Какие значения может принимать синус и косинус. Свойства синуса, косинуса, тангенса и котангенса


Соотношения между основными тригонометрическими функциями – синусом, косинусом, тангенсом и котангенсом - задаются тригонометрическими формулами . А так как связей между тригонометрическими функциями достаточно много, то этим объясняется и обилие тригонометрических формул. Одни формулы связывают тригонометрические функции одинакового угла, другие – функции кратного угла, третьи – позволяют понизить степень, четвертые – выразить все функции через тангенс половинного угла, и т.д.

В этой статье мы по порядку перечислим все основные тригонометрические формулы, которых достаточно для решения подавляющего большинства задач тригонометрии. Для удобства запоминания и использования будем группировать их по назначению, и заносить в таблицы.

Навигация по странице.

Основные тригонометрические тождества

Основные тригонометрические тождества задают связь между синусом, косинусом, тангенсом и котангенсом одного угла. Они вытекают из определения синуса, косинуса, тангенса и котангенса, а также понятия единичной окружности . Они позволяют выразить одну тригонометрическую функцию через любую другую.

Подробное описание этих формул тригонометрии, их вывод и примеры применения смотрите в статье .

Формулы приведения




Формулы приведения следуют из свойств синуса, косинуса, тангенса и котангенса , то есть, они отражают свойство периодичности тригонометрических функций, свойство симметричности, а также свойство сдвига на данный угол. Эти тригонометрические формулы позволяют от работы с произвольными углами переходить к работе с углами в пределах от нуля до 90 градусов.

Обоснование этих формул, мнемоническое правило для их запоминания и примеры их применения можно изучить в статье .

Формулы сложения

Тригонометрические формулы сложения показывают, как тригонометрические функции суммы или разности двух углов выражаются через тригонометрические функции этих углов. Эти формулы служат базой для вывода следующих ниже тригонометрических формул.

Формулы двойного, тройного и т.д. угла



Формулы двойного, тройного и т.д. угла (их еще называют формулами кратного угла) показывают, как тригонометрические функции двойных, тройных и т.д. углов () выражаются через тригонометрические функции одинарного угла . Их вывод базируется на формулах сложения.

Более детальная информация собрана в статье формулы двойного, тройного и т.д. угла .

Формулы половинного угла

Формулы половинного угла показывают, как тригонометрические функции половинного угла выражаются через косинус целого угла . Эти тригонометрические формулы следуют из формул двойного угла.

Их вывод и примеры применения можно посмотреть в статье .

Формулы понижения степени


Тригонометрические формулы понижения степени призваны содействовать переходу от натуральных степеней тригонометрических функций к синусам и косинусам в первой степени, но кратных углов. Иными словами, они позволяют понижать степени тригонометрических функций до первой.

Формулы суммы и разности тригонометрических функций


Основное предназначение формул суммы и разности тригонометрических функций заключается в переходе к произведению функций, что очень полезно при упрощении тригонометрических выражений. Указанные формулы также широко используются при решении тригонометрических уравнений, так как позволяют раскладывать на множители сумму и разность синусов и косинусов.

Формулы произведения синусов, косинусов и синуса на косинус


Переход от произведения тригонометрических функций к сумме или разности осуществляется посредством формул произведения синусов, косинусов и синуса на косинус .

  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.
  • Copyright by cleverstudents

    Все права защищены.
    Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

    • 2. Область значений: [-1;1]
    • 3. Нечетная функция.
    • 7. Промежутки, на которых функция положительна: (2*pi*n; pi+2*pi*n)
    • 8. Промежутки, на которых функция отрицательна: (-pi + 2*pi*n; 2*pi*n)
    • 9. Промежутки возрастания: [-pi/2 +2*pi*n; pi/2 +2*pi*n]
    • 10. Промежутки убывания:
    • 11. Точки минимума: -pi/2 +2*pi*n
    • 12. Минимум функции: -1
    • 13. Точки максимума: pi/2 +2*pi*n
    • 14. Максимум функции: 1

    Свойства косинуса

    • 1. Область определения: вся числовая ось
    • 2. Область значений: [-1;1]
    • 3. Четная функция.
    • 4. Наименьший положительный период: 2*pi
    • 5. Координаты точек пересечения графика функции с осью Ох: (pi/2 +pi*n; 0)
    • 6. Координаты точек пересечения графика функции с осью Оу: (0;1)
    • 7. Промежутки, на которых функция положительна: (-pi/2 +2*pi*n; pi/2 +2*pi*n)
    • 8. Промежутки, на которых функция отрицательна: (pi/2 +2*pi*n; 3*pi/2 +2*pi*n)
    • 9. Промежутки возрастания: [-pi + 2*pi*n; 2*pi*n]
    • 10. Промежутки убывания:
    • 11. Точки минимума: pi+2*pi*n
    • 12. Минимум функции: -1
    • 13. Точки максимума: 2*pi*n
    • 14. Максимум функции: 1

    Свойства тангенса

    • 1. Область определения: (-pi/2 +pi*n; pi/2 +pi*n)
    • 3. Нечетная функция.
    • 5. Координаты точек пересечения графика функции с осью Ох: (pi*n; 0)
    • 6. Координаты точек пересечения графика функции с осью Оу: (0;0)
    • 9. Функция возрастает на промежутках (-pi/2 + pi*n; pi/2 + pi*n)

    Свойства котангенса

    • 1. Область определения: (pi*n; pi +pi*n)
    • 2. Область значений: вся числовая ось
    • 3. Нечетная функция.
    • 4. Наименьший положительный период: pi
    • 5. Координаты точек пересечения графика функции с осью Ох: (pi/2 + pi*n; 0)
    • 6. Координаты точек пересечения графика функции с осью Оу: нет
    • 7. Промежутки, на которых функция положительна: (pi*n; pi/2 +pi*n)
    • 8. Промежутки, на которых функция отрицательна: (-pi/2 +pi*n; pi*n)
    • 9. Функция убывает на промежутках (pi*n; pi +pi*n)
    • 10. Точек максимума и минимума нет.

    На рисунке ниже представлены несколько единичных окружностей, в которых указаны знаки синуса, косинуса, тангенса и котангенса в различных координатных четвертях.

    С центром в точке A .
    α - угол, выраженный в радианах.

    Тангенс (tg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины противолежащего катета |BC| к длине прилежащего катета |AB| .

    Котангенс (ctg α ) - это тригонометрическая функция, зависящая от угла α между гипотенузой и катетом прямоугольного треугольника, равная отношению длины прилежащего катета |AB| к длине противолежащего катета |BC| .

    Тангенс

    Где n - целое.

    В западной литературе тангенс обозначается так:
    .
    ;
    ;
    .

    График функции тангенс, y = tg x

    Котангенс

    Где n - целое.

    В западной литературе котангенс обозначается так:
    .
    Также приняты следующие обозначения:
    ;
    ;
    .

    График функции котангенс, y = ctg x


    Свойства тангенса и котангенса

    Периодичность

    Функции y = tg x и y = ctg x периодичны с периодом π .

    Четность

    Функции тангенс и котангенс - нечетные.

    Области определения и значений, возрастание, убывание

    Функции тангенс и котангенс непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства тангенса и котангенса представлены в таблице (n - целое).

    y = tg x y = ctg x
    Область определения и непрерывность
    Область значений -∞ < y < +∞ -∞ < y < +∞
    Возрастание -
    Убывание -
    Экстремумы - -
    Нули, y = 0
    Точки пересечения с осью ординат, x = 0 y = 0 -

    Формулы

    Выражения через синус и косинус

    ; ;
    ; ;
    ;

    Формулы тангенса и котангенс от суммы и разности



    Остальные формулы легко получить, например

    Произведение тангенсов

    Формула суммы и разности тангенсов

    В данной таблице представлены значения тангенсов и котангенсов при некоторых значениях аргумента.

    Выражения через комплексные числа

    Выражения через гиперболические функции

    ;
    ;

    Производные

    ; .


    .
    Производная n-го порядка по переменной x от функции :
    .
    Вывод формул для тангенса > > > ; для котангенса > > >

    Интегралы

    Разложения в ряды

    Чтобы получить разложение тангенса по степеням x , нужно взять несколько членов разложения в степенной ряд для функций sin x и cos x и разделить эти многочлены друг на друга , . При этом получаются следующие формулы.

    При .

    при .
    где B n - числа Бернулли. Они определяются либо из рекуррентного соотношения:
    ;
    ;
    где .
    Либо по формуле Лапласа:


    Обратные функции

    Обратными функциями к тангенсу и котангенсу являются арктангенс и арккотангенс , соответственно.

    Арктангенс, arctg


    , где n - целое.

    Арккотангенс, arcctg


    , где n - целое.

    Использованная литература:
    И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
    Г. Корн, Справочник по математике для научных работников и инженеров, 2012.

    1. Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решении дифференциальных и функциональных уравнений.

    2. К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс ,котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

    3. Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r=1. На окружности обозначена точка M(x,y). Угол между радиус-вектором OM и положительным направлением оси Ox равен α.

    4. Синусом угла α называется отношение ординаты y точки M(x,y) к радиусу r:
    sinα=y/r.
    Поскольку r=1, то синус равен ординате точки M(x,y).

    5. Косинусом угла α называется отношение абсциссы x точки M(x,y) к радиусу r:
    cosα=x/r

    6. Тангенсом угла α называется отношение ординаты y точки M(x,y) к ee абсциссе x:
    tanα=y/x,x≠0

    7. Котангенсом угла α называется отношение абсциссы x точки M(x,y) к ее ординате y:
    cotα=x/y,y≠0

    8. Секанс угла α − это отношение радиуса r к абсциссе x точки M(x,y):
    secα=r/x=1/x,x≠0

    9. Косеканс угла α − это отношение радиуса r к ординате y точки M(x,y):
    cscα=r/y=1/y,y≠0

    10. В единичном круге проекции x, y точки M(x,y) и радиус r образуют прямоугольный треугольник, в котором x,y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом:
    Синусом угла α называется отношение противолежащего катета к гипотенузе.
    Косинусом угла α называется отношение прилежащего катета к гипотенузе.
    Тангенсом угла α называется противолежащего катета к прилежащему.
    Котангенсом угла α называется прилежащего катета к противолежащему.
    Секанс угла α представляет собой отношение гипотенузы к прилежащему катету.
    Косеканс угла α представляет собой отношение гипотенузы к противолежащему катету.

    11. График функции синус
    y=sinx, область определения: x∈R, область значений: −1≤sinx≤1

    12. График функции косинус
    y=cosx, область определения: x∈R, область значений: −1≤cosx≤1

    13. График функции тангенс
    y=tanx, область определения: x∈R,x≠(2k+1)π/2, область значений: −∞

    14. График функции котангенс
    y=cotx, область определения: x∈R,x≠kπ, область значений: −∞

    15. График функции секанс
    y=secx, область определения: x∈R,x≠(2k+1)π/2, область значений:secx∈(−∞,−1]∪∪}