Коэффициент стоячей волны по напряжению (ксвн, vswr). Область измерения ксв Ксв антенны

Почти каждый пользователь радиостанции или трансивера сталкивается с необходимостью оптимального согласования антенно-фидерного устройства и передатчика. Эта проблема актуальна для тех, кто пользуется «стационарными» радиостанциями (в том числе для радиообмена в гражданском диапазоне 27 МГц), так и для тех, кто использует автомобильные АМ и ЧМ трансиверы. Для увеличения зоны действия портативной (носимой) радиостанции подключают соответствующую внешнюю антенну. Решение этой проблемы важно для тех, кто уже имеет или собирается приобрести и зарегистрировать радиостанцию, ведет ативный и эффективный (на дальние расстояния) радиообмен. Для этого и необходим КСВ-метр.

КСВ-метр – это измеритель коэффициента стоячей волны. Автор в своей лаборатории имеет два промышленных измерителей КСВ – SWR-430 Optim (вариант SWR-121) и SX-40 (вариант SX-40). Об общих принципах настройки антенного хозяйства с помощью КСВ-метров хорошо описано в .

КСВ-метр SWR-430
КСВ-метр SWR-430, внешний вид которого показан на фото 1 , измеряет КСВ в линиях питания (фидерных линиях) антенного хозяйства гражданского диапазона 27 МГц (диапазон частот измерений 24…30 МГц) и является необходимым устройством для качественной настройки антенн. Это, в свою очередь, обеспечивает качественную работу приемо-передающих устройств. Поскольку любая антенна настраивается «под передатчик», именно от резонанса антенного хозяйства и передающего тракта конкретной радиостанции зависит эффективность и дальность работы конкретного радиокорреспондента.

Прибор SWR-430 помимо КСВ может измерять выходную мощность передатчика радиостанции. Шкала стрелочного индикатора (фото 1 ) в устройстве только одна, функции измерения КСВ и мощности передатчика переключаются на передней панели полосковым переключателем.

Погрешность устройства не более 5%, импеданс 50 Ом. Устройство годится для измерения проходной мощности до 100 Вт, что вполне удовлетворяет запросам радиолюбителей, поскольку большинство современных трансиверов имеют максимальную мощность до 100 Вт, кроме того, в России по требованиям Роскомнадзора работать с мощностью выше этого значения могут только специалисты.
Диапазон градуировки стрелочного индикатора 1…1:3. Это прибор небольшой точности измерения, однако с его помощью можно настроить антенну простым способом, что, безусловно, лучше, чем полное отсутствие приборов настройки антенного хозяйства.
Замечу, что аналогичные по характеристикам устройства SWR-420 Optim и SWR-121 могут изменять только КСВ без возможности измерения мощности.

Измерители КСВ и мощности SX -20 и SX -40
Измерители КСВ и мощности SX-20 и SX-40 (см. фото 1 ) представляет собой устройство с двумя функциями: позволяет измерить мощность и КСВ в диапазоне 140..525 МГц.

На передней панели прибора установлен переключатель максимальной мощности 15/150 Вт. Причем минимальная измеряемая мощность всего 1 Вт, что позволяет настраивать антенное хозяйство портативных радиостанций в режиме «LOW», не опасаясь выхода из строя выходного каскада при любом из возможных значений входного сопротивления антенны.

КСВ-метр модели SX-20 предназначен для измерения мощности и КСВ в диапазоне 1,8…200 МГц. Он имеет переключатель максимальной измеряемой мощности 30/300 Вт.

У обоих устройств волновое сопротивление (импеданс) 50 Ом (для подключения к кабелю с волновым сопротивлением 50 Ом), подключаемый с помощью разъема UHF. Минимальная мощность радиостанции 2 Вт.

Самодельный КСВ-метр
Те радиолюбители, кто редко ремонтирует и настраивает радиостанции, пользуются для настройки и согласования трансиверов и АФУ услугами «выездных специалистов», что сегодня обходится весьма дорого, как и любые работы в сфере обслуживания и ремонта. Хотя специалисты для настройки и согласования пользуются все теми же измерителями КСВ. Так не проще ли собрать его самому? Для тех, кто готов сам собрать измеритель КСВ и научиться пользоваться им, предлагаю следующие рекомендации.

Для согласования выхода передатчика с фидером используется специальное согласующее устройство, а антенна согласуется с кабелем, как, правило, изменением длины антенны.

Принципиальная электрическая схема самодельного измерителя КСВ с согласующим устройством показана на рис.1 .

Согласующее устройство состоит из двух конденсаторов переменной емкости С1 и С2 с воздушным диэлектриком (например, КПЕ-4…50, 1КЛМВ-1) и бескаркасной катушки индуктивности L1. Она содержит 8 витков медного провода без изоляции диаметром 2,2 мм с диаметром намотки25 мм и длиной 22 мм. Индуктивность такой катушки составит 1,2 мкГн. Настройка согласования производится конденсаторами С1 и С2. Показания считывают по шкале миллиамперметра ИП. КСВ-метр при настройке устанавливается между согласующим устройством и фидерной линией.

Измеритель КСВ показывает, насколько близко к режиму бегущей волны (отсутствие отраженного сигнала от нагрузки) находится система «радиостанция-фидер-антенна».
Согласующее устройство измерителя подключают к гнезду антенны передатчика с помощью отрезка кабеля (длиной более 1 м) с волновым сопротивлением 50 Ом, например, РК-50 или аналогичного.

Измерительная часть КСВ-метра конструктивно выполнена из отрезка того же кабеля длиной 160 мм с удаленной внешней изоляций. Этот отрезок кабеля после всех подготовительных работ загибают подковой. Экран провода соединяют с «общим проводом» передатчика. Конструкция и внешний вид окончательно оформленного отрезка кабеля показан на рис.2 .

Внутреннюю жилу кабеля (2) подсоединяют соответственно одним концом к согласующему устройству (конденсатор С2), а другим – к фидеру антенны. Внутри экранирующего провода КСВ-метра (отрезка кабеля длиной 160 мм с удаленной изоляцией – 1) аккуратно с помощью иголки прокладывают гибкий изолированный провод типа МГТФ-0,8 (3) и от его середины выводят отвод для подключения резистора R1. Концы внутреннего провода МГТФ-0,8 (может быть применен любой аналогичный провод МГТФ-1, МГТФ-2) пропаивают к германиевым диодам VD1, VD2.

О деталях
Резистор R1 мощностью 2 Вт с сопротивлением в приделах 30…150 Ом. Переменный резистор R2 типа СПО-1. В качестве диодов VD1, VD2 использует «старые» германиевые диоды из серий Д2, Д9, Д220, Д311 с любым буквенным индексом.
Измерительный прибор любой градуированный, с током полного отклонения 1 мА. Переключатель SB1 типа тумблер, например МТS-1. Корпус для устройства измерителя КСВ может быть выбран любым подходящим, экранированным.

Внешний вид готового устройства может быть таким (например, как в авторском варианте), как показано на фото 2 .

Перед включением радиостанции и согласующего устройства проводят необходимые подготовительные работы: подключают антенно-фидерное устройство, устанавливают переключатель SB1 в положение «ПР» (в левое по схеме положение), а движок переменного резистора R2 устанавливают в среднее положение.

После подачи питания на радиостанцию и включения в ее режим «передача», перемещением движка переменного резистора R2 добиваются максимального отклонения стрелки миллиамперметра вправо, к примеру, до цифры «10» (если эта цифра является максимальной градуированной величиной на шкале). После этого переводят переключатель SB1 в положение «ОБР» и фиксируют новое показание по шкале прибора (заметно меньше предыдущего), что соответствует значению обратной волны.

По формуле КСВ=(П пр + П обр) / (П пр – П обр) находят значение КСВ, где П пр – показание прибора в режиме прямой волны (переключатель SB1в левом по схеме положении).

П обр – показание прибора при обратной волне. Например, П пр =10, П обр =2, тогда КСВ = (10 + 2) /(10 — 2)=1,5.
Потери на отражение волны в цепи «передатчик-фидер-антенна» зависят от величины КСВ и приведены в таблице .

Для оптимального согласования желательно иметь КСВ в пределах 1,1…1,5, в этом случае потери на отражение волны составят 5…12%, что вполне допустимо.
Перед началом настройки антенны желательно убедиться в правильности показаний имеющегося КСВ-метра иметь «контрольную» антенну, которой может быть штатная антенна от переносной радиостанции или даже самодельный четверть-волновый (1/4) «штырь».

В своих запасах хорошо иметь два КСВ-метра, рассчитанных для работы с фидерами, имеющими волновое сопротивление и 50 и 75 Ом, и, конечно, несколько «образцов» используемых кабелей.

Сравнительные измерения (сравнительная эффективность) сводятся к определению уровня напряженности поля, и тогда, снять диаграмму направленности антенны, но такие возможности имеются не у всех радиолюбителей.
Согласование антенного хозяйства с помощью рассмотренного самодельного прибора сводится к тому, что при условии постоянной длины штыря антенны, изменением емкости конденсаторов С1 и С2 согласующего устройства, а также изменением емкости подстроечного конденсатора в основании антенны добиваются необходимых значений КСВ.

Если штырь антенны, а в некоторых моделях и его «противовес», конструктивно имеют возможность регулировки длины, то э то является дополнительной возможностью настройки всей системы согласования.
таким простым методом можно воспользоваться для настройки радиолюбительских УКВ-трансиверов и даже автомобильных радиостанций, работающий в гражданском диапазоне частот, с выходной мощностью 0,5…15 Вт и укомплектованных простыми конструкциями антенн.

Итак, вот вы купили радиостанцию, антенну и прикрутив комплект к машине, с удивлением обнаруживаете, что вас не слышно. Дураки покупают усилитель, а умные настраивают антенну. Вы же умные, да? Поэтому начав разбираться в причинах, первым делом натыкаетесь на слова КСВ или “Коэффициент стоячей волны”.

Итак, что такое КСВ или “коэффициент стоячей волны”? Эта такая циферка, которая характеризует правильность настройки. Чем меньше, тем лучше. Меньше 1 не бывает. Что она означает, вы сможете прочитать в интернете: статей не просто много, а очень много.

Как его измерить? Обычно там же, где продают радиостанции и антенны, можно купить и КСВ-метр. Профессиональный вам совершенно не нужен, берите самый дешевый, он должен стоить 400-500 рублей максимум. В качестве показометра его хватит за глаза.

Первым делом его надо подключить. Обычно все нарисовано на картинках, но если что, то в ANT или ANTENNA надо прикрутить антенну, а в TRANSMITTER или RADIO – выход от радиостанции.

Включаем радиостанцию.

Теперь посмотрите на сам КСВ-метр. Там есть переключатели REF-FWD и/или PWR/SWR. 1. Щелкаем в SWR и FWD.

2. Теперь нажимаем на тангете радиостанции “передача” и крутилкой на КСВ-метре выводим стрелочку на максимум на шкале.

3. Щелкаем на REF.

4. Снова нажимаем “передача” и смотрим на шкалу, которая с буковками SWR. Это и есть искомый КСВ.

Ну вот, получили циферку. Скажем, 2.5 или 3. А везде пишут, что КСВ должен быть 1! Иначе плохо. Чего делать?

Ниже икслюзивная картинка от меня.

Как видите, график значений КСВ представляет собой нечто, смахивающее на U или V. Сразу скажу, у всех он разный! У кого-то склоны крутые, а у кого-то пологие. У кого-то левый круче правого или наоборот … У кого-то минимум графика проходит через КСВ=1, а у кого-то и двойка идеалом будет. В общем, ваше – оно только ваше!

Наша задача – поставить минимум графика на тот канал, в котором больше всего общаетесь. Скажем, 15й, где дальнобои общаются.

Первое, что необходимо понять – на каком “склоне” сейчас все настроено. Это просто: ставим станцию на 1й канал, замеряем КСВ, затем на 15й, снова замеряем, затем на 30й, снова замеряем. Смотрим на циферки.

Циферки падают – вы на левом. Антенну надо удлинять.

Цифреки растут – вы на правом склоне. Антенну надо укорачивать.

Циферки в духе “большая-маленькая-большая” – у вас график КСВ очень узкий, уменьшите шаг. Ну или вы очень близко к цели – хватит антенну подвигать в держателе.

Циферки в духе “одинаковая-одинаковая-одинаковая” – у вас график КСВ очень широкий. Длиной антенны изменить крайне маловероятно.

По моему опыту скорее всего придется обрезать антенну. Остальные случаи встречаются очень редко …

После удлинения или укорачивания антенны процесс измерения повторить до достижения минимального значения КСВ на нужном канале. Повторюсь, минимально достижимый уровень у каждой установки свой!

Как укорачивать? Любыми мощными кусачками по сантиметру от верхушки откусывать. Тут главное не перестараться, ибо удлинять гораздо муторней, чем обрезать.

Как удлинять? Вот тут сложнее. Если не хватает диапазона регулировок самой антенны, то обычно припаивают/прикручивают/приваривают к верхушке кусок с запасом, что бы потом обрезать …

Более продвинутые могут все тоже самое сделать изменением числа витков намотанного на катушку провода (утолщение такое снизу антенны), но продвинутым эта рассказка не нужна 🙂

Какие значения КСВ хорошие, а какие плохие? Грубо говоря все что больше 2,5 это плохо. 1,5-2,5 – потянет. 1,1-1,5 хорошо. 1 – отлично.

У вас большой КСВ и не уменьшается? 99% за то, что очень плохой контакт где-то в цепочке “масса антенны – корпус машины – корпус радиостанции”. Или в антенном проводе и разъемах.

Видите, как все просто?

В линии с КСВ>1 наличие отраженной мощности не приводит к потерям передаваемой мощности, хотя некоторые потери наблюдаются из-за конечного затухания в линии в фидерной линии без потерь нет потерь мощности из-за отражения независимо от величины КСВ. На всех KB диапазонах с кабелем, имеющим низкие потери, потери в рассогласованной линии обычно незначительны, однако на УКВ могут быть существенными, а на СВЧ-даже чрезвычайно большими. Затухание в кабеле зависит, прежде всего, от характеристик самого кабеля и его длины. При работе на KB кабель должен быть очень длинным или очень плохим, чтобы потери в кабеле стали весьма существенными.

Отраженная мощность не течет обратно в передатчик и не повреждает его. Повреждения, иногда приписываемые высокому КСВ, обычно вызывает работа выходного каскада передатчика на рассогласованную нагрузку. Передатчик не «видит» КСВ, он «видит» только импеданс нагрузки, который зависит и от КСВ. Это означает, что импеданс нагрузки можно сделать точно соответствующим требуемому (например, с помощью антенного тюнера), не беспокоясь о КСВ в фидере.

Усилия, затрачиваемые на снижение КСВ ниже 2:1 в любой коаксиальной линии, вообще представляются затраченными впустую - с точки зрения увеличения эффективности излучения антенны, но целесообразны в том случае, если схема защиты передатчика срабатывает, например, при КСВ>1,5.

Высокий КСВ не обязательно указывает, что антенна работает плохо - эффективность излучения антенны определяется соотношением ее сопротивления излучения к общему входному сопротивлению.

Низкий КСВ - не обязательно свидетельство того, что антенная система является хорошей. Напротив, низкий КСВ в широкой полосе частот является поводом для подозрений, что, например, в диполе или вертикальной антенне велико сопротивление потерь, обусловленное плохими соединениями и контактами, неэффективной системой заземления, потерями в кабеле, попаданием влаги в линию и т.д. Так, эквивалент нагрузки обеспечивает в линии КСВ=1,0, но он вообще не излучает, а короткая вертикальная антенна с сопротивлением излучения 0,1 Ом и потерями сопротивления 49,9 Ом излучает лишь 0,2% от поступающей мощности, обеспечивая при этом КСВ 1,0 в фидере.

Для достижения максимального ВЧ тока излучатель антенной системы не обязательно должен иметь резонансную длину и не требует фидера определенной длины. Существенное рассогласование между линией питания и излучателем не препятствует поглощению излучателем всей реально поступающей мощности. При использовании соответствующего согласования (например, антенного тюнера) для компенсации реактивности не резонансного излучателя в месте подключения фидерной линии случайной длины антенная система является согласованной, и фактически вся подводимая мощность может эффективно излучаться.

На КСВ в фидерной линии не влияет настройка антенного тюнера, установленного возле передатчика . Низкий КСВ в линии, достигнутый с помощью тюнера, обычно является свидетельством того, что в процессе настройки тюнера произошло рассогласование между передатчиком и входом антенного тюнера, и передатчик работает на несогласованную нагрузку.

Вопреки расхожим представлениям, с хорошим симметричным (балансным) антенным тюнером и открытой двухпроводной фидерной линией излучение питаемого в центре диполя длиной 80 м, работающего в диапазоне 3,5 МГц, не намного эффективнее излучения такой же антенны длиной 48 м, работающей в том же диапазоне и с той же мощностью передатчика. Эффективность излучения диполя, настроенного в резонанс на частоте, например, 3750 кГц, практически такая же, как и на частоте 3500 или 4000 кГц при использовании любого фидера разумной длины; хотя можно ожидать, что КСВ на краях диапазона может достигать 5 и что коаксиальный кабель в действительности будет работать как настроенная линия. В этом случае, разумеется, потребуется использовать соответствующее устройство согласования (например, антенный тюнер) между передатчиком и фидером. Если для достижения согласования коаксиальный фидер любой антенной системы требует определенной длины, тот же самый входной импеданс можно получить с кабелем любой длины с помощью соответствующей простой цепи согласования из индуктивностей и емкостей.

Высокий КСВ в коаксиальном фидере, вызванный значительным рассогласованием характеристического сопротивления линии и входного сопротивления антенны, сам по себе не вызывает появления ВЧ тока на внешней поверхности оплетки кабеля и излучения фидерной линии . В диапазонах коротких волн высокий КСВ в любой открытой линии, работающей с высоким КСВ, не будет ни вызывать протекание антенного тока по линии, ни приводить к излучению линии при условии, что токи в линии сбалансированы, и расстояние между проводниками линии мало по сравнению с рабочей длиной волны (это справедливо и на УКВ при условии отсутствия острых изгибов линии). Ток на внешней поверхности оплетки фидера и излучение фидера практически отсутствуют, если антенна сбалансирована относительно земли и фидера (например, при использовании горизонтальной антенны фидер должен располагаться вертикально); в таких случаях не нужно применять симметрирующие устройства (балуны) между антенной и фидером.

КСВ-метры, установленные на участке между антенной и фидером, не обеспечивают более точное измерение КСВ . КСВ в фидере не может регулироваться изменением длины линии. Если показания КСВ-метра при перемещении по линии существенно различаются, это может указывать на антенный эффект фидера, вызываемый током, текущим по внешней стороне оплетки коаксиального кабеля, и/или на плохую конструкцию КСВ-метра, но не на то, что КСВ изменяется вдоль линии.

Любая реактивность, добавленная к существующей резонансной нагрузке (имеющей только активное сопротивление) с целью снижения КСВ в линии, вызовет только увеличение отражения. Самый низкий КСВ в фидере наблюдается на резонансной частоте излучающего элемента и совершенно не зависит от длины фидера.

Эффективность излучения диполей различных типов (из тонкого провода, петлевого диполя, «толстого» диполя, трапового или коаксиального диполя) практически одинакова при условии, что каждый из них имеет незначительные омические потери и питается одинаковой мощностью. Однако «толстые» и петлевые диполи имеют более широкую рабочую полосу частот по сравнению с антенной из тонкого провода.

Если входное сопротивление антенны отличается от характеристического сопротивления фидерной линии, то сопротивление нагрузки передатчика может весьма значительно отличаться от характеристического сопротивления линии (если электрическая длина линии не кратна L/2), и от сопротивления в месте подключения к антенне. В этом случае импеданс нагрузки передатчика зависит еще и от длины фидера, который действует как трансформатор сопротивлений. В таких случаях, если не установлена подходящая цепь согласования между передатчиком и линией передачи, импеданс нагрузки может быть комплексным (т.е. иметь активную и реактивную составляющие), и с ним выходная схема передатчика может не справиться. В этом случае изменением длины линии передачи иногда удается обеспечить согласование нагрузки с передатчиком - именно это обстоятельство, скорее чем любые потери, связанные с КСВ, привело к возникновению многих неверных представлений о работе фидерных линий.

Любая питаемая в центре антенна любой разумной длины с любым типом фидера с низкими потерями будет обеспечивать достаточно эффективное излучение электромагнитной энергии . При этом, как правило, требуется хороший антенный тюнер, если передатчик рассчитан на работу с низкоомной нагрузкой (например, 50 Ом). Этим объясняется тот факт, что многие годы питаемый в центре диполь остается популярной многодиапазонной антенной.

После того, как антенна установлена, ее необходимо настроить по минимуму значения КСВ в середине участка рабочих частот или если предполагается работать только на одной частоте, по минимальному значению КСВ на этой частоте.
Что такое КСВ? КСВ - коэффициент стоячей волны - это мера согласования антенно-фидерного тракта. Он показывает процент потерь мощности в антенне. Потери мощности при различных значениях КСВ приведены в таблице 1.

Таблица 1. Потери мощности при различных значениях КСВ

Рис 1. Схема подключения КСВ метра

ВНИМАНИЕ!!! Пpибоp должен допускать pаботу пpи Вашей выходной мощности! То есть если прибор рассчитан на максимальную мощность 10Вт, а ему на вход подать 100Вт, то результат будет вполне очевиден в виде дыма и вполне осязаем органами обоняния. Переключатель нужно поставить в положение FWD (прямое включение). Включив передачу, нужно выставить ручкой стрелку-указатель на конец шкалы. Таким образом делается калибровка показаний прибора. Калибровать прибор нужно каждый раз при изменении рабочей частоты. Далее, переключив (при отключенной передаче) прибор в положение REF (обратное включение), включить передачу и считать значение КСВ по шкале прибора.

Рассмотрим пример настройки антенны на среднюю частоту сетки С (частота 27,205МГц) изменением длины штыря. Сначала нужно измерить значение КСВ на 1 канале сетки С. Затем на последнем (40) канале сетки С. Если значение КСВ больше 3 в обоих случаях, значит антенна установлена неправильно, не рассчитана на работу в этом диапазоне или имеет неисправности. Если КСВ, измеренный на 1 канале, больше значения КСВ на 40 канале, значит длину штыря нужно укоротить, если наоборот - то штырь необходимо удлинить (выдвинуть из держателя). Встаем на 20 канал сетки С, измеряем КСВ, запоминаем его значение. Откручиваем винты, фиксирующие штырь, двигаем его на 7-10 мм в нужную сторону, затягиваем винты, проверяем КСВ снова. Если штырь вставлен до предела, а КСВ все еще высокий, то придется укорачивать штырь физически. Если штырь выдвинут максимально, то придется увеличивать длину согласующей катушки. Устанавливаем штырь по середине крепления. Откусываем 5-7 мм, измеряем КСВ, снова откусываем. При этом следим чтобы значение КСВ уменьшалось. Как только оно достигнет минимума и начнет увеличиваться, прекращаем издеваться над штырем и далее регулируем его длину изменением положения в антенне Таким образом находим минимум КСВ.

Обратите внимание, что антенну надо настраивать только по месту ее ОКОНЧАТЕЛЬНОЙ установки. Это значит, что, перенеся антенну на другое место, ее снова необходимо будет настраивать.

Если Вы получили КСВ порядка 1,1-1,3, это отличный результат.

Если Вы получили КСВ порядка 1,3-1,7, это тоже неплохо и Вам не о чем беспокоиться.

Если КСВ 1,8 - 2, то следует обратить внимание на потери в ВЧ разъемах (неправильная разделка кабеля, плохая пропайка центральной жилы кабеля и т. д.) Для антенны такой уровень согласования будет означать, что у нее есть проблемы с согласованием, и она нуждается в настройке.

КСВ 2,1 - 5 означает явную неисправность в антенне или неправильную ее установку. КСВ более 5 означает обрыв центральной жилы в кабеле или в антенне.

Из другого источника

Длины 50-омного кабеля в полуволнах, режим “полуволнового повторителя” (верно для кабелей со сплошной полиэтиленовой изоляцией центральной жилы)

Количество полуволн
Сетка “C” Cетка ”D” Сетки “C”& “D”

Средняя частота МГц
27.5

Длина отрезка кабеля
1 3.639м 3.580м 3.611м
2 7.278м 7.160м 7.222м
3 10.917м 10.739м 10.833м
4 14.560м 14.319м 14.444м
5 18.195м 17.899м 18.055м

Коэффициент стоячей волны

Коэффициент стоячей волны - Отношение наибольшего значения амплитуды напряженности электрического или магнитного поля стоячей волны в линии передачи к наименьшему .

Характеризует степень согласования антенны и фидера (также говорят о согласовании выхода передатчика и фидера) и является частотнозависимой величиной. Обратная величина КСВ называется КБВ - коэффициент бегущей волны . Следует различать величины КСВ и КСВН (коэффициент стоячей волны по напряжению): первая высчитывается по мощности, вторая - по амплитуде напряжения и на практике используется чаще; в общем случае эти понятия эквивалентны.

Коэффициент стоячей волны по напряжению вычисляется по формуле: ,
где U 1 и U 2 - амплитуды падающей и отражённой волн соответственно.
Можно установить связь между KCBH и коэффициентом отражения Г:
Также величину коэффициента стоячей волны можно получить из выражений для S-параметров (см. ниже).

В идеальном случае КСВН = 1, это означает, что отраженная волна отсутствует. При появлении отраженной волны КСВ возрастает в прямой зависимости от степени рассогласования тракта и нагрузки. Допустимые значения КСВН на рабочей частоте или в полосе частот для различных устройств регламентируются в технических условиях и ГОСТах. Обычно приемлемые значения коэффициента лежат в пределах от 1,1 до 2,0.

Значение КСВ зависит от многих факторов, например:

  • Волновое сопротивление СВЧ кабеля и источника СВЧ сигнала
  • Неоднородности, спайки в кабелях или волноводах
  • Качество разделки кабеля в СВЧ-соединителях (разъёмах)
  • Наличие переходных соединителей
  • Сопротивление антенны в точке подключения кабеля
  • Качество изготовления и настройки источника сигнала и потребителя (антенны и др.)

Измеряют КСВН, например, с помощью включённых в тракт в противоположном направлении двух направленных ответвителей. В космической технике КСВН измеряется встроенными в волноводные тракты датчиками КСВ. Современные анализаторы цепей также имеют встроенные датчики КСВН.
При проведении измерений КСВН необходимо учитывать, что затухание сигнала в кабеле приводит к погрешности измерений. Это объясняется тем, что как падающая, так и отраженная волны испытывают затухание. В таких случая КСВН рассчитывается следующим образом: ,

Где К - коэффициент ослабления отраженной волны, который вычисляется следующим образом: ,
здесь В - удельное затухание, дБ/м;
L - длина кабеля, м;
а множитель 2 учитывает тот факт, что сигнал испытывает ослабление при передаче от источника СВЧ сигнала к антенне и на обратном пути. Так, при использовании кабеля PK50-7-15 удельное затухание на частотах Си-Би (около 27 МГц) составляет 0,04 дБ/м, то при длине кабеля 40 м отраженный сигнал будет испытывать затухание 0,04 2 40=3,2 дБ. Это приведет к тому, что при реальном значении КСВН, равном 2,00, прибор покажет только 1,38; при реальном значении 3,00 прибор покажет около 2,08.

Плохая (высокая) величина КСВ(Н) нагрузки приводит не только к ухудшению КПД из-за уменьшения поступившей в нагрузку полезной мощности. Возможны и другие последствия:

  • Выход из строя мощного усилителя или транзистора, поскольку на его выходе (коллекторе) просуммируются (в худшем случае) напряжение выходного сигнала и отражённая волна, что может превысить максимальное допустимое напряжение полупроводникового перехода.
  • Ухудшение неравномерности АЧХ тракта.
  • Возбуждение сопрягаемых каскадов.

Для устранения этого могут применяться защитные вентили или циркуляторы . Но при продолжительной работе на плохую нагрузку, они могут выйти из строя. Для маломощных линий передачи могут использоваться согласующие аттенюаторы .

Связь КСВН с S-параметрами четырёхполюсника

Коэффициент стоячей волны можно однозначно связать с параметрами передачи четырёхполюсника (S-параметрами):

где - комплексный коэффициент отражения сигнала от входа измеряемого тракта;

Аналоги КСВ в зарубежных изданиях

  • VSWR - полный аналог КСВН
  • SWR - полный аналог КСВ

Примечания


Wikimedia Foundation . 2010 .