Физические свойства и фото графита. Графит. Свойства, применение

Слово графит в переводе с греческого обозначает «пишу». Минерал с таким названием у природе образуется при высокой температуре в вулканических горных породах.

Графит является представителем класса самородных элементов высокой прочности. Его структура обладает большим количеством слоев.

В природе встречается два вида графита:

  • крупнокристаллический,
  • мелкокристаллический.

По величине кристаллов и по их расположению относительно друг друга в природе встречаются следующие типы графитов:

  • явнокристаллические,
  • скрытокристаллические.

У графита структура является достаточно слоистой. Каждый из слоев обладает волнистой формой. Она является слабовыраженной.

Графит представляет собой один из элементов, который состоит преимущественно из кристаллов разных размеров. Они имеют пластичную структуру и небольшие чешуйки по краям. По своей прочности они могут сравниться алмазами.

Кристаллическая решетка графита состоит из большого количества слоев, которые имеют различное расположение относительно друг друга.

Сегодня не редко производится искусственный графит, который создается из смеси различных веществ. Он используется в разных отраслях человеческой жизнедеятельности. Графит, полученный искусственным путем, обладает большим количеством видов.

В современном мире планируется из графита добывать золото. Ученые выяснили, что в одной тонне графита содержится примерно 18 граммов золота. Данное количество золотой руды присуще золотым месторождениям. В настоящее время получать золото из графита есть возможность не только в нашей стране, но и в других государствах мира.

Одним из главных свойств графита является его способность проводить электрический ток. Его физические свойства отличаются от параметров алмаза тем, что у него не такой высокий уровень твердости. Его структура является изначально довольно мягкой. Однако после нагревания она становится твердой и хрупкой. Материал начинает рассыпаться.

Физические свойства графита являются следующими:

  1. не растворяется в кислоте.
  2. плавление графита при температурах меньше 3800 градусов Цельсия невозможно.
  3. после нагревания приобретает твердую и хрупкую структуру.

Это далеко не все свойства графита. Есть еще параметры, которые делают этот элемент уникальным.

Графиту присущи следующие характеристики:

  • температура плавления графита составляет 3890 градусов Цельсия,
  • цвет графита является темно-серым с металлическим отливом,
  • теплоемкость графита составляет 0.720 кДЖ
  • удельное сопротивление графита составляет 800.000 · 10 − 8 (Ом · Метр).

Внимание: Единственный параметр из всех характеристик графита, который зависит от вида элемента, является теплопроводность графита. Она составляет 278,4 до 2435 Вт/(м*К).

Таблица. Физические свойства графита.

Характеристики Направление потока Температура, °С
20 200 400 600 800
Коэффициент теплопроводности λ, Вт/(м°С) графита:
- кристаллический || 354,7 308,2
- естественный _|_ 195,4 144,2 112,8 91,9 75,6
- прессованный || 157 118,6 93,0 69,8 63,9
- искусственный с р=1,76 г/см 3 _|_ 104,7 81,4 69,8 58,2
- то же, с р=1,55 г/см 3 || 130,3 102,3 79,1 63,9 53,5
Сопротивление разрыву σ пц, МН/м 2 || 14,2 15,2 15,9 16,5 17,6
_|_ 10,3 11,3 12,0 12,5 13,7
Модуль упругости Е, МН/м 2 || 5880 7100 7350 7500 7840
_|_ 2700 3040 3200 3630 3920
Удельная теплоемкость с, кДж/(кг 0 С) 0,71 1,17 1,47 1,68 1,88
Электросопротивление р э 104, Омсм 16 13 11 10 9
Коэффициент линейного расширения α·10 6 , 1/°С || 7,2* 1 8,5* 2 10,0* 3 13,0* 4
_|_ 4,0* 1 5,5* 2 6,8* 3 9,3* 4
|| 1,8* 1 1,55* 2 1,45* 3 1,40* 4

Добыча графита

Добыча графита является сложным процессом. Для этого создано большое количество разновидностей оборудования. Оно используется для добычи и дробления элемента. Залежи графита обычно находятся глубоко под землей. Именно по этой причине чаще всего используются бурильные установки, которые позволяют добраться до месторождения этого элемента.


Как известно такой материал, как графит обладает большим количеством уникальных качеств. Именно они обуславливают сферы его применения. Благодаря тому. что данный материал обладает устойчивостью к высоким температурам его применяют для производства футеровочных плит.

Применение графита используется и в сфере ядерной промышленности. Там он играет важную роль при замедлении нейтронов.

Получение алмаза из графита тоже возможно. В современном мире есть возможность получать синтетический алмаз, который по своим качествам и внешнему виду будет напоминать природный материал.

Пиролитический графит представляет собой особую форму такого элемента, как графит. Данная его разновидность нашла широкое применение в сфере микроскопических исследований. Его применяют в качестве калибровочного материала. Чаще всего его используют в сканирующей туннельной микроскопии и в атомно-силовой микроскопии. Данная разновидность графита относится к разряду синтетических. Его получение возможно при нагревании кокса и пека.

Благодаря графиту можно получать активные металлы с химической точки зрения путем электролиза. Данный метод использования элемента объясняется тем, что у графита достаточно хорошая электропроводность.

При производстве пластмассовых изделий графит тоже нашел свое применение. Его используют для наполнения пластмассы.

Самым известным методом использования графита является производство стержней для обычных простых карандашей, к которым так привыкли люди.

Помимо широко распространенных в природе соединений с кислородом (карбонатов) и водородом (углеводородов) углерод присутствует в самородном виде, образуя две полиморфные разновидности - графит и алмаз , идентичные по своему составу, но резко отличающиеся по структуре и физическим свойствам.

Синонимы:
Пломбагин (де Лиль, 1783), черный свинец, меланграфит (Хайдингер, 1845), графитоид (Зауер, 1885), графитит (Люци, 1891).

Английское название минерала Графит - Graphite

Происхождение названия

Графит известен с древних времен, назван от греческого "графо" - пишу (Вернер, 1789).

Химический состав

Даже чисто отобранный, всегда содержит абсорбированные газы - главным образом Н, N, в меньшем количестве СО з , СО, CH 4 , иногда NH 3 , H 2 S, а также Н 2 О. Нередко содержит механические примеси, которые при сжигании полностью или частью остаются в золе; иногда содержит битумы. В золе, кроме Si, Al, Fe, Mg, Са и щелочей, могут присутствовать S, Р, Си, Ni, Мо, Mn, а также Be, Ge, Ti, V, благородные металлы и др. Наличие в золе V характерно для графита органогенного происхождения. Fe, возможно, иногда содержится в виде твердого раствора.

Разновидности графита

  • Шунгит - аморфная разновидность графита (переходная разность между каменным углем и графитом).
  • (Graphitit) = аморфный разновидность графита
  • Графитовая слюдка (Graphitglimmer), излишнее название = графит

Шунгит - shungite (Иностранцев, 1879). Впервые обнаружен около с. Шунгав (Карелия, Россия). Относится к группе антраксолитов, является промежуточным продуктом между аморфным углеродом и графитом. Содержит кристаллическую фазу в виде очень тонкодисперсного графита. Выделяют четыре разновидности, отвечающие различной степени метаморфизма и различному содержанию углеродистого вещества.

Шунгит I наиболее близок к графиту. Излом его раковистый. Твердость 3,5-4. Плотность 1,84-1,98. Цвет черный; с едва заметным буроватым отливом. Блеск сильный полуметаллический. Непрозрачен. Содержит мельчайшие включения кварца , доломита , кальцита , пирита и др. Электропроводность близка к таковой графита.


В полированных шлифах латунно-желтый (напоминает пирротин). Двуотражения (в отличие от графита) не обнаруживает. Заметно анизотропен.
Содержит 93-98% С, до 3-4% соединений водорода, также N, О, S, до 8% гигроскопической воды; в золе - значительные количества V, Ni, Мо, а также W, Се, As; по спектральным анализам: Со, Ti, Mg, Sr, Си, Сг, Zr, Rh, Ru, Pt, Mn. Содержание V, характерное для шунгита, по данным Мармо, связано с примесями.
Под паяльной трубкой растрескивается и сгорает чрезвычайно медленно. Крепкие H 2 SO 4 и HNO 3 окисляют тонкий порошок лишь при длительном кипячении.
Шунгит II, III и IV - разновидности со слабым и с матовым блеском содержат соответственно всего 40-60%, 28-44% и меньше 15% углерода.
Имеет очень ограниченное распространение. Образовался, по-видимому, в результате метаморфизма докембрийских битуминозных осадочных пород под воздействием диабазов. В Карелии слагает прожилки, линзочки на контакте известняков и диабазов, пропитывает сланцы. Наблюдался в нескольких местах в р-не Онежского оз. в Карелии и в Финляндии, отмечался в Бурятии и Якутии, а также на Урале - в магнезитах Сатки (Челябинская обл.) и в породах спилито-альбитофировой формации около Красноуральска (Свердловская обл.), где приурочен к контактам спилитов и альбитофиров с прослоями метаморфизованных осадочных и туфогенно-осадочных пород.
Может быть использован как удобрение, в качестве топлива в специально приспособленных топках, как сырье для извлечения V, Мо, в металлургии (в качестве заменителя кокса и носителя легирующих

Кристаллографическая характеристика

Сингония гексагональная.

Класс гексагонально-дипирамидальный.

Кристаллическая структура. Структура слоистого типа. В бесконечной плоской сетке каждая петля представляет шестиугольник бензольного типа; около каждого атома С имеются три соседних на таком же расстоянии. Параллельные сетки отстоят друг от друга на значительном расстоянии. На период с приходятся две такие взаимно параллельные сетки, которые взаимно смещены так, что над центром шестиугольника нижней сетки находится узел верхней сетки. Ввиду слабой связи между сетками эта закономерность строения решетки графита часто нарушается, и по отношению к центру шестиугольника одного слоя верхний и нижний слои располагаются так, что тройки лучей С - С, находящиеся над и под осью среднего кольца, взаимно повернуты на 180°. Если такое нарушение строения решетки графита проявляется в большом масштабе, то говорят о ромбоэдрической (трехслойной) модификации графита. Возможны и другие нарушения в чередовании слоев. Наличие в решетке подвижных электронов обусловливает ряд свойств графита, приближающихся к свойствам металлов: цвет, блеск, электро- и теплопроводность, кислотоупорность и т. п. Различие связей в решетке в направлении слоистости и перпендикулярно к нему вызывает резко выраженную анизотропию твердости, электропроводности, магнитных, оптических и других свойств.

Главные формы : Кристаллы таблитчатые по (0001), несовершенные; образуют шестиугольные пластинки с развитыми гранями (h0hl) при отсутствии или подчиненном значении (hh2hl). Наиболее обычны формы: с, r, о, q, р.
На гранях наблюдается штриховка.

Форма нахождения в природе

Облик кристаллов . Кристаллы редки. образует мелкие пластинчатые (шестиугольные) кристаллы.

Двойники по (1121) образуются в результате действия давления, проявляются на (0001) в виде тригональной или гексагональной штриховки; редки двойники вокруг с поворотом на 30° (90°). Наблюдались ориентированные срастания с биотитом .

Агрегаты . Отдельные мелкие чешуйки и пластинки, сферические конкреции радиально-лучистого, реже концентрического строения, агрегаты чешуек различной величины, иногда землистый.

Физические свойства

Оптические

  • Цвет кристаллов темно-серый, серебристый, цвет агрегатов железно-черный до стально-серого.
  • Черта темно- свинцово-серая, черная блестящая
  • Блеск сильный металлический,
  • Отлив у скрытокристаллического - матовый.
  • Прозрачность. Просвечивает лишь в очень тонких листочках.

Показатели преломления

Ng = , Nm = и Np =

Механические

  • Твердость 1-2, на (0001) - 5,5; у высокодисперсных агрегатов твердость возрастает с увеличением степени дисперсности. Листочки упругие сопротивление их на разрыв 2 кг/мм 2 (Шапиро).
  • Плотность 2,21-2,26.
  • Спайность в одном направлении по (0001) совершенная.
  • Излом яснокристаллических агрегатов зернистый, плотных - ровный.

Химические свойства

Химическая стойкость. Кислотоупорен. В полированных шлифах графит ни одним из стандартных реактивов не травится.
При нагревании с дымящей HNO 3 чешуйчатый графит вспучивается (реакция Броди). При длительном нагревании в смеси дымящей HNO 3 с бертолетовой солью (KClO 3) образуется графитовая кислота. На основе некоторого различия в отношении к HNO 3 и KNO 3 было предложено (Люди 1891) различать две разности - α и β.

Прочие свойства

Коэффициент трения очень низкий, с чем связаны «жирность» на ощупь и применение в качестве смазочного материала.

Хороший проводник электричества. Электропроводность резко убывает при повышении температуры (Датэ) и возрастает с увеличением влажности и содержания летучих (Вада). Сильно выражена анизотропия магнитных свойств.

Термическая стойкость. Температура плавления 3550° + 50° . При нагревании в воздухе начинает окисляться выше 400° (чешуйки восточно-забайкальского при температуре ниже 300°); скорость окисления (горения) зависит от строения агрегатов: крупночешуйчатого- 720-730°, мелкочешуйчатого ботогольского - 680°.

Искусственное получение

В электрических печах при температурах выше 2200° графит получается из антрацита и из аморфного углерода (ачесоновский графит). Выделяется при раскристаллизации металлов, особенно в сером чугуне. В виде шестиугольных пластинок был получен из силикатного расплава с примесью сажи и флюорита. Образуется из алмаза при нагревании в вакууме при~2000°; при этом графита ориентируется параллельно алмаза. Может быть получен при низком давлении и при температуре до 1000° в результате раскисления СО 2 и СО, образующихся при диссоциации СаСО 3 (опыты Олинга, Винчела и Фрауэнфельдера, по Шапиро).

Диагностические признаки

Характерны цвет, жирность на ощупь, низкая твердость, мягкость (пишет на бумаге), пачкает пальцы. кислотоупорность.

Мелкие чешуйки от очень сходного молибденита отличаются более темным цветом и менее сильным блеском. В отражательном свете по характеру двуотражения и анизотропии определяется легко. Может быть принят лишь за молибденит (отличается коричневатым оттенком и низкой отражательной способностью - Re), за валлериит и тенорит , отличающиеся по парагенезису; валлериит, кроме того, характеризуется высокой отражательной способностью, тенорит - меньшим двуотражением. Изотропный скрытокристаллический графит в очень мелких выделениях трудно отличим от сульванита, отражательная способность которого, однако, выше средней отражательной способности графита.
Межплоскостные расстояния графита (по Михееву) Fe-антикатод, D = 140,00 мм

Происхождение и нахождение

Широко распространенный минерал, образующий местами крупные скопления. Возникает при высоких температурах - при кристаллизации магмы, при образовании жильных месторождений и при процессах метаморфизма.

Месторождения

Образование скоплений графита в магматических породах связано с ассимиляцией магмой известняков, битуминозных или углистых пород. Некоторые месторождения этой группы имеют промышленное значение. Наиболее известным среди них является Ботогольское (Алиберовское) месторождение в Бурятии, в котором графит образует штоки, гнезда, жилообразные тела и рассеянные выделения среди сиенитов по близости от известняков. Спутники графита - микроклин, эгирин-авгит, альбит, кальцит, сфен и др. В Черемшанском месторождении (Ильменские горы в Челябинской обл.) графит наблюдается в граните в виде сферолитов, гнезд и неправильных выделений. Выделения графита среди гранитов установлены также в округе Клей (шт. Алабама, США). В Овифаке (Зап. Гренландия) графит обнаружен в базальтах вместе с самородным железом, на Гарце (Германия) - в порфирах, порфиритах и габбро, в Малаге (Испания)-среди серпентинита и диорит-порфирита, в Новом Южном Уэльсе (Австралия)-в фельзитах, слагающих дайку. Выделения графита, частью имеющие практическое значение, наблюдаются во многих пегматитовых жилах (графитоносные пегматиты Украины, Таджикистана, Бразилии, Индии, Гренландии, США, Италии, Канады и других стран).
Из высокотемпературных жильных месторождений графита наибольшей известностью пользуются месторождения Цейлона, имеющие большое промышленное значение. Графитовые жилы здесь залегают главным образом среди гнейсов; они состоят почти нацело из графита или содержат наряду с ним пирит, титаномагнетит, кварц, биотит, ортоклаз, апатит, ортит, рутил, цеолиты, кальцит и другие минералы. Шильные месторождения графита такого же типа имеются в Канаде (пров. Квебек), США (шт. Монтана), в Англии (Камберленд) и в других странах.
Отмечается наличие графита в некоторых кварцевых жилах с вольфрамитом , в некоторых золотоносных кварцевых жилах, среднетемпературных гидротермальных свинцово-цинковых месторождениях и др.
В скарновых месторождениях графит наблюдается в ассоциации с гранатом, везувианом, диопсидом, волластонитом, тремолитом, скаполитом, кальцитом, апатитом и другими минералами; некоторые месторождения этой группы являются промышленными. Таковы месторождения Канады - Луиза (пров. Квебек) и Порт-Элнслей (пров. Онтарио). В месторождении Тас-Казган (Узбекистан) графит приурочен к контакту габбро-норитов с битуминозными породами.

Широко развит в метаморфических породах, гнейсах и сланцах, в виде отдельных рассеянных чешуек, скоплений, линзовидных и пластовых залежей. Образуется в результате глубокой метаморфизации древних осадочных пород, первоначально содержавших значительные количества органических остатков (битуминозных), или карбонатных отложений. Таковы широко развитые чешуйчатые выделения в гнейсах и сланцах Украины - результат интенсивной метаморфизации древних кристаллических пород, возможно, при участии летучих (месторождения Старо- Крымское, Завьяловское и др.), Союзное месторождение на Малом Хингане в Амурской обл., Тайгинское и Мурзинское месторождения Свердловской обл., богатые месторождения в гнейсах около Пассау (Германия), в метаморфизованных известняках Паргаса в Финляндии, Эшленд в шт. Алабама (США), крупные месторождения чешуйчатого графита на Мадагаскаре и др.
Широко развиты месторождения скрытокристаллического графита, связанные с метаморфизацией каменных углей. В соответствии с различными условиями метаморфизма степень метаморфизации углей различна. Графит образует прослойки, пласты и пластовые залежи. Под влиянием контактного воздействия траппов на угольные пласты образовались, например, крупные залежи западной части Тунгусского угольного бассейна (Красноярский край), состоящие из мельчайших выделений графита с примесью пирита, кальцита, небольших количеств апатита, рутила, магнетита и др. С метаморфизмом каменных углей связано также образование некоторых графитовых месторождений Урала (Боевское, Полтавское, Брединское, Фадинское Челябинской обл.). Тонкодисперсный графит, выявляемый лишь рентгеновским анализом, содержится во многих ископаемых каменных углях.
Графит содержится в некоторых элювиальных, реже в аллювиальных россыпях, образующихся при выветривании графитсодержащих пород.
В сублиматах вулкана Билюкай на Камчатке графит в виде налета на нашатыре образовался, вероятно, в результате действия лавового потока на растительность (по устному сообщению Набоко). Отмечается наличие графита в каменных и железных метеоритах.
Неясен генезис пленок графита на кристаллах алмаза в южноафриканских месторождениях.


Завальевское месторождение чешуйчатого графита


Графит. Крупночешуйчатый агрегат. Украина. Завалье

Многочисленные промышленные залеж и чешуйчатого графита Украинской графитоносной провинции связаны с архейскими образованиями тетерево-бугской серии в составе Украинского кристаллического массива. Эта серия сложена сильно дислоцированными амфиболитами, амфиболовыми, плагиоклазовыми, пироксеновыми, силлиманитовыми и гранатовыми гнейсами, кварцитами и кристаллическими известняками, перемежающимися с графитистыми биотитовыми, серицитовыми, биотит-хлоритовыми и хлоритовыми гнейсами, имеющими нередко промышленное значение. В пределах провинции выделяют три рудных района: Прибугский (по рекам Тетерев и Буг), Криворожский (по р. Ингулец) и Приазовский (вдоль побережья Азовского моря). Все месторождения провинции имеют большую промышленную ценность благодаря высокому качеству графита, большим масштабам оруденения, легкости о богащения руд и возможности открытой разработки.

Завальевское месторождение, расположенное на левом берегу Юж. Буга, является типичным представителем этой провинции. Геологически оно приурочено к крупной синклинальной складке запад-северо-западного направления с крутыми (вплоть до вертикальных) углами падения пород в крыльях. Центральная часть складки выполнена кристаллическими известняками, окаймляемыми кварцитами; мощность известняков 500 м, кварцитов 20-50 м. Ниже по разрезу находятся графитоносные гнейсы (продуктивная толща), мощность которых не выдержана: в северном крыле она достигает 250 м, а в южном - резко сокращается до 15 м. Продуктивная толща подстилается бёзрудными амфиболовыми гнейсами. Синклиналь зажата между гранитами, обнажающимися в северной части месторождения, и прорвана кварцевыми жилами, дайками гранитов и гранит-аплитов. Кристаллические породы на участке месторождения повсеместно перекрыты третичными и четвертичными песчано-глинистыми отложениями мощностью до 35-40 м.

Продуктивная толщ а графитоносных биотит-хлоритовых и полевошпат-гранатовых гнейсов состоит из нескольких (1-5) графитсодержащих горизонтов, разделенных безрудными гнейсами. Мощность этих горизонтов варьирует от 3,5 до 70 м, а протяж енность составляет сотни метров; в них по данным опробования оконтуриваются промышленные рудные тела пластовой и линзовидной формы, сложенные вкрапленными рудами. Графит в этих телах крупночешуйчатый (размером от 0,1 до 1-2 мм) со средним содержанием 6- 10%. Иногда чешуйки графита объединяются в пятнистые скопления - агрегаты. Помимо графита в составе руд присутствуют кварц, калиевый полевой шпат, плагиоклаз, а так ж е небольшие количества биотита, хлорита, граната,
кальцита, апатита, циркона и пирита.

В четко выраженной коре выветривания, развивающейся по графитоносным гнейсам, наблюдается зональность. В верхней (рыхлой) зоне широко развиты глинистые минералы. Минеральный состав руд: графита до 10%, до 50% глинистых минералов (гидрослюды, монтмориллонит, каолинит , нонтронит и д р.); 25% кварца; до 10% гидроксидов железа; до 10% гранатов и полевых шпатов. В средней (полурыхлой) зоне при сохранении содержания графита (до 10%) увеличивается количество кварца (30-4 0%) и полевых шпатов (10- 2 5 %), появляются слюды (10- 15%), гранат, силлиманит и апатит (до 10%), одновременно сокращается доля глинистых минералов (10-4 0 %). Нижняя (плотная) зона коры выветривания по своему минеральному составу близка первичным (твердым) рудам месторождения. Благодаря тому что в коре выветривания чешуйки графита освобождены от срастания с другими минералами (раскрыты), эти руды (так называемые мягкие) еще более легко обогатимы, представляя первоочередной объект промышленной разработки. Рыхлые и твердые руды месторождения обогащаются флотацией с получением концентрата, содержащего 85-90% графита высокого качества зольностью не выше 10- 15%. По разведанным запасам и масштабу добычи месторождение является одним из крупнейших в стране. Большинством исследователей генетически Завальевск о е месторождение рассматривается как метаморфическое, образовавшееся в процессе регионального метаморфизма первично-осадочных алюмосиликатных пород, содержащих в своем составе рассеянное углеродное вещество. Отдельные геологи (В. П. Бухаров, В. Б. П о лянский и др.) полагают, что образование графита в гнейсах происходило за счет углерода, освобождавшегося при дегазации карбонатных пород, сопровождавшейся разложением оксида углерода (реакция Будуара). Наконец, имеются данные о том, что наряду с графитом, образовавш имся за счет первично-осадочного углерода, в гнейсах может быть и более поздний графит, связанный с глубинным источником углекислоты (А. Ф. Коржинский и др.).

Практическое применение

Графит имеет очень разнообразное применение, основанное на его «жирности», кислотоупорности, огнестойкости, электропроводности. Идет на изготовление тиглей для плавки стали и цветных металлов (около 65-70% общего потребления), широко применяется в электротехнике (для изготовления электродов), как смазочный материал, при производстве красок, карандашей и др. Наиболее ценным считается кристаллический графит; скрытокристаллические разности употребляются лишь в литейном деле, как наиболее дешевое сырье.

Мировая добыча природного графита осуществляется в немногих странах и приближается к 600 тыс. т/год. Почти половина ее приходится на КНР и Россию, разрабатываю щ ие месторождения кристаллического и аморфного графита. Крупными продуцентами кристаллического графита являются Чехия, Германия, Малагасийская Республика, Норвегия, Шри-Ланка, а аморфного - Индия,
Мексика, КНДР, Южная Корея, Австрия. Мировое производств0 синтетического графита составляет около 1,5 млн т и осуществляется в промышленно развитых странах, не обладающих существенными природными запасами этого сырья: США, Канаде, Японии, странах Западной Европы.

(карбид железа; Fe 3 C метастабильная высокоуглеродистая фаза)
Графит стабильная высокоуглеродистая фаза

Структуры железоуглеродистых сплавов Чугуны

Белый чугун (хрупкий, содержит ледебурит и не содержит графит)
Серый чугун (графит в форме пластин)
Ковкий чугун (графит в хлопьях)
Высокопрочный чугун (графит в форме сфероидов)
Половинчатый чугун (содержит и графит, и ледебурит)

Электрическая проводимость монокристаллов графита анизотропна , в направлении, параллельном базисной плоскости, близка к металлической, в перпендикулярном - в сотни раз меньше. Минимальное значение проводимости наблюдается в интервале 300-1300 К, причем положение минимума смещается в область низких температур для совершенных кристаллических структур. Наивысшую электрическую проводимость имеет рекристаллизованный графит.

Применение

Cувенирный графитовый блок.

Использование графита основано на ряде его уникальных свойств.

  • для изготовления плавильных тиглей, футеровочных плит - применение основано на высокой температурной стойкости графита (в отсутствие кислорода), на его химической стойкости к целому ряду расплавленных металлов
  • электродов , нагревательных элементов - благодаря высокой электропроводности и химической стойкости к практически любым агрессивным водным растворам (намного выше, чем у благородных металлов).
  • Для получения химически активных металлов методом электролиза расплавленных соединений. В частности, при получении алюминия используются сразу два свойства графита:
  1. Хорошая электропроводность, и как следствие - его пригодность для изготовления электрода
  2. Газообразность продукта реакции, протекающей на электроде - это углекислый газ. Газообразность продукта означает, что он выходит из электролизёра сам, и не требует специальных мер по его удалению из зоны реакции. Это свойство существенно упрощает технологию производства алюминия.
  • твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках
  • наполнитель пластмасс
  • замедлитель нейтронов в ядерных реакторах
  • компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином)
  • для получения синтетических алмазов
  • для изготовления контактных щёток и токосъёмников для разнообразных электрических машин , электротранспорта и мостовых подъёмных кранов с троллейным питанием, мощных реостатов , а также прочих устройств, где требуется надёжный подвижный электрический контакт.
  • как токопроводящий компонент высокоомных токопроводящих клеёв

Литература

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Klein, Cornelis and Cornelius S. Hurlbut, Jr. (1985) Manual of Mineralogy: after Dana 20 th ed. ISBN 0-471-80580-7

Примечания

Ссылки

Структура слоистая. Хорошо образованные кристаллы редки, они имеют вид шестиугольных табличек с хорошо развитой гранью базопинакоида. Отмечаются двойники. Обычно образует чешуйчатые, столбчатые, массивные, почковидные, сферолитовые, сферолитоподобные и цилиндрические зональные агрегаты.

Плотнокристаллический графит слагает жилы и линзы в месторождениях гидротермально-пневмалитового генезиса или гнезда, и вкрапленность в контактово-реакционных месторождениях. Пневматолито- связаны с согласными, реже секущими пегматитовыми, кварцевыми, полевошпатовыми и кальцитовыми . Контактово-реакционные месторождения приурочены к зонам контакта обогащенных углеродом карбонатных и сланцевых пород со щелочными и габброидными породами, реже . сложены полевым шпатом, кварцем, реже слюдами, карбонатом; в скарновых зонах они обогащены гранатом, а также минералами и габброидных пород (нефелином, канкринитом, содалитом, сфеном, апатитом). Графит (от крупно- до тонкокристаллического) слагает чешуйчатые и волокнистые агрегаты. Содержание в рудах 15-40%, на некоторых месторождениях 60-90%. Разрабатывается обычно подземным способом. Известные месторождения — Богала (Шри-Ланка) и Ботогольское (CCCP).

Скрытокристаллический графит отличается несовершенной текстурой, часто содержит примесь тонкодисперсного углеродистого вещества. Слагает мощные и протяжённые пластообразные залежи, иногда переходящие в угли. Содержание углерода составляет 80-90%. Основные породообразующие минералы: кварц, полевой шпат, серицит, хлорит, кальцит. Графит образуется при метаморфизме углей, углистых и битуминозных сланцев вблизи . Залежи разрабатываются открытым и подземным способами. Основные месторождения расположены в Мексике (штат Сонора), Южной Kopee, Австрии (рудник "Кайзерсберг"), CCCP (месторождение Ногинское).

Получение графита

Наряду с природным применяют искусственный графиты, который получают при охлаждении пересыщенных сплавов, термическим разложением газообразных углеводородов, нагреванием , нефтяного кокса, каменноугольного пека. Применяются графиты в металлургии (тигли, литейные формы, противопригарные краски), в химическом машиностроении (футеровочный материал, трубы и др.), в производстве коллекторов для динамо-машин, электродов, проводящих порошков, смазочных материалов, антифрикционных изделий, в ядерной технике, в производстве карандашей, красок, теплоизоляционных материалов. Искусственный кусковой графит используют в качестве эрозионностойких покрытий для сопел ракетных двигателей, камер сгорания носовых конусов.

Графит – это минерал, используемый в самых разных областях промышленности. Такая его популярность обусловлена уникальными свойствами (мягкости, легкой механической обработке, высокой электропроводности, химической инертности).

Существуют искусственные виды этого материала, которые также являются весьма востребованными. Их используют не только в разных сферах промышленности, но и для проведения микроскопических исследований (как калибровочный материал).

Применение искусственного графита

Используется в таких промышленных отраслях:

  • Машиностроение;
  • Атомная техника;
  • Металлургия;
  • Производство электротехники;
  • Химическая промышленность.

Нередко применяются разновидности искусственного графита, пропитанные различными синтетическими смолами. Они используются для создания химической аппаратуры, незаменимы при изготовлении запорной или соединительной арматуры.

Из искусственного графита изготавливают также:

  • Торцевые уплотнения;
  • Подшипники;
  • Реакторные корпуса;
  • Футеровочные плитки.

Использование натурального графита

Этот минерал обладает широчайшим спектром применения и является незаменимым в самых разных промышленных отраслях.

Где используется графит:

  • Машиностроение;
  • Химическая промышленность;
  • Металлургия;
  • Производство строительных материалов – этот минерал служит одной из незаменимых составляющих при производстве кирпичей, в частности, огнеупорных;
  • Атомная энергетика – его применяют в роли замедлителя нейронов;
  • Производство электрических приборов – для изготовления электроконтактов, а также электродов;
  • Медицина.

Использование графита в металлургии:

  • В этой сфере из графита изготавливают формы для сплавов, тугоплавкие ковши, а также емкости, в которых проходит кристаллизация;
  • Из него изготавливаются плавильные тигли;
  • Графит может быть использован для насыщения металлов углеродом (то есть карбонизации), а также создания химически активных металлов;
  • Графитовый порошок часто применяется в качестве смазки литейных форм.

Машиностроение: для чего используется графит

В этой отрасли использование минерала также весьма разнообразно. Его свойства делают графит незаменимым при создании самой различной продукции.

В машиностроении из графита производят:

  • Футировочные плиты;
  • Электроды (графитированные);
  • Разнообразные нагревательные элементы;
  • Порошки и пасты для уплотнения контактов, например, в стыковых люфтах;
  • Скользящие контакты (электрощетки);
  • Подшипники, уплотнительные кольца;
  • Электростатические покрытия.

Графит в химической промышленности:

  • Из этого минерала производят разнообразные смазки, которые используются и на производстве, и в быту;
  • Является наполнителем для некоторых видов пластмасс;
  • Применяется для синтеза искусственных алмазов;
  • Незаменим при изготовлении красок, которые обладают отличными антикоррозионными свойствами, а также различных лаков;
  • Используется как наполнитель для технологических смесей;
  • Может служить пластификатором;
  • Является одним из компонентов клея для соединения прорезиненых тканей;
  • Входит в состав присадок и антифрикционных наполнителей (для трансмиссионных или моторных масел), охлаждающих жидкостей;
  • Применяется для изготовления щелочных аккумуляторов.

Графит: применение в медицине

Этот минерал входит в состав множества лекарственных средств (прежде всего гомеопатических). Его применяют при дерматологических заболеваниях, а также при образовании рубцов или спаек, нарушении обменных процессов.

Также из черного графита изготавливаются карандаши.

Слово графит в переводе с греческого обозначает «пишу». Минерал с таким названием у природе образуется при высокой температуре в вулканических горных породах.

Характеристики графита

Графит является представителем класса самородных элементов высокой прочности. Его структура обладает большим количеством слоев.

В природе встречается два вида графита:

  • крупнокристаллический,
  • мелкокристаллический.

По величине кристаллов и по их расположению относительно друг друга в природе встречаются следующие типы графитов:

  • явнокристаллические,
  • скрытокристаллические.

У графита структура является достаточно слоистой. Каждый из слоев обладает волнистой формой. Она является слабовыраженной.

Графит представляет собой один из элементов, который состоит преимущественно из кристаллов разных размеров. Они имеют пластичную структуру и небольшие чешуйки по краям. По своей прочности они могут сравниться алмазами.

Кристаллическая решетка графита состоит из большого количества слоев, которые имеют различное расположение относительно друг друга.

Сегодня не редко производится искусственный графит, который создается из смеси различных веществ. Он используется в разных отраслях человеческой жизнедеятельности. Графит, полученный искусственным путем, обладает большим количеством видов.

В современном мире планируется из графита добывать золото. Ученые выяснили, что в одной тонне графита содержится примерно 18 граммов золота. Данное количество золотой руды присуще золотым месторождениям. В настоящее время получать золото из графита есть возможность не только в нашей стране, но и в других государствах мира.

Физические свойства графита

Одним из главных свойств графита является его способность проводить электрический ток. Его физические свойства отличаются от параметров алмаза тем, что у него не такой высокий уровень твердости. Его структура является изначально довольно мягкой. Однако после нагревания она становится твердой и хрупкой. Материал начинает рассыпаться.

Физические свойства графита являются следующими:

  1. не растворяется в кислоте.
  2. плавление графита при температурах меньше 3800 градусов Цельсия невозможно.
  3. после нагревания приобретает твердую и хрупкую структуру.

Это далеко не все свойства графита. Есть еще параметры, которые делают этот элемент уникальным.

Графиту присущи следующие характеристики:

  • температура плавления графита составляет 3890 градусов Цельсия,
  • цвет графита является темно-серым с металлическим отливом,
  • теплоемкость графита составляет 0.720 кДЖ
  • удельное сопротивление графита составляет 800.000 · 10− 8 (Ом · Метр).

Внимание: Единственный параметр из всех характеристик графита, который зависит от вида элемента, является теплопроводность графита. Она составляет 278,4 до 2435 Вт/(м*К).

Таблица. Физические свойства графита.

ХарактеристикиНаправление потокаТемпература, °С 20200400600800
Коэффициент теплопроводности λ, Вт/(м°С) графита:
— кристаллический || 354,7 308,2
— естественный _|_ 195,4 144,2 112,8 91,9 75,6
— прессованный || 157 118,6 93,0 69,8 63,9
— искусственный с р=1,76 г/см3 _|_ 104,7 81,4 69,8 58,2
— то же, с р=1,55 г/см3 || 130,3 102,3 79,1 63,9 53,5
Сопротивление разрыву σпц, МН/м2 || 14,2 15,2 15,9 16,5 17,6
_|_ 10,3 11,3 12,0 12,5 13,7
Модуль упругости Е, МН/м2 || 5880 7100 7350 7500 7840
_|_ 2700 3040 3200 3630 3920
Удельная теплоемкость с, кДж/(кг0С) 0,71 1,17 1,47 1,68 1,88
Электросопротивление рэ104, Омсм 16 13 11 10 9
Коэффициент линейного расширения α·106, 1/°С || 7,2*1 8,5*2 10,0*3 13,0*4
_|_ 4,0*1 5,5*2 6,8*3 9,3*4
|| 1,8*1 1,55*2 1,45*3 1,40*4

Добыча графита

Добыча графита является сложным процессом. Для этого создано большое количество разновидностей оборудования. Оно используется для добычи и дробления элемента. Залежи графита обычно находятся глубоко под землей. Именно по этой причине чаще всего используются бурильные установки, которые позволяют добраться до месторождения этого элемента.

Применение графита

Как известно такой материал, как графит обладает большим количеством уникальных качеств. Именно они обуславливают сферы его применения. Благодаря тому. что данный материал обладает устойчивостью к высоким температурам его применяют для производства футеровочных плит.

Применение графита используется и в сфере ядерной промышленности. Там он играет важную роль при замедлении нейтронов.

Получение алмаза из графита тоже возможно. В современном мире есть возможность получать синтетический алмаз, который по своим качествам и внешнему виду будет напоминать природный материал.

Пиролитический графит представляет собой особую форму такого элемента, как графит. Данная его разновидность нашла широкое применение в сфере микроскопических исследований. Его применяют в качестве калибровочного материала.

Графит. Свойства, применение

Чаще всего его используют в сканирующей туннельной микроскопии и в атомно-силовой микроскопии. Данная разновидность графита относится к разряду синтетических. Его получение возможно при нагревании кокса и пека.

Благодаря графиту можно получать активные металлы с химической точки зрения путем электролиза. Данный метод использования элемента объясняется тем, что у графита достаточно хорошая электропроводность.

При производстве пластмассовых изделий графит тоже нашел свое применение. Его используют для наполнения пластмассы.

Самым известным методом использования графита является производство стержней для обычных простых карандашей, к которым так привыкли люди.

Что такое графит? Формула, свойства и применение графита

Графит. Свойства, применение

Графиты - вещества серого цвета с металлическим блеском, аморфного, кристаллического, или волокнистого сложения, жирные на ощупь, удельный вес от 1,9 до 2,6.
По внешнему виду графит, имеет металлический свинцово-серый цвет, колеблющейся от серебристого до черного, с характерным жирным блеском.
Поэтому потребители зачастую называют явнокристаллические графиты серебристыми, а скрытокристаллические - черными.

В зависимости от структурного строения графиты делятся на:
явнокристаллические,
скрытокристаллические,
графитоиды,


Графитовая шахта. Фото: born1945

Кристаллическая решетка графита состоит только из атомов углерода. Кристаллической решетке графита присуща ярко выраженная слоистая структура, расстояние между слоями 0,335 нм. В кристаллической решётке графита каждый атом углерода связан с тремя другими окружающими его атомами углерода. Кристаллическая решетка графита бывает двух типов: гексагональная (α-графит) и ромбоэдрическая (β-графит, метастабильная форма). Атомы углерода каждого слоя кристаллической решётки α-графита расположены напротив центров шестиугольников, находящихся в соседних (нижнем и верхнем) слоях; положение слоев повторяется через один, каждый слой сдвинут относительно другого в горизонтальном направлении на 0,1418 нм (укладка АВАВА). В ромбоэдрической решетке β-графита положение плоских слоев повторяется не через один слой, как в гексагональной решётке, а через два. Несмотря на то, что β-графит метастабилен, в природном графите его содержание может доходить до 30%. При температурах 2230-3030°С ромбоэдрический графит полностью переходит в гексагональный. Альфа-графит и бета-графит обладают сходными физическими свойствами (за исключением несколько отличающейся структуры графена).
Электропроводность кристаллов графита анизотропна: близка к металлической в направлении, параллельном базисной плоскости, и на порядок меньше в перпендикулярном направлении. Анизотропия характерна также для звукопроницаемости (акустических свойств) и теплопроводных свойств графита.

Свойства графита

Широкое применение графита основывается на нескольких уникальных свойствах:
— хорошая электропроводность;
— устойчивость к агрессивным средам;
— устойчивость к высоким температурам;
— высокая смазывающая способность.

Электрические свойства
Электропроводность графита в 2,5 раза больше электропроводности ртути. При температуре 0 град. удельное сопротивление электрическому току находится в пределах от 0,390 до 0,602 ом. Низкий предел удельного сопротивления для всех видов графита одинаков и равен 0,0075 ом.

Термические свойства

Температура плавления графита - 3845-3890 С при давлении от 1, до 0,9 атм.

Магнитные свойства


Левитация графита. Фото: yellowcloud

Растворимость графита

Упругость графита

Оптические свойства


Применение графита

Природные графиты применяются во многих технологических и производственных процессах: огнеупоры (высококачественные, графито-магниевые, алюмо-графитовые), литейное производство, тормозные накладки, смазки, карандашное производство, тигли, гальванические батареи, щелочные аккумуляторы, порошковая металлургия, углеграфитовая материалы (электрощетки, электроугольные изделия, антифрикционные материалы), производство стали, терморасширенный графит, другие области (красящие и полирующие вещества),противоугарные материалы, детали для электротехники, магнитные ленты, производство промышленных алмазов, суспензии охлаждающие и смазывающие).

Графиты искусственные измельченные — предназначены для науглероживания чугуна и стали в мартеновском, кислородно-конверторном и электросталеплавильном процессах при выплавке стали с пониженной долей чугуна в шихте, для вспенивания шлаков в металлургических процессах, при изготовлении углеграфитовых материалов и изделий, в качестве наполнителя для графитопластов и как самостоятельные продукты в других потребляющих производствах.



Отечественная промышленность в большом ассортименте выпускает графитовые электрощетки для различных электрических машин, электрические осветительные угли для прожекторов и для демонстрации и съемок кинофильмов, элементные - гальванических батарей, сварочные и для спектрального анализа, изделия для электровакуумной техники и техники связи.

Графит служит высокоогнеупорной отощающей добавкой в керамических массах. Тигельной массе он сообщает высокую огнеупорность, теплопроводность и термическую стойкость, придает тиглям гладкую поверхность, к которой плохо пристает расплавленный металл. Он восстанавливает при высоких температурах металлические окисли и препятствует окислению металла.

Наибольшее значение имеет производство графитовых плавильных тиглей, а также крышек к ним. Кроме того, из графита изготавливаются надставки и подставки к тиглям, тигли для специальных печей, реторты. Ванны для пайки, ванны для обжига карандашных стержней, графитокарборундовые муфели и другие изделия. В качестве высокоогнеупорного материала кристаллический графит применяется при изготовлении высококачественных высокоогнеупорных облицовочных изделий для кладки доменных печей, топок, паровых котлов.

Растворение — графит

Cтраница 1

Растворение графита в у-фазе является важным процессом при нормализации (а также и при закалке) чугуна с ферритной или феррито-перлитной структурой. Этот процесс подобен цементации стали; разница в том, что при цементации происходит насыщение поверхностного слоя стальной детали углеродом из внешней среды, а при нагреве чугунной отливки карбюризатором являются многочисленные включения графита, расположенные в металлической основе, и насыщение углеродом происходит во всем объеме отливки. На растворение углерода в аустените чугунной отливки влияет температура: с повышением температуры нагрева растворимость углерода в у-фазе резко увеличивается. В результате нормализации чугуна с исходной структурой основной массы феррит или феррит и перлит получается структура перлита или сорбитообразного перлита с повышенной твердостью и прочностью.  

Процесс растворения графита достаточно быстро происходит лишь при высоких температурах.  

По мере растворения графита на холодном контакте и повышения концентрации углерода в расплаве зона, где СГ (ТХ) СА (ТХ), расширяется в сторону высоких температур и более низких пересыщений.  

Термодинамические данные для растворения графита пока еще скудны и нередко разноречивы. Не вполне ясен вопрос об энтальпии процесса.  

При нагреве происходит растворение графита в аустените, в связи с чем, несмотря на различную исходную структуру чугуна, превращению при охлаждении подвергается аустенит с эвтектоид-ной или заэвтектоидной концентрацией углерода.  

Обра-1 зующиеся при растворении графита и обезуглероживании чугуна поры частично или полностью заполняются окислами. Наряду с железом окисляются кремний и марганец, образующие с кислородом стойкие соединения. Как и на поверхности, окисленный слой в объеме отливок имеет гетерогенное строение.  

Возможность образования пор при растворении графита следует из данных дилатометрического анализа. Если бы процесс растворения графита был обратим, размеры образцов при выделении и растворении графита изменялись бы на одну и ту же величину, но противоположную по знаку.  

Установлено, что при растворении графита в жидком железе величина Д) / с имеет положительное значение на всем интервале концентраций и при NG 0 1 близка к 5000 кал / моль. Изменение энтропии ДЛ с превышает значения, отвечающие идеальным растворам; при повышении концентрации углерода фактические значения ДЛ с убывают быстрее по сравнению с соответствующими величинами, отвечающими идеальным растворам.  

Таким образом, основным механизмом растворения графита является, по-видимому, прямая контактная диффузия. В этом случае науглероживание железа может быть результатом диффузии углерода по поверхности поры до тех участков, где контакт с матрицей сохранился, и в дальнейшем путем граничной и объемной диффузии. Большого различия в науглероживании по контуру включения не наблюдается, что может реализоваться в том случае, если поверхностная диффузия значительно преобладает над объемной. Во многих диффузионных парах такое соотношение скоростей диффузии в действительности имеет место, однако, в какой мере это может оказаться справедливым для Fe — Si — С-сплавов, неизвестно.  

Исходя из рассмотренной выше микроскопической картины растворения графита, нетрудно объяснить эффект температуры аустенитизации и поверхностно-активных примесей. При нагреве растворимость углерода в аустените возрастает, так что уменьшение когезии графита сопровождается увеличением адгезии графита к матрице. Вследствие этого восстановление контакта двух фаз путем разрушения графита реализуется чаще. Одновременно с нагревом увеличивается и роль газов. Присадка в чугун элементов, снижающих поверхностное натяжение матрицы и тем самым ослабляющих адгезию, должна препятствовать науглероживанию. Задерживать растворение могут и примеси, увеличивающие силы связи в базисных плоскостях графита.

Свойства графита

Второй вид взаимодействия имеет место при растворении графита или алмаза в жидких металлах. В этих условиях смачивание графита менее интенсивно, чем в первом случае.  

Второй путь состоит в использовании термодинамических характеристик процессов, связанных с растворением графита в жидком железе.  

Страницы:      1    2    3    4

ГРАФИТ (от греческого grapho — пишу * а. graphite, black lead, plumbago; н. Graphit; ф. graphite; и. grafito) — минерал класса самородных элементов, одна из полиморфных модификаций углерода, термодинамически стабильная в условиях земной коры. Примеси газов (CO2, CO, Н, CH4), иногда воды, битумов, а также Si, Al, Mg, Ca и др. Кристаллизуется в гексагональной сингонии. Структура слоистая. Хорошо образованные кристаллы редки, они имеют вид шестиугольных табличек с хорошо развитой гранью базопинакоида. Отмечаются двойники. Обычно образует чешуйчатые, столбчатые, массивные, почковидные, сферолитовые, сферолитоподобные и цилиндрические зональные агрегаты.

Свойства графита

Природные графиты различают по величине кристаллов и их взаимному расположению на явнокристаллические и скрытокристаллические.

Применение графита в различных промышленных отраслях

Размер первых превышает 1 мк, вторых — меньше 1 мк. В промышленности по величине кристаллов выделяют крупнокристаллические (свыше 50 мкм), мелкокристаллические (менее 50 мкм) и тонкокристаллические (менее 10 мкм) графиты. Спайность по пинакоиду весьма совершенная. Черта тёмно-серая до чёрного. Жирен на ощупь, пачкает руки. Блеск металлический. Анизотропен. Твердость по минералогической шкале 1-2. Плотность 2250 кг/м3. Огнеупорен — не плавится при нормальном давлении, температура сублимации выше 4000 К. Электропроводен — электрическое сопротивление кристаллов 0,42.10-4 Ом/м, тонкодисперсных порошков — 8-20.10-2 Ом/м. Химически стоек. Характерны также низкий модуль упругости, высокая удельная теплоёмкость, хорошее сопротивление термическому удару, коррозионная стойкость, высокая замедлительная способность нейтронов и малое сечение их захвата. По происхождению — метаморфический, магматический. Промышленные скопления связаны в основном с метаморфическими месторождениями. Магматические месторождения редки и приурочены к щелочным и ультраосновным породам. Вещественный состав руд зависит от генезиса. Обычно присутствуют силикатные минералы (кварц, полевой шпат, слюда, глинистые минералы). В мраморах с графитом обычно ассоциируют карбонаты. В качестве попутных полезных ископаемых могут добываться нефелин, волластонит и каолинит. Различают три типа графитовых руд: чешуйчатые, плотнокристаллические, скрытокристаллические.

Месторождение графита

Месторождения чешуйчатого графита локализуются в гнейсах, кварцитах, мраморах. Образуются при метаморфизме древних осадочных толщ. Форма залежей пласто- и линзообразная, выдержана по мощности и протяжённости. Графитовые чешуйки образуют рассеянную вкрапленность в породе. Содержание углерода в руде составляет в среднем 3-18%. Месторождения графита известны в CCCP (например, Тайгинское, Урал; Завальевское, УССР), Австрии, ЧССР, ФРГ, Индии, на Мадагаскаре (район Фанандрана), в Бразилии, KHP, Канаде.

Плотнокристаллический графит слагает жилы и линзы в месторождениях гидротермально-пневмалитового генезиса или гнезда, линзы и вкрапленность в контактово-реакционных месторождениях. Пневматолито-гидротермальные месторождения связаны с согласными, реже секущими пегматитовыми, кварцевыми, полевошпатовыми и кальцитовыми жилами. Контактово-реакционные месторождения приурочены к зонам контакта обогащенных углеродом карбонатных и сланцевых пород со щелочными и габброидными породами, реже гранитами. Руды сложены полевым шпатом, кварцем, реже слюдами, карбонатом; в скарновых зонах они обогащены гранатом, волластонитом, пироксеном, скаполитом, а также минералами щелочных и габброидных пород (нефелином, канкринитом, содалитом, сфеном, апатитом). Графит (от крупно- до тонкокристаллического) слагает чешуйчатые и волокнистые агрегаты. Содержание в рудах 15-40%, на некоторых месторождениях 60-90%. Разрабатывается обычно подземным способом. Известные месторождения — Богала (Шри-Ланка) и Ботогольское (CCCP).

Скрытокристаллический графит отличается несовершенной текстурой, часто содержит примесь тонкодисперсного углеродистого вещества. Слагает мощные и протяжённые пластообразные залежи, иногда переходящие в угли. Содержание углерода составляет 80-90%. Основные породообразующие минералы: кварц, полевой шпат, серицит, хлорит, кальцит. Графит образуется при метаморфизме углей, углистых и битуминозных сланцев вблизи интрузий. Залежи разрабатываются открытым и подземным способами. Основные месторождения расположены в Мексике (штат Сонора), Южной Kopee, Австрии (рудник "Кайзерсберг"), CCCP (месторождение Ногинское).

Получение графита

Основной метод обогащения скрытокристаллических руд — рудоразборка, плотнокристаллических и чешуйчатых — флотация. На качество концентратов накладываются ограничения по содержанию золы и гранулометрическому составу (чешуйки графита ценятся по величине). Скрытокристаллические руды размалываются. При флотации чешуйчатых и плотнокристаллических руд используют собиратели — керосин и другие углеводороды; пенообразователи — сосновое масло, спиртовые; регуляторы — соду, щёлочь; депрессоры — крахмал, реагенты на основе декстрина. Для улучшения селекции подаётся жидкое стекло. После флотации следуют мокрая классификация, сушка, воздушная классификация и гидрометаллургические операции, включающие спекание с содой, кипячение огарка, выщелачивание серной кислотой, отмывку, кипячение в содовом растворе, отмывку, сушку и сухую магнитную сепарацию с получением графита в немагнитном продукте. При доводке чешуйчатого доменного графита используется электросепарация.

Запасы и применение

Мировые запасы графита (1978, тысяч т) в капиталистических и развивающихся странах: чешуйчатого — Южная Америка, 136; Европа, 3500; Африка, 5442; Азия, 900; плотнокристаллического — Азия, 2900; скрытокристаллического — Северная Америка (без США), 3084; Европа, 5623; Азия, 6168. О добыче графита см. в ст. графитовая промышленность.

Наряду с природным применяют искусственный графиты, который получают при охлаждении пересыщенных углеродом сплавов, термическим разложением газообразных углеводородов, нагреванием антрацита, нефтяного кокса, каменноугольного пека. Применяются графиты в металлургии (тигли, литейные формы, противопригарные краски), в химическом машиностроении (футеровочный материал, трубы и др.), в производстве коллекторов для динамо-машин, электродов, проводящих порошков, смазочных материалов, антифрикционных изделий, в ядерной технике, в производстве карандашей, красок, теплоизоляционных материалов. Искусственный кусковой графит используют в качестве эрозионностойких покрытий для сопел ракетных двигателей, камер сгорания носовых конусов.

Основные свойства природного графита

Графиты — вещества серого цвета с металлическим блеском, аморфного, кристаллического, или волокнистого сложения, жирные на ощупь, удельный вес от 1,9 до 2,6. По внешнему виду графит, имеет металлический свинцово-серый цвет, колеблющейся от серебристого до черного, с характерным жирным блеском.
Поэтому потребители зачастую называют явнокристаллические графиты серебристыми, а скрытокристаллические — черными.

На ощупь графит жирен и отлично пачкается. На поверхностях он легко дает черту от серебристого до черной, блестящей. Графит отличается способностью прилипать к твердым поверхностям, что позволяет создавать тонкие пленки при натирании им поверхностей твердых тел.

Графит представляет собой алоторопную форму углерода, которая характеризуется определенной кристаллической структурой, имеющей своеобразное строение.

В зависимости от структурного строения графиты делятся на:

  • явнокристаллические,
  • скрытокристаллические,
  • графитоиды,
  • высокодисперсные графитовые материалы, обычно называемые углями.
    В свою очередь, явнокристаллические графиты по величине и структуре кристаллов делятся на:
  • плотнокристаллические (Боготольское месторождение графита),
  • чешуйчатые (Тайгинское месторождение графита).

В чешуйчатых графитах кристаллы имеют форму пластинок или листочков. Чешуйки их жирные, пластичные и имеют металлический блеск.

Важнейшие свойства графита

Электрические свойства

Электропроводность графита в 2,5 раза больше электропроводности ртути. При температуре 0 град.

Графит — описание графита, свойства, добыча, применение, производство

удельное сопротивление электрическому току находится в пределах от 0,390 до 0,602 ом. Низкий предел удельного сопротивления для всех видов графита одинаков и равен 0,0075 ом.

Термические свойства

Графит обладает большое теплопроводностью, которая равняется 3,55вт*град/см и занимает место между палладием и платиной.

Коэффициент теплопроводности 0,041(в 5 раз больше, чем у кирпича). У тонких графитовых нитей теплопроводность выше, чем у медных.
Температура плавления графита — 3845-3890 С при давлении от 1, до 0,9 атм.
Точка кипения доходит до 4200 С.
Температура воспламенения в струе кислорода составляет для явнокристаллических графитов 700-730С. Количество тепла, получаемого при сжигании графита, находится в пределах от 7832 до 7856 ккал.

Магнитные свойства

Графит считается диамагнитным.

Растворимость графита

Химически инертен и не растворяется ни в каких растворителях, кроме расплавленных металлов, особенно тех, у которых высокая точка плавления. При растворении образуются карбиды, наиболее важными свойствами которых являются карбиды вольфрама, титана, железа, кальция и бора.
При обычных температурах графит соединяется с другими веществами весьма трудно, но при высоких температурах он дает химические соединения со многими элементами.

Упругость графита

Графит не обладает эластичностью, но тем не менее он может быть подвергнут резанию и изгибанию. Графитовая проволока легко сгибается и закручивается в спираль, а при вальцевании дает удлинение около 10%. Сопротивление на разрыв такой проволоки равно 2 кг/мм2, а модуль изгиба равен 836 кг/мм2.

Оптические свойства

Коэффициент светопоглощения графита постоянен для всего спектра и не зависит от температуры лучеиспускания тела; для тонких графитовых нитей он равен 0,77, с увеличением кристаллов графита светопоглащение уже находится в пределах 0,52-0,55.

Жирность и пластичность графита являются важнейшими свойствами, которые дают возможность широко применять его в промышленности. Чем выше жирность графита, тем меньше коэффициент трения. От жирности графита зависит использование его в качестве смазочного материала, а также способность прилипания к твердым поверхностям.

Благодаря этим свойствам имеется возможность создавать тонкие пленки при натирании графитом поверхности твердых тел.

Низкий коэффициент теплового расширения графита и связанная с этим высокая стойкость к температурным напряжениям, является решающим фактором применения его, как важного и незаменимого вспомогательного материала в металлообрабатывающей, чугунолитейной и сталелитейной промышленности, т.е. всюду, где рабочие поверхности должны предохраняться от прямого воздействия расплавленного металла. Важным преимуществом при таком использовании является также его несмачиваемость, полностью восстановленными металлами и нейтральными шлаками, прочность при высоких температурах. Применение графита при отливе деталей повышает качество отливов, уменьшает количество брака, и предупреждает образование пригара, на удаление которого требуется большие усилия и затраты.

Сырые литейные формы и стержни покрываются слоем сухого графитового порошка. Чистый графит имеет низкий коэффициент поглощения нейтронов и самый высокий коэффициент замедления, благодаря чему он незаменим в атомных реакторах. Без графитовых электродов немыслимо развитие черной и цветной, химической промышленности.

Графит прекрасный футеровочный материал электролизеров для получения алюминия. Углеродосодержащие материалы применяются для строительства электропечей и других тепловых агрегатов.

Из графита готовятся тигли, лодочки для производства сверхтвердых сплавов.
В химической промышленности материалы из графита незаменимы для производства теплообменников, работающих в агрессивных средах.

А так же для изготовления нагревателей, конденсаторов, испарителей, холодильников, скрубберов, дистилляционных колонн, форсунок, сопел, кранов, деталей для насосов, фильтров.
Отечественная промышленность в большом ассортименте выпускает графитовые электрощетки для различных электрических машин, электрические осветительные угли для прожекторов и для демонстрации и съемок кинофильмов, элементные — гальванических батарей, сварочные и для спектрального анализа, изделия для электровакуумной техники и техники связи.

В машиностроении графит используется как антифрикционный материал для подшипников, колец трения, торцевых и поршневых уплотнений, подпятников.

Минералы и горные породы / Описание минерала Графит