таксонам.
Классификация - распределение всего множества живых организмов по определённой системе иерархически соподчинённых групп - таксонов.
Таксономия - раздел систематики, разрабатывающий теоретические основы классификации. Таксон - искусственно выделенная человеком группа организмов, связанных той или иной степенью родства, и в то же время достаточно обособленная, чтобы ей можно было присвоить определённую таксономическую категорию того или иного ранга.

В современной классификации существует следующая иерархия таксонов:

  • царство;
  • отдел (тип в систематике животных);
  • класс;
  • порядок (отряд в систематике животных);
  • семейство;

Кроме того, выделяют промежуточные таксоны: над- и подцарства, над- и подотделы, над- и подклассы и т. д.

Систематика живых организмов постоянно изменяется и обновляется. В настоящее время она имеет следующий вид:

  • Неклеточные формы
    • Царство Вирусы
  • Клеточные формы
    • Надцарство Прокариоты (Procariota):
      • царство Бактерии (Bacteria, Bacteriobionta ),
      • царство Архебактерии (Archaebacteria, Archaebacteriobionta ),
      • царство Прокариотические водоросли
        • отдел Сине-зелёные водоросли, или Цианеи (Cyanobionta );
        • отдел Прохлорофитовые водоросли, или Прохлорофиты (Prochlororhyta ).
    • Надцарство Эукариоты (Eycariota)
      • царство Растения (Vegetabilia, Phitobiota или Plantae ):
        • подцарство Багрянки (Rhodobionta );
        • подцарство Настоящие водоросли (Phycobionta );
        • подцарство Высшие растения (Embryobionta );
      • царство Грибы (Fungi, Mycobionta, Mycetalia или Mycota ):
        • подцарство Низшие грибы (одноклеточные) (Myxobionta );
        • подцарство Высшие грибы (многоклеточные) (Mycobionta );
      • царство Животные (Animalia, Zoobionta )
        • подцарство Простейшие, или Одноклеточные (Protozoa, Protozoobionta );
        • подцарство Многоклеточные (Metazoa, Metazoobionta ).

Ряд учёных выделяет в надцарстве Прокариоты одно царство Дробянки, которое включает три подцарства: Бактерии, Архебактерии и Цианобактерии.

Вирусы, бактерии, грибы, лишайники

Царство вирусы

Вирусы существуют в двух формах: покоящейся (внеклеточной), когда их свойства как живых систем не проявляются, и внутриклеточной , когда осуществляется размножение вирусов. Простые вирусы (например, вирус табачной мозаики) состоят из молекулы нуклеиновой кислоты и белковой оболочки - капсида .

Некоторые более сложные вирусы (гриппа, герпеса и др.), помимо белков капсида и нуклеиновой кислоты, могут содержать липопротеиновую мембрану, углеводы и ряд ферментов. Белки защищают нуклеиновую кислоту и обусловливают ферментативные и антигенные свойства вирусов. Форма капсида может быть палочковидной, нитевидной, сферической и др.

В зависимости от присутствующей в вирусе нуклеиновой кислоты различают РНК-содержащие и ДНК-содержащие вирусы. Нуклеиновая кислота содержит генетическую информацию, обычно о строении белков капсида. Она может быть линейная или кольцевидная, в виде одно- или двуцепочечной ДНК, одно- или двуцепочечной РНК.

Вирус, вызывающий заболевание СПИДом (синдром приобретённого иммунодефицита), поражает клетки крови, обеспечивающие иммунитет организма. В результате больной СПИДом может погибнуть от любой инфекции. Вирусы СПИДа могут проникнуть в организм человека во время половых сношений, во время инъекций или операций при несоблюдении условий стерилизации. Профилактика СПИДа заключается в избегании случайных половых связей, использовании презервативов, применении одноразовых шприцев.

Бактерии

Все прокариоты принадлежат к одному царству Дробянки. В его состав входят бактерии и сине-зелёные водоросли.

Строение и жизнедеятельность бактерий.

Прокариотические клетки не имеют ядра, область расположения ДНК в цитоплазме называется нуклеоидом, единственная молекула ДНК замкнута в кольцо и не связана с белками, клетки меньше эукариотических, в состав клеточной стенки входит гликопептид - муреин, поверх клеточной стенки располагается слизистый слой, выполняющий защитную функцию, отсутствуют мембранные органоиды (хлоропласты, митохондрии, эндоплазматическая сеть, комплекс Гольджи), их функции выполняют впячивания плазматической мембраны (мезосомы), рибосомы мелкие, микротрубочки отсутствуют, поэтому цитоплазма неподвижна, нет центриолей и веретена деления, реснички и жгутики имеют особую структуру. Деление клеток осуществляется путём перетяжки (митоза и мейоза нет). Этому предшествует репликация ДНК, затем две копии расходятся, увлекаемые растущей клеточной мембраной.

Выделяют три группы бактерий: архебактерии, эубактерии и цианобактерии.

Архебактерии - древнейшие бактерии (метанообразующие и др., всего известно около 40 видов). Имеют общие черты строения прокариот, но значительно отличаются по ряду физиологических и биохимических свойств от эубактерий. Эубактерии - истинные бактерии, более поздняя форма в эволюционном отношении. Цианобактерии (цианеи, сине-зелёные водоросли) - фототрофные прокариотические организмы, осуществляющие фотосинтез подобно высшим растениям и водорослям с выделением молекулярного кислорода.

По форме клеток различают следующие группы бактерий: шаровидные - кокки , палочковидные - бациллы , дугообразно изогнутые - вибрионы , спиралеобразные - спириллы и спирохеты . Многие бактерии способны к самостоятельному движению за счёт жгутиков или благодаря сокращению клеток. Бактерии - одноклеточные организмы. Некоторые способны образовывать колонии, но клетки в них существуют независимо друг от друга.

В неблагоприятных условиях некоторые бактерии способны образовывать споры за счёт формирования плотной оболочки вокруг молекулы ДНК с участком цитоплазмы. Споры бактерий служат не для размножения, как у растений и грибов, а для защиты организма от воздействия неблагоприятных условий (засухи, нагревания и др.).

По отношению к кислороду бактерии делят на аэробов (обязательно нуждающиеся в кислороде), анаэробов (погибающие в присутствие кислорода) и факультативные формы.

По способу питания бактерии делятся на автотрофные (в качестве источника углерода используют углекислый газ) и гетеротрофные (используют органические вещества). Автотрофные, в свою очередь, делятся на фототрофов (используют энергию солнечного света) и хемотрофов (используют энергию окисления неорганических веществ). К фототрофам относят цианобактерии (сине-зелёные водоросли), которые осуществляют фотосинтез, как и растения, с выделением кислорода, и зелёные и пурпурные бактерии , которые осуществляют фотосинтез без выделения кислорода. Хемотрофы окисляют неорганические вещества (нитрифицирующие бактерии, азотфиксирующие бактерии, железобактерии, серобактерии и др. ).

Размножение бактерий.

Бактерии размножаются бесполым путём - делением клетки (у прокариот митоза и мейоза нет) при помощи перетяжек или перегородок, реже почкованием . Этим процессам предшествует удвоение кольцевой молекулы ДНК.

Кроме того, для бактерий характерен половой процесс - конъюгация . При конъюгации по специальному каналу, образующемуся между двумя клетками, фрагмент ДНК одной клетки передаётся другой клетке, то есть изменяется наследственная информация, содержащаяся в ДНК обоих клеток. Поскольку количество бактерий при этом не увеличивается, для корректности используют понятие «половой процесс», но не «половое размножение».

Роль бактерий в природе и значение для человека

Благодаря очень разнообразному метаболизму бактерии могут существовать в самых различных условиях среды: в воде, воздухе, почве, живых организмах. Велика роль бактерий в образовании нефти, каменного угля, торфа, природного газа, в почвообразовании, в круговоротах азота, фосфора, серы и других элементов в природе. Сапротрофные бактерии участвуют в разложении органических останков растений и животных и в их минерализации до СО 2 , Н 2 О, H 2 S, NH 3 и других неорганических веществ. Вместе с грибами они являются редуцентами. Клубеньковые бактерии (азотфиксирующие) образуют симбиоз с бобовыми растениями и участвуют в фиксации атмосферного азота в минеральные соединения, доступные растениям. Сами растения такой способностью не обладают.

Человек использует бактерии в микробиологическом синтезе, в очистных сооружениях, для получения ряда лекарств (стрептомицин), в быту и пищевой промышленности (получение кисломолочных продуктов, виноделие).

Царство грибы

Общая характеристика грибов. Грибы выделяют в особое царство, насчитывающее около 100 тыс. видов.

Отличия грибов от растений:

  • гетеротрофный способ питания
  • запасное питательное вещество гликоген
  • наличие в клеточных стенках хитина

Отличия грибов от животных:

  • неограниченный рост
  • поглощение пищи путём всасывания
  • размножение с помощью спор
  • наличие клеточной стенки
  • отсутствие способности активно передвигаться
  • Строение грибов разнообразно - от одноклеточных форм до сложноустроенных шляпочных форм

Лишайники

Строение лишайников. Лишайники насчитывают более 20 тыс. видов. Это симбиотические организмы, образованные грибом и водорослью. При этом лишайники представляют собой морфологически и физиологически целостный организм. Тело лишайника состоит из переплетённых гиф гриба, между которыми располагаются водоросли (зелёные или сине-зелёные). Водоросли осуществляют синтез органических веществ, а грибы поглощают воду и минеральные соли. В зависимости от строения тела (слоевища ) различают три группы лишайников: накипные , или корковые (слоевище имеет вид налётов или корочек, плотно срастающихся с субстратом); листовидные (в форме пластинок, прикреплённых к субстрату пучками гиф); кустистые (в форме стволиков или лент, обычно разветвлённых и срастающихся с субстратом только основанием). Рост лишайников осуществляется крайне медленно - всего по несколько миллиметров в год.

Размножение лишайников осуществляется либо половым путём (за счёт грибного компонента), либо бесполым (образование спор или отламывание кусочков слоевища).
Значение лишайников. Благодаря своей «двойственной» природе лишайники очень выносливы. Это объясняется возможностью как автотрофного, так и гетеротрофного питания, а также способностью впадать в состояние анабиоза, при котором организм сильно обезвоживается. В таком состоянии лишайники могут переносить действие различных неблагоприятных факторов среды (сильный перегрев или переохлаждение, практически полное отсутствие влаги и т. п.). Биологические особенности позволяют лишайникам заселять самые неблагоприятные местообитания. Они часто являются пионерами заселения того или иного участка суши, разрушают горные породы и формируют первичный почвенный слой, который затем осваивают другие организмы.
В то же время лишайники очень чувствительны к загрязнению среды различными химическими веществами, что позволяет использовать их в качестве биоиндикаторов состояния окружающей среды.
Лишайники используют для получения лекарственных препаратов, лакмуса, дубильных и красящих веществ. Ягель (олений мох) является основным кормом для северных оленей. Некоторые народности употребляют лишайники в пищу. Поскольку рост лишайников очень медленный, необходимы меры по его охране: регулирование выпаса оленей, упорядоченное передвижение автотранспорта и др.