Фильтрование под вакуумом (). Дисковые вакуумные фильтры Принцип работы и рабочие зоны барабанного прибора

Классификация фильтров

Среди фильтров, наиболее часто используемых на обогатительных фабриках для обезвоживания продуктов обогащения, можно выделить следующие типы.

К первому типу фильтров следует отнести фильтры, работающие под гидростатическим давлением столба фильтруемой суспензии. Это самые простые фильтры, к ним относятся фильтрующие чаны или песчаные фильтры. Песчаные фильтры применяются при малом содержании твердой фазы в суспензии и в целях осветления растворов. Они представляют собой чаны, в которых на ложном днище уложен слой песка, служащий фильтрующей перегородкой. Периодически необходимо регенерировать перегородку (промывать водой) или заменять на новую.

Второй тип – это вакуум-фильтры, среди которых различают вакуум-фильтры периодического и непрерывного действия.

К вакуум-фильтрам периодического действия относится рамный вакуум-фильтр. Рамные фильтры применяли в гидрометаллургии для осветления растворов от мути. Пакет из отдельных рамок (до 30 штук) подвешивается на направляющих и помещается в ванну с суспензией (фильтровальный ящик). Прямоугольная рама образована железной газовой трубкой с отверстиями диаметром 5 мм, на которую натянута рубашка из фильтроткани. Газовые трубки при помощи сборника-коллектора соединяются с вакуум-системой. Внутри рамок создается вакуум и начинается процесс фильтрования. На фильтроткани образуется осадок из взвешенных частиц раствора. Когда скорость фильтрования резко падает, вакуум-насос отключают, осветленную суспензию из ванны выпускают и при необходимости осуществляют промывку осадка водой под вакуумом. Разгрузку осадка производят сжатым воздухом, подаваемым через тот же коллектор, и цикл повторяется. Рамные вакуум-фильтры отличает простота конструкции, ремонта и замены изнашиваемых частей. К недостаткам следует отнести малую производительность.

Среди вакуум-фильтров непрерывного действия различают:

– барабанные с внешней фильтрующей поверхностью;

– барабанные с внутренней фильтрующей поверхностью;

– дисковые с боковой фильтрующей поверхностью;

– ленточные с горизонтальной фильтрующей поверхностью;

– план-фильтры.

Третий тип фильтров – фильтр-прессы, которые, в свою очередь, по конструктивному оформлению и по принципу действия подразделяются на вертикальные, горизонтальные, рамные, камерные, ленточные.

К четвертому типу фильтров можно отнести гипербарические или высоконапорные фильтры. Напорный дисковый фильтр представляет собой встроенный в цилиндрическом напорном резервуаре дисковый фильтр. В напорном резервуаре создается повышенное давление с помощью сжатого воздуха. Внутреннее пространство сегментов фильтровальных дисков находится под атмосферным давлением и таким образом создается необходимая для процесса фильтрования разница в давлении по обеим сторонам фильтровального полотна. Высоконапорные фильтры выпускает фирма Andritz (Австрия).


Вакуум-фильтры непрерывного действия работают с применением вакуума, который во время фильтрования поддерживается постоянным, и характеризуются полной автоматизацией смены отдельных циклов фильтрования.

На отечественных железорудных и углеобогатительных фабриках, как правило, применяют дисковые вакуум-фильтры. На фабриках, перерабатывающих руды цветных и редких металлов, наряду с дисковыми, используют барабанные вакуум-фильтры с наружной фильтрующей поверхностью. На фабриках по обогащению апатитовых и фосфоритовых руд распространение получили барабанные фильтры с внутренней фильтрующей поверхностью. На ряде предприятий для обезвоживания зернистого материала применяют ленточные вакуум-фильтры. Для труднофильтруемых суспензий иногда используются барабанные вакуум-фильтры со сходящим полотном. Очень редко применяют нутч-фильтры, карусельные и тарельчатые вакуум-фильтры (план-фильтры).

Барабанный вакуум-фильтр с наружной фильтрующей поверхностью

Барабанные фильтры с внешней фильтрующей поверхностью изготовляют в обычном (типа БОУ) и кислотостойком (типа БОК) исполнении для фильтрования тонкозернистых материалов с верхним пределом крупности 65–70% класса –0,074 мм. Эти фильтры находят наибольшее применение на фабриках, перерабатывающих руды цветных и редких металлов для обезвоживания свинцовых, медных, цинковых, молибденовых концентратов и неметаллических, например, баритовых концентратов.

Фильтры имеют типоразмерный ряд: БОУ 5‑1,75; БОУ 10‑2,6; БОУ 20‑2,6; БОУ 40‑3; БОУ 100‑4,2; где первая цифра это площадь фильтрования, м 2 ; вторая цифра – диаметр барабана, м.

Барабанный вакуум-фильтр с наружной фильтрующей поверхностью (рис. 4.6) состоит из вращающегося барабана 1 , установленного в двух опорных подшипниках 11 , ванны 4 для приема суспензии, мешалки 5 , полых цапф 10 , привода барабана 3 , распределительных головок 2 . Суспензия поступает в ванну снизу по патрубкам, избыток её переливается. Вертикальная перегородка делит барабан на две изолированные друг от друга секции. Барабан погружен приблизительно на 40% фильтрующей поверхности в суспензию. Барабан вращается на полых чугунных цапфах в подшипниках, укрепленных на торцевых стенках ванны. Вращение барабана осуществляется от электродвигателя через многоступенчатый редуктор на приводную шестерню, укрепленную на цапфе барабана.

В ванне установлена качающаяся (маятниковая) мешалка для предотвращения осаждения твердых частиц пульпы. Мешалка имеет отдельный привод 6 . В одной из торцовых стенок ванны имеется переливное окно 16 , через которое удаляется избыток пульпы, благодаря чему поддерживается постоянный уровень пульпы в ванне. Снизу имеются люки 18 для выпуска пульпы при остановке.

Поверхность барабана покрыта перфорированными стальными листами 9 с отверстиями диаметром 5 мм. Сверху на эти листы натягивают фильтроткань, укрепляя её на барабане забивкой жгутов в пазы между ячейками барабана и навивкой мягкой проволоки по окружности барабана.


Рис. 4.6. Барабанный вакуум-фильтр с внешней фильтрующей поверхностью:
1 – барабан; 2 – распределительные головки; 3 – привод барабана; 4 – ванна; 5 – мешалка; 6 – привод мешалки; 7 – опорная рама;
8 – ножевое устройство для съема осадка; 9 – перфорированный лист; 10 – цапфа; 11 – подшипник; 12 – трубы для отвода фильтрата;
13 – сменная ячейковая шайба; 14 – выводные трубы, соединяющие распределительную головку с вакуумом; 15 – выводные трубы для подачи сжатого воздуха; 16 – окно для перелива пульпы; 17 – патрубок для подачи исходной пульпы; 18 – отверстие для выпуска пульпы
из корыта; 19 – отверстие для чистки корыта; 20 – устройство для навивки проволоки на барабан


Внутренняя полость барабана, образованная фильтрующей поверхностью и поверхностью барабана, разделена в радиальном направлении на 24 неглубокие секции (ячейки), каждая из которых соединена отводящими трубками 12 с каналами пустотелых цапф. К торцам пустотелых цапф пружинами прижаты распределительные головки со сменными ячейковыми шайбами 13 . Они служат для попеременного подключения внутренних секций барабана к вакуум-проводу и трубам, подающим сжатый воздух 15 и отводящим фильтрат 14 . Распределительная головка неподвижна и при вращении барабана происходит попеременное соединение отдельных секций барабана с определенными камерами распределительной головки.

Независимо от того, какое оборудование применяется для сгущения осадка сока I сатурации, от осадка отделяется жидкая фаза и осадок промывается. Так как суспензия, поступающая из сгустителей на вакуум-фильтры, имеет температуру около 85 °С, то остаточное давление на вакуум-фильтрах не должно превышать 0,045.. .0,048 МПа. Таким образом, перепад давления, при котором осуществляется фильтрация на вакуум-фильтрах, в 4...5 раз меньше, чем на фильтрах циклического действия. Поэтому толщина слоя осадка на барабанах фильтров допускается не более 10... 12 мм, а для быстрого роста толщины слоя осадка на фильтрующей поверхности фильтра поступающая на фильтрацию суспензия должна содержать сухих веществ не менее 20 %.

Применяются вакуум-фильтры камерного типа и бескамерные.

На рис. а показана принципиальная схема работы камерного вакуум-фильтра. В корпус фильтра 1 подается сгущенная суспензия сока I сатурации, в которую погружен вращающийся барабан 2. Поверхность барабана разделена на отдельные секции перегородками 3. Каждая секция трубками 5 соединена с подвижной головкой 6 фильтра. Головка имеет отверстия, количество которых соответствует количеству секций барабана.

Рис. Схемы вакуум-фильтров: а - камерного; б - бескамерного

Секции покрываются опорной поверхностью, на которую накладывается холст. Холст натягивается и закрепляется проволокой из нержавеющей стали диаметром 2...3 мм при помощи специальных приспособлений.

Сверху над барабаном вакуум-фильтра расположены форсунки 7 для промывки осадка 4. Для удаления осадка из барабана вакуум-фильтра установлен нож 8. В корпусе фильтра имеется мешалка 9 для взмучивания осадка.

Для отвода фильтрованного сока, промоя и подвода сжатого воздуха, для отдувки осадка от холста к подвижной головке прижимается неподвижная головка.

На рис. б представлена принципиальная схема бескамерного вакуум-фильтра. По конструкции он значительно проще камерного фильтра, так как барабан его не имеет отдельных камер, отсутствуют также распределительные головки.

Перфорированный барабан 3 фильтра закрыт боковыми крышками, и поверхность его при помощи резинового уплотнения 19 делится на две зоны: зону 5, находящуюся под разрежением, и зону 7, в которой действует давление. В зоне разрежения происходят фильтрация суспензии, промывка и подсушивание осадка. Промой отводится из сборника, образованного стенками 8. В зоне давления осуществляются отдувка осадка при помощи воздуха, поступающего по трубе 12, и регенерация ткани при помощи пара или жидкости, поступающих по трубе 13.

Барабан фильтра устанавливается на неподвижной полой оси 14 при помощи подшипников в корпусе 1. Полая ось 14 соединена трубой 15 с нижней частью барабана, фильтра, куда по устройству 16 подается сок. Для отвода продуктов фильтрации, а также подвода воздуха для отдувки осадка 2 и жидкости для регенерации ткани 22 полая ось делится на секции. В некоторых конструкциях фильтров для этой цели в полой оси устанавливаются специальные трубы. По верхней секции полой оси отводится промой, который собирается в сборнике 6. Левая секция соединена с вакуум-ресивером, через нижнюю секцию отводится отфильтрованный сок. Через правую секцию полой оси подводятся воздух для отдувки осадка и пар или жидкость для регенерации ткани.

Барабан обтягивается фильтровальной тканью, которая закрепляется проволокой 20. Вращение барабана осуществляется от привода через шестерню, прикрепленную к передней крышке барабана. Поверхность барабана фильтра погружена в суспензию на 50...60 %.

Осадок промывается при помощи форсунок 4, отдувается воздухом, поступающим через щель 9, и удаляется ножом 11, имеющим цапфу 21 для осуществления установки. Через щель 10 производится регенерация ткани паром или жидкостью.

Резиновые уплотнения прижимаются к внутренней поверхности барабана при помощи полых резиновых подушек 17, в которые подводится вода по гибким шлангам 18. Давление воды должно составлять 0,5...0,6 МПа.

Так как резиновые уплотнения все время прижимаются к внутренней поверхности барабана и работают на истирание, то барабан внутри должен быть гладким. Практика эксплуатации вакуум-фильтров данного типа показывает, что уплотнения быстро изнашиваются. Применение ротационных уплотняющих устройств из синтетических материалов, видимо, может устранить этот недостаток.

Камерный вакуум-фильтр БШУ-40-3-10 (рис.) состоит из следующих узлов: привода барабана фильтра 1, распределительных головок II и VI, барабана III, промывного устройства VII, мешалки для взмучивания осадка IVи привода мешалки V.

Рис. Вакуум-фильтр БШУ-40-3-10

Кроме того, в его состав входят электродвигатель 1, вариатор 2, редуктор 3, патрубок 4 для сжатого воздуха, левая 5 и правая 16 распределительные головки, подшипник 6, шестерня 7, передняя крышка 8, подводящие трубы 9, барабан 10, коллекторные трубы 11, патрубок 12, форсунка 13, трубы 14 для промывки осадка, штанга 15, штуцер 17 для отвода фильтрата, редуктор 18, штанги 19 и 24, спускные штуцера 20 и 22, мешалка 21, корпус 23, штуцера 25, 26, 37 для отвода промоя, устройство 27 для крепления ножа, устройство 28 для намотки проволоки на барабан, кран 29, фильтр 30, кожух 31, распределитель 32, горизонтальные трубы 33 и 35, радиальные трубы 34 и 36, штуцер 38 для подвода суспензии, электродвигатель 39 и редуктор 40.

Барабан 10 фильтра вращается в корпусе 23, куда по штуцеру 38 непрерывно поступает сгущенный осадок. Невращающиеся части распределительных головок 5 и 16 прижаты к торцовым поверхностям вращающихся цапф и при работе фильтра последовательно соединяют секции барабана с соответствующими окнами в неподвижной части распределительных головок.

Когда секция барабана погружена в суспензию, происходит фильтрация за счет разрежения, создаваемого конденсатором в правой распределительной головке 16. Жидкая фаза суспензии отводится при этом через штуцер 17, а на поверхности ткани этой ячейки отлагается слой осадка. Так как при увеличении толщины слоя осадка сопротивление фильтрации растет, то для сохранения производительности фильтра к секции через угол поворота барабана 36° подключается распределительная головка 5 с более высоким разрежением. При этом фильтрат отводится через штуцер 25, а на поверхности ткани этой секции толщина слоя осадка возрастает. Процесс фильтрации в каждой секции барабана происходит до тех пор, пока она находится в зоне фильтрации. Размеры зон фильтрации регламентируются размерами окон в шайбах неподвижных головок (рис.). Фильтр имеет следующие размеры зон в дуговых градусах:

Далее секция барабана проходит промежуточную зону II, входит в зону III первой просушки и промывки при пониженном разрежении, при этом более концентрированный раствор отводится через штуцер 37 правой распределительной головки 16. В зоне V происходит промывка слоя осадка при повышенном разрежении, создаваемом вакуум-насосом через левую распределительную головку. Концентрированный промой отводится через штуцер 25 этой головки (см. рис.).


Рис. Шайбы неподвижных головок вакуум-фильтра БШУ-40-3-10: а - левой головки; б - правой головки; в - схема деления секций барабана фильтра на зоны при совмещении шайб

После V зоны секции барабана вакуум-фильтра соединяются с зоной VII второй просушки и промывки осадка с уменьшенным разрежением. Полученный промой удаляется через штуцер 26 левой распределительной головки. Зона VII отделяется от зоны отдувки осадка IXпромежуточной зоной VIII. Отдувка осуществляется сжатым воздухом с избыточным давлением 0,02 МПа, поступающим по патрубку 4 левой головки.

В этой же зоне осадок снимается с ткани ножом. После прохождения секциями барабана промежуточной зоны X процесс повторяется.

В зонах III, V и VII осадок промывается аммиачной водой, поступающей через кран 29, фильтры 30, распределитель 32, радиальные 36 и горизонтальные 35 трубы в форсунки 13. Через трубы радиальную 34 и горизонтальную 33 в форсунки поступает раствор соляной кислоты для регенерации ткани.

Избыток поступающей в корпус фильтра суспензии удаляется через сливную коробку, а окончательный спуск осуществляется через штуцера 20 и 22.

Барабан фильтра своими цапфами установлен в подшипниках 6 и приводится во вращательное движение с частотой 0,118.. .2,14 об/мин от трехступенчатого электродвигателя 1 максимальной мощности 2,8 кВт через вариатор 2 и редуктор 3.

Мешалка 21 совершает 20 двойных качаний в минуту и приводится в движение от электродвигателя через редуктор 18 и штанги 19 и 24.

Барабан фильтра представляет собой горизонтальный сварной цилиндр, состоящий из двух частей, соединенных при помощи фланцев. На наружной поверхности барабана 1 (рис.) приварены планки 3, разделяющие всю поверхность барабана по длине на 24 секции. На планках установлена перфорированная опорная поверхность 8 (рис. б), через отверстия которой фильтрат проходит в секции. Фильтрация суспензии осуществляется через ткань 2, которая укладывается на опорную поверхность - резиновые коврики 7. Перфорированная опорная поверхность 8 (сетка) крепится на барабане с помощью штифтов 6. Жгут 4 укладывается в пазы 5 планок.


Рис. Барабаны вакуум-фильтров: а - с опорной сетчатой поверхностью; б - с опорной поверхностью в виде резиновых ковриков

В фильтрах типа «Эймко», выпускаемых французской фирмой «Фив Лилль-Кай», вместо перфорированной поверхности барабанов применяются плетеные проволочные сетки 2. На рис. а показан способ закрепления на барабане стальной сетки при помощи штифтов 6, укладка пенькового жгута, закрепление холста 3 проволокой 7.

Жгут укладывается в канавки планок, приваренных на наружной поверхности барабана. Планки образуют отдельные секции барабана. Ткань закрепляется при помощи нержавеющей проволоки.

Резиновые коврики имеют преимущества по сравнению со стальными сетками. Они легко снимаются в случае регенерации их и увеличивают срок службы ткани, так как не окисляют ее.

Из каждой секции фильтров коллекторными трубками фильтрат отводится к распределительным головкам. Секции в верхней части разобщены между собой при помощи резиновых шнуров 4, вставленных в пазы планок 5.

Левая распределительная головка вакуум-фильтра БШУ-40-3-10 (рис.) состоит из подвижной 4 и неподвижной 9 частей со съемными шайбами. Она включает также гнезда 1 и 2, штуцер 3 для подвода сжатого воздуха, шайбы 5 и б, винт 7, ось 8, стакан 10, смотровое стекло 11, опору 12, окно 13, шланги 15, 16 и 18. Шайбы прикрепляются к цапфе барабана, т. е. к подвижной части и неподвижному корпусу головки, винтами 7. Неподвижная шайба имеет окна, количество которых соответствует количеству окон в неподвижном корпусе головки.

Рис. Левая распределительная головка вакуум-фильтра БШУ-40-3-10

Неподвижная часть головки прижимается к подвижной шайбе с помощью пружины 17, насаженной на ось 8. Ось пружины крепится в стакане 10, прикрепленном к цапфе подвижной части головки. Большие полости головки имеют отвод 19, к которому хомутиком 20 крепится рукав 18. Сжатый воздух в головку подается через штуцер 3. Разрежение в определенных зонах фильтра контролируется вакуумметрами, присоединенными к гнездам 1 и 2. Для установки неподвижной головки в определенном положении по отношению к правой головке имеется проушина 14.

Сравнивая конструкции распределительных головок различных типов фильтров, необходимо отметить значительные преимущества распределительных головок фильтра БШУ-40-3-10: они позволяют изменять режим работы фильтра. Неподвижные диски, расположенные в правой и левой распределительных головках, различаются между собой. Так как в каждой секции фильтра имеются по две коллекторные трубки и одна из трубок направлена к правой распределительной головке, а другая - к левой, это позволяет в фильтрах данной конструкции увеличить зону промывки осадка, что обеспечивает более глубокую промывку его при небольших расходах воды, и отобрать часть малоконцентрированного раствора для приготовления известкового молока. Эти вопросы имеют актуальное значение для нормальной работы фильтров.

Фильтр оснащен самоочищающейся ловушкой для отделения окалины от промывной воды, которая подается к форсункам по трубам из нержавеющей стали. При регенерации ткани раствор соляной кислоты поступает в пластмассовые форсунки. Все трущиеся части фильтра смазываются централизованно. Уровень суспензии в корпусе фильтра и сока в ресиверах поддерживается автоматически.

Техническая характеристика вакуум-фильтров БШУ-40-3-10

Производительность по свекле, т/сут................800... 1 ООО

Поверхность фильтрации, м 2 ..........40

Диаметр барабана, мм........................3000

Длина барабана, мм..........................4400

Частота вращения барабана, с -1 ..................0,0026... 0,0260

Температура суспензии при фильтрации, К............273... 368

Угол погружения барабана в суспензию, град.....109... 120

Величина вакуума в зоне фильтрования, МПа.....0,08

Давление при продувке, МПа..........0,2

Установленная мощность, кВт..........7,0

Габаритные размеры, мм......................7350x4585x3942

Масса, кг................21415

Фильтрование под вакуумом – ускоренный процесс очистки осадка, получения жидкости из взвесей, используя вакуум. Есть процессы и растворы, когда фильтрование при нормальном давлении, только под силой тяжести, не идет. Чем больше разреженность воздуха, тем легче идет отделение жидкости от кристаллического осадка. Для коллоидов применяют специальные параметры, подбираемые от свойств вещества.

Самая простая схема такой установки: в колбу Бунзена вставлена фильтровальная воронка , к отростку колбы присоединен насос (вакуумный насос или водный насос Комовского ручной). К водному насосу присоединен шланг, через который идет проточная вода. Чтобы предотвратить выбор воды во время резкой остановки, обычно между насосом и колбой ставится промежуточный сосуд. Приемный сосуд может быть любым (материал, форма, объем), главное, чтобы вся системы была герметична, выдерживала определенное давление, была устойчива к растворителям.

Фильтровальных воронок может быть любое количество, все зависит от мощности насоса, они могут быть каждая на своем приемном сосуде или на установке для многоканального фильтрования одновременно.

Виды воронок

Фильтровальные воронки для вакуумных установок бывают такие:

  1. Фильтровальные конусы.
  2. Тигли из стекла.

Воронка Бюхнера - что это такое и для чего используется?

Этот лабораторная посуда представляет собой глазированную (кроме кромки) фарфоровую воронку с впаянной пластиной с крупными дырочками. Воронка вставляется в принимающий сосуд (герметичная емкость, колба Бунзена, др.), которая входит в состав установки фильтрации с разреженным воздухом.

На дырчатую пластину воронки Бюхнера выкладывают фильтровальная бумага необходимой плотности, через которую идет фильтрация. Далее собирается система и можно начинать процесс. Раньше применяли асбестовые фильтры, которые можно регенерировать, но из-за высокой опасности для дыхательной системы, асбест запрещен в лабораторной практике.

Фильтровальная бумага

  • по месту присоединения и наличию шлифа (со шлифом и без, шлиф на горлышке, на сливной трубке);
  • по форме воронки (цилиндрическая , коническая).

Соответственно, есть воронки разного диаметра, с разным шлифом. Если есть шлиф, то воронка подбирается под диаметр колбы-приемника со шлифом. Если диаметры разные, используют переходники стеклянные, понижающие или повышающие шлиф/диаметр горлышка. Если нет шлифа, то воронка вставляется в резиновую пробку с отверстием.

Воронки маркируются номерами, чем меньше номер, тем меньше дырочек в пластинке и тем они крупнее. Например, согласно ГОСТу, название ПОР 1,6 обозначает, размер пор 1,6 мкм (максимально, так как поры разного размера). Согласно ISO эта воронка с пористостью S4. Так сравнивая максимальный размер пор сплавленной стеклянной пластины в фильтре, можно определить, какой это фильтр по международной классификации.

Высокая скорость фильтрации – это большой диаметр воронки, диаметр пор и сила вакуума.

Мойка воронки Шотта

Так как пористая пластинка с порами в микрометры, очистить обычным способом ее невозможно. Используют разные подходы, в зависимости от силы загрязнения.

Способы очистки пористой пластины:

  1. Пропустить растворитель (или горячую воду) в обратную сторону (вымыть из пор загрязнение).
  2. Кипячение в растворе смеси кислот (соляная:азотная – 1:3). Для самых стойких загрязнений берут царскую водку.

Для усиления эффекта можно делать все манипуляции в ультразвуковой бане.

Тигли Гуча - что это такое и для чего используется?

Для очистки порошкообразных или кристаллических осадков в системе вакуумной фильтрации можно применять тигли Гуча . Тигли представляют собой фарфоровый стаканчик с дырочками в дне (как часть воронки Бюхнера). Тигель вставляют в резиновую основу, фиксируют в воронке и дальше используют, как воронку Бюхнера.

Удобнее применять стеклянные тигли, с плавленой пористой пластинкой (как тигли Шоттта без ножки). Используют, как воронку Шотта. Такие тигли тоже имеют дифференцированную пористость, диаметр, но у них нет горлышка, что делает их более универсальными (можно установить в систему с любым приемным сосудом).

Покупка воронок для вакуумной фильтрации

Чтобы купить все составляющие установки для фильтрования под разреженным воздухом, достаточно обратиться к компании, которая реализует лабораторную посуду. Но так как процессы происходят под вакуумом, воронку Бюхнера, Шотта, колбу Бунзена и другие компоненты системы лучше купить у проверенного поставщика, т.е. у нас, в компании .

Складывается из семи операций:

  1. погружение в суспензию с образованием осадка и отводом фильтрата;
  2. втягивание воздуха через осадок и удаление остатка фильтрата;
  3. промывка осадка;
  4. втягивание воздуха через осадок и удаление остатка промывной жидкости;
  5. отсоединение осадка и его рыхление;
  6. снятие осадка;
  7. регенерация фильтровального полотна.

На первых четырех этапах ячейки подключены к линии вакуума, на последних трех - сообщаются с линией сжатого воздуха.

На время продувки тонкая спиралеобразная проволока прижимает фильтровальную ткань к поверхности барабана, чтобы исключить возможность ее растяжения. В отдельных случаях в осадке могут появиться трещины. Это приведет к растрескиванию слоя и нарушению вакуума за счет того что воздух будет поступать через трещины. В таких случаях трещины заглаживаются покровной лентой, которая перемещается по поверхности осадка.

Для удаления осадка используются различные способы в зависимости от его структуры и толщины:

  • толщина слоя составляет 8-10 мм - осадок снимается широким ножом, который устанавливается вдоль образующей барабана на определенном расстоянии от его поверхности;
  • слой 2-4 мм - снимается при помощи бесконечных тонких шнуров, которые расположены параллельно на расстоянии 6-25 мм друг от друга и перемещаются по замкнутому пути, огибая натяжной и направляющий ролики; от фильтровальной ткани шнуры отделяются вместе с осадком;
  • слой около 2 мм - снимается резиновым валиком, который вращается в противоположном направлении относительно барабана; осевший на валике слой снимается ножом;
  • слой около 1 мм - для удаления осадка используется метод сходящего полотна, при котором фильтровальная ткань проходит такой же путь, как и бесконечные шнуры: с поверхности барабана подается на разгрузочный ролик для удаления осадка ножом, затем проходит ролик для промывки, после чего возвращается на барабан.

При разделении тонкодисперсных суспензий поры фильтровального материала быстро закупориваются. По этой причине вместо фильтровальной ткани используют намывную зернистую перегородку толщиной 50-75 мм. Материалом для нее часто служат зерна кизельгура. Процесс фильтрования выглядит следующим образом: в корыто подают густую суспензию зернистого материала, выключают съемное устройство и запускают работу фильтра на 30-60 минут. За это время накапливается осадок нужной толщины. Далее в корыто подают суспензию для фильтрования. В процессе разделения суспензии намывной слой с осевшим на него осадком постепенно срезается ножом. Нож перемещается очень медленно и проходит около 0,01-0,05 мм при одном обороте барабана. По мере истончения намывной слой регенерируют.

Площадь рабочей поверхности барабанных ячейковых вакуум-фильтров составляет до 50 м². Диаметр барабана составляет 1-4 м, длина - 0,2-5 м. Вращение барабана происходит со скоростью 0,1-3 об/мин. Для приведения барабана в действие используется электромотор мощностью 0,1-4,5 кВт. Фильтровальные материалы выбирают в зависимости от рода суспензии.

Дисковые вакуум-фильтры, вакуум-фильтры для концентратов, дисковые фильтры для концентратов

Контактная форма

Дисковые вакуумные фильтры серии PGT сочетают в себе достоинства аналогичных продуктов китайского и иностранного производства. Они оптимизированы под параметры металлических руд, такие как высокая плотность, быстрое осаждение и сильное воздействие на трубопровод фильтрата. Как следствие, достигаются отличные показатели обезвоживания твердой фазы. Как свидетельствуют отзывы клиентов, по своим характеристикам наши фильтры соответствуют продвинутому уровню по международным стандартам.

1. Запорный клапан
2. Выпуск воздуха
3. Впуск воздуха
4. Шланг.
5 .Обратные воздуховоды, подсоединенные к распределительным головкам с обоих концов фильтра.
6. Фильтр
7. Водоотливной клапан
8. Воздушный ресивер обратной промывки
9. Вакуумный насос
10. Бак фильтрата
11. Основание фильтра
12. Фундамент или пол

Характеристики
1. Фильтрующие пластины в виде секторов круга выполнены из прочного инженерного пластика. На них имеются равномерно распределенные обезвоживающие отверстия и толстые высокопрочные ребра. Оптимально подобранный размер отверстий продлевает срок службы почти вдвое.
2. Трубопровод фильтрата содержит достаточно большую зону фильтрации. Распределительная головка оснащена большой полостью. Эти факторы улучшают отвод воздуха и фильтрата.
3. Износостойкая фильтрующая ткань (нейлон одноволоконный или двухслойный многоволоконный) улучшает показатели обезвоживания, препятствует забиванию, продлевает срок службы устройства.
4. Автоматическая централизованная система смазки с многоточечным насосом.
5. Система автоматической очистки фильтровальной ткани помогает поддерживать фильтрующую способность на максимальном уровне.
6. Горизонтальная мешалка с переменной скоростью для принудительного перемешивания. Тройная система защиты, включающая резину, графитовый сальник и разницу давлений воды надежно предотвращает выливание.
7. Главный привод характеризуется бесступенчатым регулированием скорости. Скорость регулируется на основании различных значений концентрации и расхода фильтруемого материала, при помощи мотора переменного тока с регулируемой скоростью либо частотного преобразователя, эта регулировка обеспечивает оптимальную производительность работы устройства.
8. Каждый диск разделен на 20 отдельных секторов, что облегчает контроль фильтрации и обеспечивает равномерную толщину фильтрационной корки.
9. Фрикционные пластины сделаны из износостойкого бористого чугуна, обеспечивающего хорошее уплотнение и долговечность.
10. Фильтратный трубопровод сделан из композита стали и керамики, обеспечивающего в 10 раз больший срок службы по сравнению с обычными трубами.
11. Штуцер, соединяющее фильтратный трубопровод с фильтрующими дисками, точно позиционирован и надежно приварен, такое соединение на 90% снижает риск утечки.

Принцип действия
Дисковые вакуумные фильтры производят разделение твердой и жидкой фазы взвесей при помощи вакуумного насоса. Вакуумные фильтры серии PGT предназначены для обезвоживания различных материалов, в первую очередь – концентратов черных и цветных металлов, кроме того, они применяются для обезвоживания in при обогащении угля, неметаллических руд, в химической промышленности и природоохранных системах.

Вакуумные фильтры успешно справляются с подачей, формированием, обезвоживанием, выгрузкой и очисткой фильтрационной корки и т.д.

Разомкнутая магнитная система включает постоянные магниты, расположенные определенным образом внутри диска, способствующие образованию фильтрационной корки. Когда магнитный материал попадает в загрузочный бункер, твердые магнитные частицы в нем формируют магнитные кластеры, под действием магнитного поля и собственного веса, и затем притягиваются к фильтровальной ткани по поверхности дисков. В это время под действием сжатого воздуха фильтрационная корка образует несколько слоев в соответствии с размером минеральных частиц. При этом подача сверху способствует дальнейшей стратификации частиц по размеру. Сформированная в таких условиях «лепешка» характеризуется хорошими показателями толщины и воздухопроницаемости.

Затем барабан переносит корку в зону обезвоживания, где вакуумный насос отсасывает из нее излишки воды. Далее в зоне снятия осадка обезвоженная корка сдувается с фильтра сжатым воздухом. После снятия корки фильтровальная ткань очищается продувкой и промывкой. Сжатый воздух нагнетает воду из внутренней части диска наружу, таким образом достигается полное очищение фильтровальной ткани, предотвращается засорение и обеспечивается максимальная фильтрационная способность на следующей итерации процесса.

Технические параметры
Диаметр диска (мм) 2100 3100
Площадь фильтрации (м²) 10 15 20 25 30 35 40 48 60 72 84 96
Число дисков 2 3 4 5 6 7 8 4 5 6 7 8
Число секторов в диске 20
Мощность мотора основного вала (кВт) 2.2 3 4 5.5 7.5
Мощность мотора мешалки (кВт) 3 4 5.5 7.5 11
Мощностьвакуумного насоса (кВт) 37 55 75 95 132 185
Масса (кг) 10.4 11 11.6 12.2 12.8 13.4 14 18 21 24 27 30
Размеры (Д) (мм) 2535 2920 3315 3705 4095 4485 4875 4175 4675 5175 5675 6175
Размеры (Ш) (мм) 2480 4280
Размеры (В) (мм) 2960 3740
Производительность (т/ч.м²) 0.6-0.85